
A Python module to help you manage your bits

by Scott Griffiths

version 1.1.0

24 November 2009

python-bitstring.googlecode.com

http://python-bitstring.googlecode.com
http://python-bitstring.googlecode.com


The MIT License

Copyright © 2009 Scott Griffiths (scott@griffiths.name)

Permission is hereby granted, free of charge, to any person obtaining  a copy of this software and associated documentation 
files (the "Software"),  to deal in the Software without restriction, including  without limitation the rights  to use, copy, modify, 
merge, publish,  distribute, sublicense, and/or sell  copies of the Software, and  to permit persons to whom the Software is 
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS",  WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
NOT LIMITED  TO THE WARRANTIES OF MERCHANTABILITY,  FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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1. Introduction

bitstring  is a pure Python module designed to help make the creation and analysis of binary data as 
simple and natural as possible.

While it is not difficult to manipulate binary data in Python, for example using  the struct and array 
modules, it can be quite fiddly and time consuming  even for quite small tasks, especially if you are 
not dealing only with whole-byte data.

The bitstring  module provides a single class, BitString, instances of which can be constructed from 
integers, floats, hex, octal, binary, strings or files, but they all just represent a string  of binary digits. 
They can be sliced, joined, reversed, inserted into, overwritten, packed, unpacked etc. with simple 
functions or slice notation. They can also be read from, searched in, and navigated in, similar to a file 
or stream. 

BitString objects are designed to be as lightweight as possible and can be considered to be just a 
list of binary digits. They are however stored very efficiently - although there are a variety of ways of 
creating and viewing the binary data, the BitString itself just stores the byte data, and all views are 
calculated as needed, and are not stored as part of the object.

The different views or interpretations on the data are accessed through properties such as hex, bin 
and int, and an extensive set of functions is supplied for modifying, navigating  and analysing  the 
binary data.

A complete reference for the module is given in Appendix A, while the rest of this manual acts more 
like a tutorial or guided tour. Below are just a few examples to whet your appetite; everything here 
will be covered in greater detail in the rest of this manual.

from bitstring import BitString

# Just some of the ways to create BitStrings
a = BitString('0b001')                     # from a binary string
b = BitString('0xff470001')                # from a hexadecimal string
c = BitString(filename='somefile.ext')     # straight from a file
d = BitString(int=540, length=11)          # from an integer
d = BitString('int:11=540')                # using a format string

# Easily construct new BitStrings
e = 5*a + '0xcdcd'                         # 5 copies of 'a' followed by two new 
                                           # bytes
e.prepend('0b1')                           # put a single bit on the front
f = e[7:]                                  # cut the first 7 bits off
f[1:4] = '0o775'                           # replace 3 bits with 9 bits from 
                                           # octal string
f.replace('0b01', '0xee34')                # find and replace 2 bit string with
                                           # 16 bit string
# Interpret the BitString however you want
print e.hex                                # 0x9249cdcd
print e.int                                # -1840656947 (signed 2's complement
                                           # integer)
print e.uint                               # 2454310349  (unsigned integer)
open('somefile.ext', 'rb').write(e.bytes)  # Output raw byte data to a file
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1.1. Getting Started

First download the latest release for either Python 2.4 / 2.5 or Python 2.6 / 3.0 / 3.1 (see the 
Downloads tab on the project’s homepage1). Note that this manual covers only the Python 2.6 and 
later version. An earlier version is available for Python 2.4 / 2.5, which is available on the project's 
homepage.

If you're using  Windows and just want to install for your default Python installation then get the .exe 
and run it to install - you'll need to download this manual separately, but I guess you must have 
worked that out.

Otherwise you'll need to download and extract the contents of the .zip. You should find:

bitstring.py : The bitstring module itself.

test_bitstring.py : Unit tests for the module.

setup.py : The setup script.

readme.txt : A short readme.

release_notes.txt : History of changes in this and previous versions.

test/test.m1v : An example file (MPEG-1 video) for testing purposes.

test/smalltestfile : Another small file for testing.

bitstring_manual.pdf : This document

To install, run

python setup.py install2

This will copy bitstring.py to your Python installation's site-packages directory. If you prefer 
you can do this by hand, or just make sure that your Python program can see bitstring.py, for 
example by putting in the same directory as the program that will use it.

The module comes with comprehensive unit tests. To run them yourself use

python test_bitstring.py

which should run all the tests (over 300) and say OK. If tests fail then either your version of Python 
isn't supported (there's one version of bitstring  for Python 2.4 and 2.5 and a separate version for 
Python 2.6, 3.0 and 3.1) or something  unexpected has happened - in which case please tell me about 
it.

2. Creation and Interpretation

You can create BitString objects in a variety of ways. Internally, BitString objects are stored as 
byte arrays (in particular an array module byte array). This means that no space is wasted and a 
BitString containing 10MB of binary data will only take up 10MB of memory.
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When a BitString is created all that is stored is the byte array, the length in bits, an offset to the first 
used bit in the byte array plus a bit position in the BitString, used for reading  etc. This means that 
the actual initialiser used to create the BitString isn't stored itself - if you create using  a hex string 
for example then if you ask for the hex interpretation it has to be calculated from the stored byte array. 

2.1. Using the constructor

When initialising  a BitString you need to specify at most one initialiser. These will be explained in 
full below, but briefly they are:

auto : Either a specially formatted string, a list or tuple, a file object or another BitString.

bytes : A Python string, for example read from a binary file.

hex, oct, bin: Hexadecimal, octal or binary strings.

int, uint: Signed or unsigned bit-wise big-endian binary integers.

intle, uintle: Signed or unsigned byte-wise little-endian binary integers.

intbe, uintbe: Signed or unsigned byte-wise big-endian binary integers.

intne, uintne: Signed or unsigned byte-wise native-endian binary integers.

float / floatbe, floatle, floatne: Big, little and native endian floating point numbers.

se, ue : Signed or unsigned exponential-Golomb coded integers.

filename : Directly from a file, without reading into memory.

From a hexadecimal string
>>> c = BitString(hex='0x000001b3')
>>> c.hex
'0x000001b3'

The initial 0x or 0X is optional, as is a length parameter, which can be used to truncate bits from the 
end. Whitespace is also allowed and is ignored. Note that the leading  zeros are significant, so the 
length of c will be 32.

If you include the initial 0x then you can use the auto initialiser instead. As it is the first parameter in 
__init__ this will work equally well:

c = BitString('0x000001b3')

From a binary string
>>> d = BitString(bin='0011 000', length=6)
>>> d.bin
'0b001100'

An initial 0b or 0B is optional. Once again a length can optionally be supplied to truncate the 
BitString (here it is used to remove the final '0') and whitespace will be ignored.

As with hex, the auto initialiser will work if the binary string is prefixed by 0b:

>>> d = BitString('0b001100')

From an octal string
>>> o = BitString(oct='34100')
>>> o.oct
'0o34100'
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An initial 0o or 0O is optional, but 0o (a zero and lower-case 'o') is preferred as it is slightly more 
readable. Once again a length can optionally be supplied to truncate the BitString and 
whitespace will be ignored.

As with hex and bin, the auto initialiser will work if the octal string is prefixed by 0o:

>>> o = BitString('0o34100')

From an integer
>>> e = BitString(uint=45, length=12)
>>> f = BitString(int=-1, length=7)
>>> e.bin
'0b000000101101'
>>> f.bin
'0b1111111'

For initialisation with signed and unsigned binary integers (int and uint respectively) the length 
parameter is mandatory, and must be large enough to contain the integer. So for example if length is 
8 then uint can be in the range 0 to 255, while int can range from -128 to 127. Two's complement 
is used to represent negative numbers.

The auto initialise can be used by giving a colon and the length in bits immediately after the int or 
uint token, followed by an equals sign then the value:

>>> e = BitString('uint:12=45')
>>> f = BitString('int:7=-1')

The plain int and uint initialisers are bit-wise big-endian. That is to say that the most significant bit 
comes first and the least significant bit comes last, so the unsigned number one will have a '1' as its 
final bit with all other bits set to '0'. These can be any number of bits long. For whole-byte BitString 
objects there are more options available with different endiannesses.

Big and little-endian integers
>>> big_endian = BitString(uintbe=1, length=16) 
>>> little_endian = BitString(uintle=1, length=16)
>>> native_endian = BitString(uintne=1, length=16)

There are unsigned and signed versions of three additional 'endian' types. The unsigned versions are 
used above to create three BitString objects.

The first of these, big_endian, is equivalent to just using  the plain bit-wise big-endian uint 
initialiser, except that all intbe or uintbe interpretations must be of whole-byte BitString objects, 
otherwise a ValueError is raised.

The second, little_endian, is interpreted as least significant byte first, i.e. it is a byte reversal of 
big_endian. So we have:

>>> big_endian.hex
'0x0001'
>>> little_endian.hex
'0x0100'

Finally we have native_endian, which will equal either big_endian or little_endian, 
depending  on whether you are running  on a big or little-endian machine (if you really need to check 
then use "import sys; sys.byteorder").
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From a floating point number
>>> f1 = BitString(float=10.3, length=32)
>>> f2 = BitString('float:64=5.4e31')

Floating point numbers can be used for initialisation provided that the BitString is 32 or 64 bits 
long. Standard Python floating point numbers are 64 bits long, so if you use 32 bits then some 
accuracy could be lost.

Note that the exact bits used to represent the floating  point number could be platform dependent. 
Most PCs will conform to the IEEE 754 standard, and presently other floating  point representations are 
not supported (although they should work on a single platform - it just might get confusing  if you try 
to interpret a generated bitstring on another platform).

Similar to the situation with integers there are big  and little endian versions. The plain float is big 
endian and so floatbe is just an alias.

As with other initialisers you can also auto initialise, as demonstrated with the second example 
below:

>>> little_endian = BitString(floatle=0.0, length=64)
>>> native_endian = BitString('floatne:32=-6.3')

Exponential-Golomb codes

Initialisation with integers represented by exponential-Golomb codes is also possible. ue is an 
unsigned code while se is a signed code:

>>> g = BitString(ue=12)
>>> h = BitString(se=-402)
>>> g.bin
'0b0001101'
>>> h.bin
'0b0000000001100100101'

For these initialisers the length of the BitString is fixed by the value it is initialised with, so the 
length parameter must not be supplied and it is an error to do so. If you don't know what 
exponential-Golomb codes are then you are in good company, but they are quite interesting, so I’ve 
included an appendix on them (see Appendix B).

The auto initialiser may also be used by giving an equals sign and the value immediately after a ue or 
se token:

>>> g = BitString('ue=12')
>>> h = BitString('se=-402')

You may wonder why you would bother with auto in this case as the syntax is slightly longer. 
Hopefully all will become clear in the next section.

From raw data

For most initialisers you can use the length and offset parameters to specify the length in bits and 
an offset at the start to be ignored. This is particularly useful when initialising  from raw data or from a 
file.

a = BitString(bytes='\x00\x01\x02\xff', length=28, offset=1)
b = BitString(bytes=open("somefile", 'rb').read())
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The length parameter is optional; it defaults to the length of the data in bits (and so will be a 
multiple of 8). You can use it to truncate some bits from the end of the BitString. The offset 
parameter is also optional and is used to truncate bits at the start of the data.

From a file

Using  the filename initialiser allows a file to be analysed without the need to read it all into 
memory. The way to create a file-based BitString is:

p = BitString(filename="my2GBfile")

This will open the file in binary read-only mode. The file will only be read as and when other 
operations require it, and the contents of the file will not be changed by any operations. If only a 
portion of the file is needed then the offset and length parameters (specified in bits) can be used.

Something  to watch out for are operations that could cause a copy of large parts of the object to be 
made in memory, for example

p2 = p[8:]
p += '0x00'

will create two new memory-based BitString objects with about the same size as the whole of the 
file's data. This is probably not what is wanted as the reason for using  the filename initialiser is likely 
to be because you don't want the whole file in memory.

It's also possible to use the auto initialiser for file objects. It's as simple as:

f = open('my2GBfile', 'rb')
p = BitString(f)

2.2. The auto initialiser

The auto parameter is the first parameter in the __init__ function and so the auto= can be omitted 
when using it. It accepts either a string, a list or tuple, another BitString or a file object.

Strings starting  with 0x or hex are interpreted as hexadecimal, 0o or oct implies octal, and strings 
starting  with 0b or bin are interpreted as binary. You can also initialise with the various integer 
initialisers as described above. If given another BitString it will create a copy of it, lists and tuples 
are interpreted as boolean arrays and file objects acts a source of binary data.

>>> fromhex = BitString('0x01ffc9')
>>> frombin = BitString('0b01')
>>> fromoct = BitString('0o7550')
>>> fromint = BitString('int:32=10')
>>> fromfloat = BitString('float:64=0.2')
>>> acopy = BitString(fromoct)
>>> fromlist = BitString([True, False, False])
>>> f = open('somefile', 'rb')
>>> fromfile = BitString(f)

As always the BitString doesn't know how it was created; initialising with octal or hex might be 
more convenient or natural for a particular example but it is exactly equivalent to initialising  with the 
corresponding binary string.
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>>> fromoct.oct
'0o7550'
>>> fromoct.hex
'0xf68'
>>> fromoct.bin
'0b111101101000'
>>> fromoct.uint
3994
>>> fromoct.int
-152

>>> BitString('0o7777') == '0xfff'
True
>>> BitString('0xf') == '0b1111'
True
>>> frombin[::-1] + '0b0' == fromlist
True

Note how in the final examples above only one half of the == needs to be a BitString, the other 
half gets 'auto' initialised before the comparison is made. This is in common with many other 
functions and operators.

You can also chain together string  initialisers with commas, which causes the individual BitString 
object to be concatenated.

>>> s = BitString('0x12, 0b1, uint:5=2, ue=5, se=-1, se=4')
>>> s.find('uint:5=2, ue=5')
True
>>> s.insert('0o332, 0b11, int:23=300', 4)

Again, note how the format used in the auto initialiser can be used in many other places where a 
BitString is needed.

2.3. Packing

Another method of creating  BitString objects is to use the pack function. This takes a format 
specifier which is a string  with comma separated tokens, and a number of items to pack according  to 
it. It's signature is bitstring.pack(format, *values, **kwargs).

For example using just the *values arguments we can say:

s = bitstring.pack('hex:32, uint:12, uint:12', '0x000001b3', 352, 288)

which is equivalent to initialising as:

s = BitString('0x0000001b3, uint:12=352, uint:12=288')

The advantage of the pack method is if you want to write more general code for creation.

def foo(a, b, c, d):
    return bitstring.pack('uint:8, 0b110, int:6, bin, bits', a, b, c, d)

s1 = foo(12, 5, '0b00000', '')
s2 = foo(101, 3, '0b11011', s1)

Note how you can use some tokens without sizes (such as bin and bits in the above example), and 
use values of any length to fill them. If the size had been specified then a ValueError would be 
raised if the parameter given was the wrong  length. Note also how BitString literals can be used 
(the '0b110' in the BitString returned by foo) and these don't consume any of the items in 
*values.
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You can also include keyword, value pairs (or an equivalent dictionary) as the final parameter(s). The 
values are then packed according  to the positions of the keywords in the format string. This is most 
easily explained with some examples. Firstly the format string needs to contain parameter names:

format = 'hex:32=start_code, uint:12=width, uint:12=height'

Then we can make a dictionary with these parameters as keys and pass it to pack:

d = {'start_code': '0x000001b3', 'width': 352, 'height': 288}
s = bitstring.pack(format, **d)

Another method is to pass the same information as keywords at the end of pack's parameter list:

s = bitstring.pack(format, width=352, height=288, start_code='0x000001b3')

The tokens in the format string that you must provide values for are:

int:n" ➝ n bits as a signed integer.
uint:n ➝  n bits as an unsigned integer.
intbe:n" ➝  n bits as a big-endian whole byte signed integer.
uintbe:n ➝ n bits as a big-endian whole byte unsigned integer.
intle:n" ➝  n bits as a little-endian whole byte signed integer.
uintle:n ➝  n bits as a little-endian whole byte unsigned integer.
intne:n" ➝  n bits as a native-endian whole byte signed integer.
uintne:n ➝ n bits as a native-endian whole byte unsigned integer.
float:n ➝ n bits as a big-endian floating point number (same as floatbe). 
floatbe:n ➝ n bits as a big-endian floating point number (same as float).
floatle:n ➝ n bits as a little-endian floating point number. 
floatne:n ➝ n bits as a native-endian floating point number. 
hex[:n] ➝  [n bits as] a hexadecimal string.
oct[:n] ➝  [n bits as] an octal string.
bin[:n] ➝  [n bits as] a binary string.
bits[:n] ➝  [n bits as] a new BitString.
ue  ➝  an unsigned integer as an exponential-Golomb code.
se  ➝ a signed integer as an exponential-Golomb code.

and you can also include constant BitString tokens constructed from any of the following:

0b...  ➝  binary literal.
0o...  ➝  octal literal.
0x...  ➝  hexadecimal literal.
int:n=m ➝  signed integer m in n bits.
uint:n=m ➝  unsigned integer m in n bits.
intbe:n=m ➝  big-endian whole byte signed integer m in n bits.
uintbe:n=m ➝  big-endian whole byte unsigned integer m in n bits.
intle:n=m ➝  little-endian whole byte signed integer m in n bits.
uintle:n=m ➝  little-endian whole byte unsigned integer m in n bits.
intne:n=m ➝  native-endian whole byte signed integer m in n bits.
uintne:n=m ➝  native-endian whole byte unsigned integer m in n bits.
float:n=f ➝  big-endian floating point number f in n bits.
floatbe:n=f ➝  big-endian floating point number f in n bits.
floatle:n=f ➝  little-endian floating point number f in n bits.
floatne:n=f ➝  native-endian floating point number f in n bits.
ue=m  ➝  exponential-Golomb code for unsigned integer m.
se=m  ➝  exponential-Golomb code for signed integer m.

You can also use a keyword for the length specifier in the token, for example

s = bitstring.pack('int:n=-1', n=100)
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And finally it is also possible just to use a keyword as a token:

s = bitstring.pack('hello, world', world='0x123', hello='0b110')

As you would expect, there is also an unpack function that takes a BitString and unpacks it 
according to a very similar format string. This is covered later in more detail, but a quick example is:

>>> s = bitstring.pack('ue, oct:3, hex:8, uint:14', 3, '0o7', '0xff', 90)
>>> s.unpack('ue, oct:3, hex:8, uint:14')
[3, '0o7', '0xff', 90]

Compact format strings

Another option when using  pack is to use a format specifier similar to those used in the struct and 
array modules. These consist of a character to give the endianness, followed by more single 
characters to give the format.

The endianness character must start the format string  and unlike in the struct module it is not 
optional:

> ➝  Big-endian
< ➝  Little-endian
@ ➝  Native-endian

For 'network' endianness use '>' as network and big-endian are equivalent. This is followed by at least 
one of these format characters:

b! ➝! 8 bit signed integer
B! ➝! 8 bit unsigned integer
h! ➝! 16 bit signed integer
H! ➝! 16 bit unsigned integer
l! ➝! 32 bit signed integer
L! ➝! 32 bit unsigned integer
q! ➝! 64 bit signed integer
Q! ➝! 64 bit unsigned integer
f! ➝! 32 bit floating point number
d! ➝! 64 bit floating point number

The exact type is determined by combining  the endianness character with the format character, but 
rather than give an exhaustive list a single example should explain:

>h! ➝  Big-endian 16 bit signed integer ➝ intbe:16
<h! ➝  Little-endian 16 bit signed integer ➝  intle:16
@h! ➝  Native-endian 16 bit signed integer ➝  intne:16

As you can see all three are signed integers in 16 bits, the only difference is the endianness. The 
native-endian @h will equal the big-endian >h on big-endian systems, and equal the little-endian <h 
on little-endian systems.3

An example:

s = bitstring.pack('>qqqq', 10, 11, 12, 13)
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is equivalent to

s = bitstring.pack('intbe:64, intbe:64, intbe:64, intbe:64', 10, 11, 12, 13)

Just as in the struct module you can also give a multiplicative factor before the format character, so 
the previous example could be written even more concisely as

s = bitstring.pack('>4q', 10, 11, 12, 13)

You can of course combine these format strings with other initialisers, even mixing endiannesses 
(although I'm not sure why you'd want to):

s = bitstring.pack('>6h3b, 0b1, <9L', *range(18))

This rather contrived example takes the numbers 0 to 17 and packs the first 6 as signed big-endian 2-
byte integers, the next 3 as single bytes, then inserts a single 1 bit, before packing the remaining 9 as 
little-endian 4-byte unsigned integers.

2.4. Interpreting BitStrings

BitString objects don't know or care how they were created; they are just collections of bits. This 
means that you are quite free to interpret them in any way that makes sense.

Several Python properties are used to create interpretations for the BitString. These properties call 
private functions which will calculate and return the appropriate interpretation. These don’t change 
the BitString in any way and it remains just a collection of bits. If you use the property again then 
the calculation will be repeated.

Note that these properties can potentially be very expensive in terms of both computation and 
memory requirements. For example if you have initialised a BitString from a 10 GB file object and 
ask for its binary string representation then that string will be around 80 GB in size! 

For the properties described below we will use these:

>>> a = BitString('0x123')
>>> b = BitString('0b111')

bin

The most fundamental interpretation is perhaps as a binary string  (a ‘bitstring’). The bin property 
returns a string  of the binary representation of the BitString prefixed with 0b. All BitString 
objects can use this property and it is used to test equality between BitString objects.

>>> a.bin
'0b000100100011'
>>> b.bin
'0b111'

Note that the initial zeros are significant; for BitString objects the zeros are just as important as the 
ones!

hex

For whole-byte BitString objects the most natural interpretation is often as hexadecimal, with each 
byte represented by two hex digits. Hex values are prefixed with 0x.
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If the BitString does not have a length that is a multiple of four bits then a ValueError exception 
will be raised. This is done in preference to truncating  or padding  the value, which could hide errors 
in user code.

>>> a.hex
'0x123'
>>> b.hex
ValueError: Cannot convert to hex unambiguously - not multiple of 4 bits.

oct

For an octal interpretation use the oct property. Octal values are prefixed with 0o, which is the 
Python 2.6 / 3.0 way of doing things (rather than just starting with 0).

If the BitString does not have a length that is a multiple of three then a ValueError exception will 
be raised.

>>> a.oct
'0o0443'
>>> b.oct
'0o7'
>>> (b + '0b0').oct
ValueError: Cannot convert to octal unambiguously - not multiple of 3 bits.

uint / uintbe / uintle / uintne

To interpret the BitString as a binary (base-2)  bit-wise big-endian unsigned integer (i.e. a non-
negative integer) use the uint property.

>>> a.uint
283
>>> b.uint
7

For byte-wise big-endian, little-endian and native-endian interpretations use uintbe, uintle and 
uintne respectively. These will raise a ValueError if the BitString is not a whole number of bytes 
long.

>>> s = BitString('0x000001')
>>> s.uint     # bit-wise big-endian
1
>>> s.uintbe   # byte-wise big-endian
1
>>> s.uintle   # byte-wise little-endian
65536
>>> s.uintne   # byte-wise native-endian (will be 1 on a big-endian platform!)
65536 

int / intbe / intle / intne

For a two's complement interpretation as a base-2 signed integer use the int property. If the first bit 
of the BitString is zero then the int and uint interpretations will be equal, otherwise the int will 
represent a negative number.

>>> a.int
283
>>> b.int
-1
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For byte-wise big, little and native endian signed integer interpretations use intbe, intle and intne 
respectively. These work in the same manner as their unsigned counterparts described above.

float / floatbe / floatle / floatne

For a floating  point interpretation use the float property. This uses your machine's underlying 
floating point representation and will only work if the BitString is 32 or 64 bits long.

Different endiannesses are provided via floatle and floatne. Note that as floating  point 
interpretations are only valid on whole-byte BitString objects there is no difference between the 
bit-wise big-endian float and the byte-wise big-endian floatbe.

Note also that standard floating  point numbers in Python are stored in 64 bits, so use this size if you 
wish to avoid rounding errors.

bytes

A common need is to retrieve the raw bytes from a BitString for further processing  or for writing  to 
a file. For this use the bytes interpretation, which returns an ordinary Python string.

If the length of the BitString isn't a multiple of eight then a ValueError will be raised. This is 
because there isn't an unequivocal representation as a string. You may prefer to use the method 
tobytes as this will be pad with between one and seven zero bits up to a byte boundary if 
neccessary.

>>> open('somefile', 'wb').write(a.tobytes())
>>> open('anotherfile', 'wb').write(('0x0'+a).bytes)
>>> a1 = BitString(filename='somefile')
>>> a1.hex
'0x1230'
>>> a2 = BitString(filename='anotherfile')
>>> a2.hex
'0x0123'

Note that the tobytes method automatically padded with four zero bits at the end, whereas for the 
other example we explicitly padded at the start to byte align before using the bytes property.

ue

The ue property interprets the BitString as a single unsigned exponential-Golomb code and returns 
an integer. If the BitString is not exactly one code then a BitStringError is raised instead. If you 
instead wish to read the next bits in the stream and interpret them as a code use the read function 
with a 'ue' format string. See Appendix B for a short explanation of this type of integer representation.

>>> s = BitString(ue=12)
>>> s.bin
'0b0001101'
>>> s.append(BitString(ue=3))
>>> print s.read('ue, ue'))
[12, 3]

se

The se property does much the same as ue and the provisos there all apply. The obvious difference is 
that it interprets the BitString as a signed exponential-Golomb rather than unsigned - see Appendix 
B for more information.
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>>> s = BitString(‘0x164b’)
>>> s.se
BitStringError: BitString is not a single exponential-Golomb code.
>>> while s.pos < s.length:
...     print s.read('se')
-5
2
0
-1

3. Slicing, Dicing and Splicing

Manipulating binary data can be a bit of a challenge in Python. One of its strengths is that you don't 
have to worry about the low level data, but this can make life difficult when what you care about is 
precisely the thing  that is safely hidden by high level abstractions. In this section some more methods 
are described that treat data as a series of bits, rather than bytes.

3.1. Slicing

Slicing can be done in couple of ways. The slice function takes three arguments: the first bit position 
you want, one past the last bit position you want and a multiplicative factor which defaults to 1. So 
for example a.slice(10, 12) will return a 2-bit BitString of the 10th and 11th bits in a.

An equivalent method is to use indexing: a[10:12]. Note that as always the unit is bits rather than 
bytes.

>>> a = BitString('0b00011110')
>>> b = a[3:7]
>>> c = a.slice(3, 7)             # s.slice(x, y) is equivalent to s[x:y]
>>> print a, b, c
0x1e 0xf 0xf

Indexing also works for missing and negative arguments, just as it does for other containers.

>>> a = BitString('0b00011110')
>>> print a[:5]         # first 5 bits
0b00011            
>>> print a[3:]         # everything except first 3 bits
0b11110
>>> print a[-4:]        # final 4 bits
0xe
>>> print a[:-1]        # everything except last bit
0b0001111
>>> print a[-6:-4]      # from 6 from the end to 4 from the end
0b01

Stepping in slices

The step parameter (also known as the stride) can be used in slices. Its use is rather non-standard as it 
effectively gives a multiplicative factor to apply to the start and stop parameters, rather than skipping 
over bits.

For example this makes it more convenient if you want to give slices in terms of bytes instead of bits. 
Instead of writing s[a*8:b*8] you can use s[a:b:8].
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When using  a step, the BitString is effectively truncated to a multiple of the step, so s[::8] is 
equal to s if s is an integer number of bytes, otherwise it is truncated by up to 7 bits. This means that, 
for example, the final seven complete 16-bit words could be written as s[-7::16].

>>> a = BitString('0x470000125e')
>>> print a[0:4:8]                  # The first four bytes
0x47000012
>>> print a[-3::4]                  # The final three nibbles
0x25e

Negative slices are also allowed, and should do what you'd expect. So for example s[::-1] returns a 
bit-reversed copy of s (which is similar to using  s.reverse(), which does the same operation on s 
in-place). As another example, to get the first 10 bytes in reverse byte order you could use 
s_bytereversed = s[0:10:-8].

>>> print a[:-5:-4]                 # Final five nibbles reversed
0xe5210                                 
>>> print a[::-8]                   # The whole BitString byte reversed
0x5e12000047

3.2. Joining

To join together a couple of BitString objects use the + or += operators, or the append and 
prepend functions.

# Six ways of creating the same BitString:
a1 = BitString(bin='000') + BitString(hex='f')
a2 = BitString('0b000') + BitString('0xf')
a3 = BitString('0b000') + '0xf'
a4 = BitString('0b000')
a4.append('0xf')
a5 = BitString('0xf')
a5.prepend('0b000')
a6 = BitString('0b000')
a6 += '0xf'4

If you want to join a large number of BitString objects then the function join can be used to 
improve efficiency and readability. It works like the ordinary string  join function in that it uses the 
BitString that it is called on as a separator when joining  the list of BitString objects it is given. If 
you don't want a separator then it can be called on an empty BitString.

bslist = [BitString(uint=n, length=12) for n in xrange(1000)]
s = BitString('0b1111').join(bslist)

3.3. Truncating, inserting, deleting and overwriting

The functions in this section all modify the BitString that they operate on.

truncatestart / truncateend

The truncate functions take a single integer argument and remove that number of bits from the start or 
end.
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>>> a = BitString('0x001122')
>>> a.truncateend(8)
>>> a.truncatestart(8)
>>> a == '0x11'
True

A similar effect can be obtained using  slicing - the major difference being  that if a slice is used a new 
BitString is returned and the BitString being operated on remains unchanged.

insert

As you might expect, insert takes one BitString and inserts it into another. A bit position can be 
specified, but if not present then the current pos is used.

>>> a = BitString('0x00112233')
>>> a.insert('0xffff', 16)
>>> a.hex
'0x0011ffff2233'

overwrite

overwrite does much the same as insert, but predictibily the BitString object's data is 
overwritten by the new data.

>>> a = BitString('0x00112233')
>>> a.pos = 4
>>> a.overwrite('0b1111')         # Uses current pos as default
>>> a.hex
'0x0f112233'

delete

delete removes a section of the BitString. By default it is removed at the current pos:

>>> a = BitString('0b00011000')
>>> a.delete(2, 3)                # remove 2 bits at pos 3
>>> a.bin
‘0b000000’
>>> b = BitString('0x112233445566')
>>> b.bytepos = 3
>>> b.delete(16)
>>> b.hex
'0x11223366'

3.4. The BitString as a list

If you treat a BitString object as a list whose elements are all either '1' or '0' then you won't go far 
wrong. The table below gives some of the equivalent ways of using  functions and the standard slice 
notation.

Using functions!   Using slices
s.truncatestart(bits)! ➝  del s[:bits]

s.truncateend(bits) ! ➝  del s[-bits:]
s.insert(bs, pos) ! ➝  s[pos:pos] = bs
s.overwrite(bs, pos) ! ➝  s[pos:pos + bs.length] = bs
s.delete(bits, pos) ! ➝  del s[pos:pos + bits]
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s.append(bs) ! ➝  s[s.length:s.length] = bs
s.prepend(bs) ! ➝  s[0:0] = bs

3.5. Splitting

split

Sometimes it can be very useful to use a delimiter to split a BitString into sections. The split 
function returns a generator for the sections.

>>> a = BitString('0x4700004711472222')
>>> for s in a.split('0x47', bytealigned=True):
...     print "Empty" if not s else s.hex
Empty
0x470000
0x4711
0x472222

Note that the first item returned is always the BitString before the first occurrence of the delimiter, 
even if it is empty.

cut

If you just want to split into equal parts then use the cut function. This takes a number of bits as its 
first argument and returns a generator for chunks of that size.

>>> a = BitString('0x47001243')
>>> for byte in a.cut(8):
...     print byte.hex
0x47
0x00
0x12
0x43 

4. Reading, Unpacking and Navigating

4.1. Reading and unpacking

A common need is to parse a large BitString into smaller parts. Functions for reading in the 
BitString as if it were a file or stream are provided and will return new BitString objects. These 
new objects are top-level BitString objects and can be interpreted using  properties or could be 
read from themselves to form a hierarchy of reads.

In order to behave like a file or stream, every BitString has a property pos which is the current 
position from which reads occur. pos can range from zero (its value on construction) to the length of 
the BitString, a position from which all reads will fail as it is past the last bit.

The property bytepos is also available, and is useful if you are only dealing  with byte data and don't 
want to always have to divide the bit position by eight. Note that if you try to use bytepos and the 
BitString isn't byte aligned (i.e. pos isn't a multiple of 8) then a BitStringError exception will be 
raised.
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readbit(s) / readbitlist / readbyte(s) / readbytelist

For simple reading  of a number of bits you can use readbits or readbytes. The following example 
does some simple parsing of an MPEG-1 video stream5.

>>> s = BitString(filename='test/test.m1v')
>>> print s.pos
0
>>> start_code = s.readbytes(4).hex
>>> width = s.readbits(12).uint
>>> height = s.readbits(12).uint
>>> print start_code, width, height, s.pos
0x000001b3 352 288 56
>>> s.pos += 37
>>> flags = s.readbits(2)
>>> constrained_parameters_flag = flags.readbit().uint
>>> load_intra_quantiser_matrix = flags.readbit().uint
>>> print s.pos, flags.pos
95 2

If you want to read multiple items in one go you can use readbitlist or readbytelist. These take 
one or more integer parameters and return a list of BitString objects. So for example instead of 
writing:

a = s.readbytes(4)
b = s.readbyte()
c = s.readbytes(3)

you can equivalently use just:

a, b, c = s.readbytelist(4, 1, 3) 

read / readlist

As well as the readbits / readbytes functions there are also plain read / readlist functions. 
These takes a format string  similar to that used in the auto initialiser. Only one token should be 
provided to read and a single value is returned. To read multiple tokens use readlist, which 
unsurprisingly returns a list.

The format string  consists of comma separated tokens that describe how to interpret the next bits in 
the BitString. The tokens are:

int:n" ➝  n bits as a signed integer.
uint:n ➝  n bits as an unsigned integer.
intbe:n ➝  n bits as a byte-wise big-endian signed integer.
uintbe:n ➝  n bits as a byte-wise big-endian unsigned integer.
intle:n ➝  n bits as a byte-wise little-endian signed integer.
uintle:n ➝  n bits as a byte-wise little-endian unsigned integer.
intne:n ➝  n bits as a byte-wise native-endian signed integer.
uintne:n ➝  n bits as a byte-wise native-endian unsigned integer.
float:n ➝ n bits as a big-endian floating point number (same as floatbe). 
floatbe:n ➝ n bits as a big-endian floating point number (same as float).
floatle:n ➝ n bits as a little-endian floating point number. 
floatne:n ➝ n bits as a native-endian floating point number. 
hex:n" ➝  n bits as a hexadecimal string.
oct:n" ➝  n bits as an octal string.

20

5 The stream is provided in the test directory if you downloaded the source archive.



bin:n" ➝  n bits as a binary string.
bits:n ➝  n bits as a new BitString.
bytes:n ➝  n bytes as a bytes object.
ue  ➝  next bits as an unsigned exponential-Golomb code.
se  ➝  next bits as a signed exponential-Golomb code.

So in the earlier example we could have written:

start_code = s.read('hex:32')
width = s.read('uint:12')
height = s.read('uint:12')

and we also could have combined the three reads as:

start_code, width, height = s.readlist('hex:32, 12, 12')

where here we are also taking advantage of the default uint interpretation for the second and third 
tokens.

You are allowed to use one 'stretchy' token in a readlist. This is a token without a length specified 
which will stretch to fill encompass as many bits as possible. This is often useful when you just want 
to assign something to 'the rest' of the BitString:

a, b, everthing_else = s.readlist('intle:16, intle:24, bits')

In this example the bits token will consist of everything left after the first two tokens are read, and 
could be empty.

It is an error to use more than one stretchy token, or to use a ue or se token after a stretchy token6.

peeking

In addition to the read functions there are matching peek functions. These are identical to the read 
except that they do not advance the position in the BitString to after the read elements.

s = BitString('0x4732aa34')
if s.peekbyte() == '0x47':
    t = s.readbytes(2)          # t.hex == '0x4732'
else:
    s.find('0x47')

The complete list of read and peek functions is read(format), readlist(*format), readbit(), 
readbits(bits) , readbitlist(*bits) , readbyte() , readbytes(bytes) , readbytelist
(*bytes), peek(*format), peeklist(*format), peekbit(), peekbits(bits), peekbitlist
(*bits), peekbyte(), peekbytes(bytes) and peekbytelist(*bytes).

unpack

The unpack function works in a very similar way to readlist. The major difference is that it 
interprets the whole BitString from the start, and takes no account of the current pos. It's a natural 
complement of the pack function.

s = pack('uint:10, hex, int:13, 0b11', 130, '3d', -23)
a, b, c, d = s.unpack('uint:10, hex, int:13, bin:2')
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4.2. Seeking

The properties pos7  and bytepos are available for getting  and setting  the position, which is zero on 
creation of the BitString. There are also advance, retreat and seek functions that perform 
equivalent actions. It's recommended that you use the properties rather than the functions - the 
functions are deprecated and may be removed in a future version.

Note that you can only use bytepos if the position is byte aligned, i.e. the bit position is a multiple of 
8. Otherwise a BitStringError exception is raised.

For example:

>>> s = BitString('0x123456')
>>> s.pos
0
>>> s.bytepos += 2
>>> s.pos                   # note pos verses bytepos
16
>>> s.pos += 4
>>> print s.read('bin:4')   # the final nibble '0x6'
0b0110

4.3. Finding and replacing

find / rfind

To search for a sub-string  use the find function. If the find succeeds it will set the position to the start 
of the next occurrence of the searched for string  and return True, otherwise it will return False. By 
default the sub-string  will be found at any bit position - to allow it to only be found on byte 
boundaries set bytealigned=True.

>>> s = BitString('0x00123400001234')
>>> found = s.find('0x1234', bytealigned=True)
>>> print found, s.bytepos
True 1
>>> found = s.find('0xff', bytealigned=True)
>>> print found, s.bytepos
False 1

rfind does much the same as find, except that it will find the last occurrence, rather than the first.

>>> t = BitString('0x0f231443e8')
>>> found = t.rfind('0xf')           # Search all bit positions in reverse
>>> print found, t.pos
True 31                              # Found within the 0x3e near the end

For all of these finding  functions you can optionally specify a start and / or end to narrow the search 
range. Note though that because it's searching backwards rfind will start at end and end at start 
(so you always need start < end).

findall

To find all occurrences of a BitString inside another (even overlapping ones), use findall. This 
returns a generator for the bit positions of the found strings.
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>>> r = BitString('0b011101011001')
>>> ones = r.findall('0b1')
>>> print list(ones)
[1, 2, 3, 5, 7, 8, 11]

replace

To replace all occurrences of one BitString with another use replace. The replacements are done 
in-place, and the number of replacements made is returned.

>>> s = BitString('0b110000110110')
>>> s.replace('0b110', '0b1111')
3            # The number of replacements made
>>> s.bin
'0b111100011111111'

5. Miscellany

5.1. Other Functions

bytealign

This function advances between zero and seven bits to make the pos a multiple of eight. It returns the 
number of bits advanced.

>>> a = BitString('0x11223344')
>>> a.pos = 1
>>> skipped = a.bytealign()
>>> print skipped, a.pos
7 8
>>> skipped = a.bytealign()
>>> print skipped, a.pos
0 8

reverse

This simply reverses the bits of the BitString in place. You can optionally specify a range of bits to 
reverse.

>>> a = BitString('0b000001101')
>>> a.reverse()
>>> a.bin
'0b101100000'
>>> a.reverse(0, 4)
>>> a.bin
'0b110100000'

reversebytes

This reverses the bytes of the BitString in place. You can optionally specify a range of bits to 
reverse. If the length to reverse isn't a multiple of 8 then a BitStringError is raised.

>>> a = BitString('0x123456')
>>> a.reversebytes()
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>>> a.hex
'0x563412'
>>> a.reversebytes(0, 16)
>>> a.hex
'0x345612'

tobytes

Returns the byte data contained in the BitString as a Python string. This differs from using  the plain 
bytes property in that if the BitString isn't a whole number of bytes long  then it will be made so 
by appending up to seven zero bits.

>>> BitString('0b1').tobytes()
'\x80'

tofile

Writes the byte data contained in the BitString to a file. The file should have been opened in a 
binary write mode, for example:

>>> f = open('newfile', 'wb')
>>> BitString('0xffee3241fed').tofile(f)

In exactly the same manner as with tobytes, up to seven zero bits will be appended to make the file 
a whole number of bytes long.

startswith / endswith

These act like the same named functions on strings, that is they return True if the BitString starts or 
ends with the parameter given. Optionally you can specify a range of bits to use.

>>> s = BitString('0xef133')
>>> s.startswith('0b111011')
True
>>> s.endswith('0x4')
False

ror / rol

To rotate the bits in a BitString use ror and rol for right and left rotations respectively. The 
changes are done in-place.

>>> s = BitString('0x00001')
>>> s.rol(6)
>>> s.hex
'0x00040'

5.2. Special Methods

A few of the special methods have already been covered, for example __add__ and __iadd__ (the + 
and += operators) and __getitem__ and __setitem__ (reading  and setting  slices via []). Here are 
the rest:

__len__

This implements the len function and returns the length of the BitString in bits.
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It's recommended that you use the len property instead of the function as a limitation of Python 
means that the function will raise an OverflowError if the BitString has more than sys.maxsize 
elements (that's typically 256MB of data).

There's not much more to say really, except to emphasise that it is always in bits and never bytes.

>>> len(BitString('0x00'))
8

__str__ / __repr__

These get called when you try to print a BitString. As BitString objects have no preferred 
interpretation the form printed might not be what you want - if not then use the hex, bin, int etc. 
properties. The main use here is in interactive sessions when you just want a quick look at the 
BitString. The __repr__ tries to give a code fragment which if evaluated would give an equal 
BitString.

The form used for the BitString is generally the one which gives it the shortest representation. If the 
resulting  string  is too long  then it will be truncated with '...' - this prevents very long  BitString 
objects from tying up your interactive session while they print themselves.

>>> a = BitString('0b1111 111')
>>> print a
0b1111111
>>> a
BitString('0b1111111')
>>> a += '0b1'
>>> print a
0xff
>>> print a.bin
0b11111111

__eq__ / __ne__

The equality of two BitString objects is determined by their binary representations being  equal. If 
you have a different criterion you wish to use then code it explicitly, for example a.int == b.int 
could be true even if a == b wasn't (as they could be different lengths).

>>> BitString('0b0010') == '0x2'
True
>>> BitString('0x2') != '0o2'
True

__invert__

To invert all the bits in a BitString use the ~ operator, which returns a bit-inverted copy.

>>> a = BitString('0b0001100111')
>>> print a
0b0001100111
>>> print ~a
0b1110011000
>>> ~~a == a
True

25



__lshift__ / __rshift__ / __ilshift__ / __irshift__

Bitwise shifts can be achieved using  <<, >>, <<= and >>=. Bits shifted off the left or right are replaced 
with zero bits. If you need special behaviour, such as keeping  the sign of two's complement integers 
then do the shift on the property instead.

>>> a = BitString('0b10011001')
>>> b = a << 2
>>> print b
0b01100100
>>> a >>= 2
>>> print a
0b00100110

__mul__ / __imul__ / __rmul__

Multiplication of a BitString by an integer means the same as it does for ordinary strings: 
concatenation of multiple copies of the BitString.

>>> a = BitString('0b10')*8
>>> print a.bin
0b1010101010101010

__copy__

This allows the BitString to be copied via the copy module.

>>> import copy
>>> a = BitString('0x4223fbddec2231')
>>> b = copy.copy(a)
>>> b == a
True
>>> b is a
False

It's not terribly exciting, and isn't the only method of making a copy. Using b = BitString(a) is 
another option, but b = a[:] may be more familiar to some.

__and__ / __or__ / __xor__ / __iand__ / __ior__ / __ixor__

Bit-wise AND, OR and XOR are provided for BitString objects of equal length only (otherwise a 
ValueError is raised).

>>> a = BitString('0b00001111')
>>> b = BitString('0b01010101')
>>> print (a&b).bin
0b00000101
>>> print (a|b).bin
0b01011111
>>> print (a^b).bin
0b01010000
>>> b &= '0x1f'
>>> print b.bin
0b00010101
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6. Examples

6.1. Creation

There are lots of ways of creating  new BitString objects. The most flexible is via the auto parameter  
which is used in this example.

# Multiple parts can be joined with a single expression...
s = BitString('0x000001b3, uint:12=352, uint:12=288, 0x1, 0x3')

# and extended just as easily
s += 'uint:18=48000, 0b1, uint:10=4000, 0b100'

# To covert to an ordinary string use the bytes property
open('video.m2v', 'wb').write(s.bytes)

# The information can be read back with a similar syntax
start_code, width, height = s.readlist('hex:32, uint:12, uint:12')
aspect_ratio, frame_rate = s.readlist('bin:4, bin:4')

6.2. Manipulation
s = BitString('0x0123456789abcdef')

del s[4:8]                      # deletes the '1'
s.insert('0xcc', 12)            # inserts 'cc' between the '3' and '4'
s.overwrite('0b01', 30)         # changes the '6' to a '5'

# This replaces every '1' bit with a 5 byte Ascii string!
s.replace('0b1', BitString(bytes='hello'))

s.truncateend(1001)             # deletes final 1001 bits
s.reverse()                     # reverses whole BitString
s.prepend('uint:12=44')         # prepend a 12 bit integer

6.3. Parsing

This example creates a class that parses a structure that is part of the H.264 video standard.

class seq_parameter_set_data(object):
    def __init__(self, s):
        """Interpret next bits in BitString s as an SPS."""
        # Read and interpret bits in a single expression:
        self.profile_idc = s.read('uint:8')
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        # Multiple reads in one go returns a list:
        self.constraint_flags = s.readlist('uint:1, uint:1, uint:1, uint:1')
        self.reserved_zero_4bits = s.read('bin:4')
        self.level_idc = s.read('uint:8')
        self.seq_parameter_set_id = s.read('ue')
        if self.profile_idc in [100, 110, 122, 244, 44, 83, 86]:
            self.chroma_format_idc = s.read('ue')
            if self.chroma_format_idc == 3:
                self.separate_colour_plane_flag == s.read('uint:1')
            self.bit_depth_luma_minus8 = s.read('ue')
            self.bit_depth_chroma_minus8 = s.read('ue')
            # etc.

>>> s = BitString('0x6410281bc0')
>>> sps = seq_parameter_set_data(s)
>>> print sps.profile_idc
100
>>> print sps.level_idc
40
>>> print sps.reserved_zero_4bits
0b0000
>>> print sps.constraint_flags
[0, 0, 0, 1]
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A. Reference

The bitstring module provides just one class, BitString, whose public methods, special methods 
and properties are detailed in this section.

Note that in places where a BitString can be used as a parameter, any other valid input to the auto 
initialiser can also be used. This means that the parameter can also be a format string which consists 
of tokens:

• Starting with hex=, or simply starting with 0x implies hexadecimal.
e.g. 0x013ff, hex=013ff

• Starting with oct=, or simply starting with 0o implies octal.
e.g. 0o755, oct=755

• Starting with bin=, or simply starting with 0b implies binary.
e.g. 0b0011010, bin=0011010

• Starting with int: or uint:  followed by a length in bits then = gives base-2 integers.
e.g. uint:8=255, int:4=-7

• To get big, little and native-endian whole-byte integers append be, le or ne respectively to the uint 
or int identifier.
e.g. uintle:32=1, intne:16=-23

• For floating point numbers use float: followed by the length in bits then = and the number. The 
default is big-endian, but you can also append be, le or ne as with integers.
e.g. float:64=0.2, floatle:32=-0.3e12

• Starting with ue= or se= implies an exponential-Golomb coded integer.
e.g. ue=12, se=-4

Multiples tokens can be joined by separating them with commas, so for example 'se=4, 0b1, 
se=-1' represents the concatenation of three elements.

The auto parameter also accepts a list or tuple, whose elements will be evaluated as booleans 
(imagine calling bool() on each item) and the bits set to 1 for True items and 0 for False items.

Finally if you pass in a file object, presumably opened in read-binary mode, then the BitString 
will be formed from the contents of the file.

For the read, unpack, pack and peek functions you can use compact format strings similar to those 
used in the struct and array modules. These start with an endian identifier: > for big-endian, < for 
little-endian or @ for native-endian. This must be followed by at least one of these codes:

Code  Interpretation   
b! ➝! 8 bit signed integer  
B! ➝! 8 bit unsigned integer  
h! ➝! 16 bit signed integer  
H! ➝! 16 bit unsigned integer 
l! ➝! 32 bit signed integer  
L! ➝! 32 bit unsigned integer 
q! ➝! 64 bit signed integer  
Q! ➝! 64 bit unsigned integer
f! ➝! 32 bit floating point number
d! ➝! 64 bit floating point number
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A.1. Class properties

bin

s.bin

Read and write property for setting and getting the 
representation of the BitString as a binary string 
starting with 0b.

When used as a getter, the returned value is always 
calculated - the value is never cached. When used as 
a setter the length of the BitString will be adjusted 
to fit its new contents. 

if s.bin == '0b001':
    s.bin = '0b1111'
# Equivalent to s.append('0b1')
s.bin += '1'

bytepos

s.bytepos

Read and write property for setting and getting the 
current byte position in the BitString.

When used as a getter will raise a BitStringError if 
the current position in not byte aligned.

bytes

s.bytes

Read and write property for setting and getting the 
underlying byte data that contains the BitString.

Set using an ordinary Python string - the length will 
be adjusted to contain the data.

When used as a getter the BitString must be a 
whole number of byte long or a ValueError will be 
raised.

An alternative is to use the tobytes() method, 
which will pad with between zero and seven '0' bits 
to make it byte aligned if needed.

>>> s = BitString(bytes='\x12\xff\x30')
>>> s.bytes
'\x12\xff0'
>>> s.hex = '0x12345678'
>>> s.bytes
'\x124Vx'

hex

s.hex

Read and write property for setting and getting the 
hexadecimal representation of the BitString.

When used as a getter the value will be preceded by 
0x, which is optional when setting the value. If the 
BitString is not a multiple of four bits long then 
getting its hex value will raise a ValueError. 

>>> s = BitString(bin='1111 0000')
>>> s.hex
'0xf0'
>>> s.hex = 'abcdef'
>>> s.hex
'0xabcdef'

int

s.int

Read and write property for setting and getting the 
signed two’s complement integer representation of the 
BitString.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

>>> s = BitString('0xf3')
>>> s.int
-13
>>> s.int = 1232
ValueError: int 1232 is too large for a 
BitString of length 8.

intbe

s.intbe

Read and write property for setting and getting the 
byte-wise big-endian signed two's complement 
integer representation of the BitString.

Only valid if s is whole-byte, in which case it is equal 
to s.int, otherwise a ValueError is raised.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

intle

s.intle

Read and write property for setting and getting the 
byte-wise little-endian signed two's complement 
integer representation of the BitString.
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Only valid if s is whole-byte, in which case it is equal 
to s[::-8].int, i.e. the integer representation of the 
byte-reversed BitString.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

intne

s.intne

Read and write property for setting and getting the 
byte-wise native-endian signed two's complement 
integer representation of the BitString.

Only valid if s is whole-byte, and will equal either 
the big-endian or the little-endian integer 
representation depending on the platform being used.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

float / floatbe

s.float

Read and write property for setting and getting the 
floating point representation of the BitString.

The BitString must be either 32 or 64 bits long to 
support the floating point interpretations.

If the underlying floating point methods on your 
machine are not IEEE 754 compliant then using the 
float interpretations is undefined (this is unlikely 
unless you're on some very unusual hardware).

The float property is bit-wise big-endian, which as 
all floats must be whole-byte is exactly equivalent to 
the byte-wise big-endian floatbe. 

floatle

s.floatle

Read and write property for setting and getting the 
byte-wise little-endian floating point representation of 
the BitString.

floatne

s.floatne

Read and write property for setting and getting the 
byte-wise native-endian floating point representation 
of the BitString.

len / length

s.len

Read-only properties that give the length of the 
BitString in bits (len and length are equivalent).

This is almost equivalent to using len(s), expect that 
for large BitString objects len() may fail with an 
OverflowError, whereas the len property continues 
to work8.

oct

s.oct

Read and write property for setting and getting the 
octal representation of the BitString.

When used as a getter the value will be preceded by 
0o, which is optional when setting the value. If the 
BitString is not a multiple of three bits long then 
getting its oct value will raise a ValueError.

>>> s = BitString('0b111101101')
>>> s.oct
'0o755'
>>> s.oct = '01234567'
>>> s.oct
'0o01234567'

pos / bitpos

s.pos

Read and write property for setting and getting the 
current bit position in the BitString. Can be set to 
any value from 0 to s.len.

The pos and bitpos properties are exactly equivalent 
- you can use whichever you prefer.

if s.pos < 100:
    s.pos += 10 
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se

s.se

Read and write property for setting and getting the 
signed exponential-Golomb code representation of 
the BitString.

The property is set from an signed integer, and when 
used as a getter a BitStringError will be raised if 
the BitString is not a single code.

>>> s = BitString(se=-40)
>>> s.bin
0b0000001010001
>>> s += ‘0b1’
>>> s.se
BitStringError: BitString is not a single 
exponential-Golomb code.

ue

s.ue

Read and write property for setting and getting the 
unsigned exponential-Golomb code representation of 
the BitString.

The property is set from an unsigned integer, and 
when used as a getter a BitStringError will be 
raised if the BitString is not a single code.

uint

s.uint

Read and write property for setting and getting the 
unsigned base-2 integer representation of the 
BitString.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

uintbe

s.uintbe

Read and write property for setting and getting the 
byte-wise big-endian unsigned base-2 integer 
representation of the BitString.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

uintle

s.uintle

Read and write property for setting and getting the 
byte-wise little-endian unsigned base-2 integer 
representation of the BitString.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

uintne

s.uintne

Read and write property for setting and getting the 
byte-wise native-endian unsigned base-2 integer 
representation of the BitString.

When used as a setter the value must fit into the 
current length of the BitString, else a ValueError 
will be raised.

A.2. Class methods

append

s.append(bs)

Join a BitString to the end of the current 
BitString.

>>> s = BitString('0xbad')
>>> s.append('0xf00d')
>>> s
BitString('0xbadf00d')

bytealign

s.bytealign()

Aligns to the start of the next byte (so that s.pos is a 
multiple of 8) and returns the number of bits skipped.

If the current position is already byte aligned then it is 
unchanged.

>>> s = BitString('0xabcdef')
>>> s.advancebits(3)
>>> s.bytealign()
5
>>> s.pos
8
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cut

s.cut(bits, start=None, end=None,
      count=None)

Returns a generator for slices of the BitString of 
length bits.

At most count items are returned and the range is 
given by the slice [start:end], which defaults to 
the whole BitString.

>>> s = BitString('0x1234')
>>> for nibble in s.cut(4):
...     s.prepend(nibble)
>>> print s
0x43211234

delete

s.delete(bits, pos=None) 

Removes bits bits from the BitString at position 
pos. 

If pos is not specified then the current position is 
used. Is equivalent to del s[pos:pos+bits].

>>> s = BitString('0b1111001')
>>> s.delete(2, 4)
>>> print s
0b11111

endswith

s.endswith(bs, start=None, end=None)

Returns True if the BitString ends with the sub-
string bs, otherwise returns False.

A slice can be given using the start and end bit 
positions and defaults to the whole BitString.

>>> s = BitString('0x35e22')
>>> s.endswith('0b10, 0x22')
True
>>> s.endswith('0x22', start=13)
False

find

s.find(bs, start=None, end=None,
       bytealigned=False)

Searches for bs in the current BitString and sets 
pos to the start of bs and returns True if found, 
otherwise it returns False.

If bytealigned is True then it will look for bs only 
at byte aligned positions (which is generally much 
faster than searching for it in every possible bit 

position). start and end give the search range and 
default to the whole BitString. 

>>> s = BitString('0x0023122')
>>> s.find('0b000100', bytealigned=True)
True
>>> s.pos
16

findall

s.findall(bs, start=None, end=None,
          count=None, bytealigned=False)

Searches for all occurrences of bs (even overlapping 
ones) and returns a generator of their bit positions.

If bytealigned is True then bs will only be looked 
for at byte aligned positions. start and end 
optionally define a search range and default to the 
whole BitString.

The count paramater limits the number of items that 
will be found - the default is to find all occurences.

>>> s = BitString('0xab220101')*5
>>> list(s.findall('0x22', 
         bytealigned=True))
[8, 40, 72, 104, 136]

insert

s.insert(bs, pos=None)

Inserts bs at pos. After insertion pos will be 
immediately after the inserted BitString.

The default for pos is the current position.

>>> s = BitString('0xccee')
>>> s.insert('0xd', 8)
>>> s
BitString('0xccdee')
>>> s.insert('0x00')
>>> s
BitString('0xccd00ee')

join

s.join(bsl)

Returns the concatenation of the BitString objects 
in the list bsl joined with s as a separator.

>>> s = BitString().join(['0x0001ee', 
'uint:24=13', '0b0111'])
>>> print s
0x0001ee00000d7

>>> s = BitString('0b1').join(['0b0']*5)
>>> print s.bin
0b010101010
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overwrite

s.overwrite(bs, pos=None)

Replaces the contents of the current BitString with 
bs at pos. After overwriting pos will be immediately 
after the overwritten section.

The default for pos is the current position.

>>> s = BitString(length=10)
>>> s.overwrite('0b111', 3)
>>> s
BitString('0b0001110000')
>>> s.pos
6

peek

s.peek(format)

Reads from the current bit position pos in the 
BitString according the the format string and 
returns a new BitString.

The bit position is unchanged after calling peek.

For information on the format string see the entry for 
the read function.

peeklist

s.peeklist(*format)

Reads from current bit position pos in the BitString 
according the the format string and returns a list of 
BitString objects.

The position is not advanced to after the read items.

See the entries for read and readlist for more 
information.

peekbit

s.peekbit()

Returns the next bit in the current BitString as a 
new BitString but does not advance the position. 

peekbits

s.peekbits(bits)

Returns the next bits bits of the current BitString 
as a new BitString but does not advance the 
position.

>>> s = BitString('0xf01')
>>> s.pos = 4
>>> s.peekbits(4)
BitString('0x0')
>>> s.peekbits(8)
BitString('0x01')

peekbitlist

s.peekbitlist(*bits)

Reads multiple bits from the current position and 
returns a list of BitString objects, but does not 
advance the position.

>>> s = BitString('0xf01')
>>> for bs in s.peekbits(2, 2, 8):
...     print bs
0b11
0b11
0x01
>>> s.pos
0 

peekbyte

s.peekbyte()

Returns the next byte of the current BitString as a 
new BitString but does not advance the position. 

peekbytes

s.peekbytes(*bytes) 

Returns the next bytes bytes of the current 
BitString as a new BitString but does not 
advance the position.

If multiple bytes are specified then a list of 
BitString objects is returned.

peekbytelist

s.peekbytelist(*bytes)

Reads multiple bytes from the current position and 
returns a list of BitString objects, but does not 
advance the position.

>>> s = BitString('0x34eedd')
>>> print s.peekbytelist(1, 2)
[BitString('0x34'), BitString('0xeedd')]

prepend

s.prepend(bs)

Inserts bs at the beginning of the current BitString. 
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>>> s = BitString('0b0')
>>> s.prepend('0xf')
>>> s
BitString('0b11110')

read

s.read(format)

Reads from current bit position pos in the BitString 
according the the format string and returns a single 
BitString.

format is a token string that describe how to interpret 
the next bits in the BitString. The tokens are:

int:n" n bits as a signed integer.
uint:n n bits as an unsigned integer.
float:n n bits as a floating point number.
intbe:n" n bits as a big-endian signed integer.
uintbe:n n bits as a big-endian unsigned integer. 
floatbe:n n bits as a big-endian float. 
intle:n" n bits as a little-endian signed int.
uintle:n n bits as a little-endian unsigned int. 
floatle:n n bits as a little-endian float. 
intne:n" n bits as a native-endian signed int.
uintne:n n bits as a native-endian unsigned int. 
floatne:n n bits as a native-endian float. 
hex:n" n bits as a hexadecimal string.
oct:n" n bits as an octal string.
bin:n" n bits as a binary string.
ue  next bits as an unsigned exp-Golomb.
se  next bits as a signed exp-Golomb.
bits:n n bits as a new BitString.
bytes:n n bytes as bytes object.

>>> s = BitString('0x23ef55302')
>>> s.read('hex12')
'0x23e'
>>> s.read('bin:4')
'0b1111'
>>> s.read('uint:5')
10
>>> s.read('bits:4')
BitString('0xa')

The read function is useful for reading exponential-
Golomb codes, which can't be read easily by 
readbits as their lengths aren't know beforehand.

>>> s = BitString('se=-9, ue=4')
>>> s.read('se')
-9
>>> s.read('ue')
4

readlist

s.readlist(*format)

Reads from current bit position pos in the BitString 
according the the format string and returns a list of 
BitString objects.

The position is advanced to after the read items.

See the entry for read for information on the format 
strings.

For multiple items you can separate using commas or 
given multiple parameters:

>>> s = BitString('0x43fe01ff21')
>>> s.readlist('hex:8, uint:6')
['0x43', 63]
>>> s.readlist('bin:3', 'intle:16')
['0b100', -509]

readbit

s.readbit()

Returns the next bit of the current BitString as a 
new BitString and advances the position. 

readbits

s.readbits(bits)

Returns the next bits bits of the current BitString 
as a new BitString and advances the position.

>>> s = BitString('0x0001e2')
>>> s.readbits(16)
BitString('0x0001')
>>> s.readbits(3).bin
'0b111'

readbitlist

s.readbitlist(*bits)

Reads multiple bits from the current BitString and 
returns a list of BitString objects.

The position is advanced to after the read items.

>>> s = BitString('0x0001e2')
>>> s.readbitlist(16, 3)
[BitString('0x0001'), BitString('0b111')]
>>> s.readbitlist(1)
[BitString('0b0')]
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readbyte

s.readbyte()

Returns the next byte of the current BitString as a 
new BitString and advances the position. 

readbytes

s.readbytes(bytes)

Returns the next bytes bytes of the current 
BitString as a new BitString and advances the 
position.

readbytelist

s.readbytelist(*bytes)

Reads multiple bytes from the current BitString and 
returns a list of BitString objects.

The position is advanced to after the read items.

replace

s.replace(old, new, start=None, end=None,
          count=None, bytealigned=False)

Finds occurrences of old and replaces them with 
new. Returns the number of replacements made.

If bytealigned is True then replacements will only 
be made on byte boundaries. start and end give the 
search range and default to 0 and s.length 
respectively. If count is specified then no more than 
this many replacements will be made.

>>> s = BitString('0b0011001')
>>> s.replace('0b1', '0xf')
3
>>> print s.bin
0b0011111111001111
>>> s.replace('0b1', '', count=6)
6
>>> print s.bin
0b0011001111

reverse

s.reverse(start=None, end=None)

Reverses bits in the BitString in-place.

start and end give the range and default to 0 and 
s.length respectively.

>>> a = BitString('0b10111')
>>> a.reversebits()
>>> a.bin
'0b11101'

reversebytes

s.reversebytes(start=None, end=None)

Reverses bytes in the BitString in-place.

start and end give the range and default to 0 and 
s.length respectively. Note that start and end are 
specified in bits so if end - start is not a multiple 
of 8 then a BitStringError is raised.

Can be used to change the endianness of the 
BitString.

>>> s = BitString('uintle:32=1234')
>>> s.reversebytes()
>>> print s.uintbe
1234

rfind

s.rfind(bs, start=None, end=None,
        bytealigned=False) 

Searches backwards for bs in the current BitString 
and returns True if found.

If bytealigned is True then it will look for bs only 
at byte aligned positions. start and end give the 
search range and default to 0 and s.length 
respectively.

Note that as it's a reverse search it will start at end 
and finish at start.

>>> s = BitString('0o031544')
>>> s.rfind('0b100')
True
>>> s.pos
15
>>> s.rfind('0b100', end=17)
True
>>> s.pos
12

rol

s.rol(bits)

Rotates the contents of the BitString in-place by 
bits bits to the left.

Raises ValueError if bits < 0.

>>> s = BitString('0b01000001')
>>> s.rol(2)
>>> s.bin
'0b00000101'
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ror

s.ror(bits)

Rotates the contents of the BitString in-place by 
bits bits to the right.

Raises ValueError if bits < 0.

split

s.split(delimiter, start=None, end=None,
        count=None, bytealigned=False)

Splits s into sections that start with delimiter. 
Returns a generator for BitString objects.

The first item generated is always the bits before the 
first occurrence of delimiter (even if empty). A slice 
can be optionally specified with start and end, 
while count specifies the maximum number of items 
generated.

>>> s = BitString('0x42423')
>>> [bs.bin for bs in s.split('0x4')]
['', '0b01000', '0b01001000', '0b0100011']

startswith

s.startswith(bs, start=None, end=None)

Returns True if the BitString starts with the sub-
string bs, otherwise returns False.

A slice can be given using the start and end bit 
positions and defaults to the whole BitString.

tobytes

s.tobytes()

Returns the BitString as a Python string.

The returned value will be padded at the end with 
between zero and seven '0' bits to make it byte 
aligned.

The tobytes function can also be used to output 
your BitString to a file - just open a file in binary 
write mode and write the function's output.

>>> s.bytes = ‘hello’
>>> s += ‘0b01’
>>> s.tobytes()
‘hello@’ 

tofile

s.tofile(f)

Writes the BitString to the file object f.

The data written will be padded at the end with 
between zero and seven '0' bits to make it byte 
aligned.

>>> f = open('newfile', 'wb')
>>> BitString('0x1234').tofile(f)

truncateend

s.truncateend(bits)

Remove the last bits bits from the end of the 
BitString.

A ValueError is raised if you try to truncate a 
negative number of bits, or more bits than the 
BitString contains.

>>> s = BitString('0xabcdef')
>>> s.truncateend(12)
>>> s
BitString('0xabc')

truncatestart

s.truncatestart(bits)

Remove the first bits bits from the start of the 
BitString.

A ValueError is raised if you try to truncate a 
negative number of bits, or more bits than the 
BitString contains.

>>> s = BitString('0xabcdef')
>>> s.truncatestart(12)
>>> s
BitString('0xdef')

unpack

s.unpack(*format)

Interprets the whole BitString according to the 
format string(s) and returns a list of BitString 
objects.

format is one or more strings with comma separated 
tokens that describe how to interpret the next bits in 
the BitString. See the entry for read for details.

>>> s = BitString('int:4=-1, 0b1110')
>>> i, b = s.unpack('int:4, bin')

If a token doesn't supply a length (as with bin above) 
then it will try to consume the rest of the BitString. 
Only one such token is allowed.
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A.3. Class special methods

__add__ / __radd__

s1 + s2

Concatenate two BitString objects and return the 
result. Either s1 or s2 can be auto initialised.

s = BitString(ue=132) + '0xff'
s2 = '0b101' + s 

__and__ / __rand__

s1 & s2

Returns the bit-wise AND between s1 and s2, which 
must have the same length otherwise a ValueError 
is raised.

>>> print BitString('0x33') & '0x0f'
0x03

__contains__

bs in s

Returns True if bs can be found in s, otherwise 
returns False.

Equivalent to using find, except that pos will not be 
changed.

>>> '0b11' in BitString('0x06')
True
>>> '0b111' in BitString('0x06')
False

__copy__

s2 = copy.copy(s1)

This allows the copy module to correctly copy 
BitString objects. Other equivalent methods are to 
initialise a new BitString with the old one or to 
take a complete slice.

>>> import copy
>>> s = BitString('0o775')
>>> s_copy1 = copy.copy(s)
>>> s_copy2 = BitString(s)
>>> s_copy3 = s[:]
>>> s == s_copy1 == s_copy2 == s_copy3
True

__delitem__

del s[start:end:step]

Deletes the slice specified.

After deletion pos will be at the deleted slice's 
position.

__eq__

s1 == s2

Compares two BitString objects for equality, 
returning True if they have the same binary 
representation, otherwise returning False. 

>>> BitString('0o7777') == '0xfff'
True
>>> a = BitString(uint=13, length=8)
>>> b = BitString(uint=13, length=10)
>>> a == b
False

__getitem__

s[start:end:step]

Returns a slice of s.

The usual slice behaviour applies except that the 
step parameter gives a multiplicative factor for 
start and end (i.e. the bits 'stepped over' are 
included in the slice).

>>> s = BitString('0x0123456')
>>> s[0:4]
BitString('0x1')
>>> s[0:3:8]
BitString('0x012345')

__iadd__

s1 += s2

Append a BitString to the current BitString and 
return the result. 

>>> s = BitString(ue=423)
>>> s += BitString(ue=12)
>>> s.read('ue')
423
>>> s.read('ue')
12

__ilshift__

s <<= n

Shifts the bits in s in place to the left by n places. 
Returns self. Bits shifted off the left hand side are 
lost, and replaced by 0 bits on the right hand side.
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__imul__

s *= n

Concatenates n copies of s and returns self. Raises 
ValueError if n < 0.

>>> s = BitString(‘0xef’)
>>> s *= 3
>>> print s
0xefefef

__init__

s = BitString(auto=None, length=None,
    offset=0, bytes=None, filename=None,
    hex=None, bin=None, oct=None,
    uint=None, int=None, uintbe=None,
    intbe=None, uintle=None, intle=None,
    uintne=None, intne=None, ue=None,
    se=None, float=None, floatbe=None,
    floatle=None, floatne=None) 

Creates a new BitString. You must specify at most 
one of the initialisers auto, bytes, bin, hex, oct, 
uint, int, uintbe, intbe, uintle, intle, uintne, 
intne, se, ue, float, floatbe, floatle, floatne 
or filename. If no initialiser is given then a zeroed 
BitString of length bits is created.

offset is optional for most initialisers, but only really 
useful for bytes and filename. It gives a number of 
bits to ignore at the start of the BitString.

Specifying length is mandatory when using the 
various integer initialisers. It must be large enough 
that a BitString can contain the integer in length 
bits. It is an error to specify length when using the 
ue or se initialisers. For other initialisers length can 
be used to truncate data from the end of the input 
value.

>>> s1 = BitString(hex='0x934')
>>> s2 = BitString(oct='0o4464')
>>> s3 = BitString(bin='0b001000110100')
>>> s4 = BitString(int=-1740, length=12)
>>> s5 = BitString(uint=2356, length=12)
>>> s6 = BitString(bytes='\x93@', 
length=12)
>>> s1 == s2 == s3 == s4 == s5 == s6
True

For information on the use of the auto initialiser see 
the introduction to this appendix.

>>> s = BitString('uint:12=32, 0b110')
>>> t = BitString('0o755, ue:12, int:
3=-1') 

__invert__

~s 

Returns the BitString with every bit inverted, that is 
all zeros replaced with ones, and all ones replaced 
with zeros.

If the BitString is empty then a BitStringError 
will be raised.

>>> s = BitString(‘0b1110010’)
>>> print ~s
0b0001101
>>> print ~s & s
0b0000000

__irshift__

s >>= n

Shifts the bits in s in place by n places to the right 
and returns self. The n left-most bits will become 
zeros.

>>> s = BitString('0b110')
>>> s >>= 2
>>> s.bin
'0b001'

__len__

len(s) 

Returns the length of the BitString in bits if it is less 
than sys.maxsize, otherwise raises OverflowError.

It's recommended that you use the len property 
rather than the len function because of the function's 
behaviour for large BitString objects, although 
calling the special function directly will always work.

>>> s = BitString(filename='11GB.mkv')
>>> s.len
93944160032L
>>> len(s)
OverflowError: long int too large to 
convert to int
>>> s.__len__()
93944160032L

__lshift__

s << n

Returns the BitString with its bits shifted n places to 
the left (or s.len if it’s less). The n right-most bits will 
become zeros.

39



>>> s = BitString(‘0xff’) 
>>> s << 4
BitString(‘0xf0’)

__mul__ / __rmul__

s * n / n * s

Return BitString consisting of n concatenations of 
s.

>>> a = BitString('0x34')
>>> b = a*5
>>> print b
0x3434343434

__ne__

s1 != s2

Compares two BitString objects for inequality, 
returning False if they have the same binary 
representation, otherwise returning True. 

__or__ / __ror__

s1 | s2

Returns the bit-wise OR between s1 and s2, which 
must have the same length otherwise a ValueError 
is raised. 

>>> print BitString(‘0x33’) | ‘0x0f’
0x3f

__repr__

repr(s)

A representation of the BitString that could be used 
to create it (which will often not be the form used to 
create it). 

If the result is too long then it will be truncated with 
‘...’ and the length of the whole BitString will be 
given.

>>> BitString(‘0b11100011’)
BitString(‘0xe3’)

__rshift__

s >> n

Returns the BitString with its bits shifted n places to 
the right (or s.len if it’s less). The n left-most bits will 
become zeros.

>>> s = BitString(‘0xff’)
>>> s >> 4
BitString(‘0x0f’)

__setitem__

s1[start:end:step] = s2

Replaces the slice specified with s2.

>>> s = BitString('0x00112233')
>>> s[1:2:8] = '0xfff'
>>> print s
0x00fff2233
>>> s[-12:] = '0xc'
>>> print s
0x00fff2c

__str__

print s

Prints a representation of s, trying to be as brief as 
possible.

If s is a multiple of 4 bits long then hex will be used, 
otherwise either binary or a mix of hex and binary 
will be used. Very long strings will be truncated with 
'...'.

>>> s = BitString('0b1')*7
>>> print s
0b1111111 
>>> print s + '0b1'
0xff

__xor__ / __rxor__

s1 ^ s2

Returns the bit-wise XOR between s1 and s2, which 
must have the same length otherwise a ValueError 
is raised. Either s1 or s2 can be a string for the auto 
initialiser. 

>>> print BitString('0x33') ^ '0x0f'
0x3c

A.4. Module methods

pack

s = bitstring.pack(format, *values,
                   **kwargs)

Packs the values and keyword arguments according to 
the format string and returns a new BitString.

The format string consists of comma separated tokens 
of the form name:length=value. See the entry for 
read for more details.
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The tokens can be 'literals', like 0xef, 0b110, uint:
8=55, etc. which just represent a set sequence of bits.

They can also have the value missing, in which case 
the values contained in *values will be used.

>>> a = pack('bin:3, hex:4', '001', 'f')
>>> b = pack('uint:10', 33)

A dictionary or keyword arguments can also be 
provided. These will replace items in the format 
string.

>>> c = pack('int:a=b', a=10, b=20)
>>> d = pack('int:8=a, bin=b, int:4=a',
             a=7, b='0b110')

Plain names can also be used as follows:

>>> e = pack('a, b, b, a', a='0b11',
             b='0o2')

Tokens starting with an endianness identifier (<, > or 
@) implies a struct-like compact format string. For 
example this packs three little-endian 16-bit integers:

>>> f = pack('<3h', 12, 3, 108)

And of course you can combine the different methods 
in a single pack.

A ValueError will be raised if the *values are not 
all used up by the format string, and if a value 
provided doesn't match the length specified by a 
token.

A.5. Deprecated methods

These methods were all present in the 1.0 release, but 
have now been deprecated to simplify the API as they 
have trivial alternatives and offer no extra 
functionality.

There are no current plans to remove them, but this 
could happen for version 2.0 so their use is 
discouraged.

advancebit (deprecated)

s.advancebit() 

Advances position by 1 bit.

Equivalent to s.pos += 1. 

advancebits (deprecated)

s.advancebits(bits)

Advances position by bits bits.

Equivalent to s.pos += bits.

advancebyte (deprecated)

s.advancebyte()

Advances position by 8 bits.

Equivalent to s.pos += 8.

advancebytes (deprecated)

s.advancebytes(bytes)

Advances position by 8*bytes bits.

Equivalent to s.pos += 8*bytes.

retreatbit (deprecated)

s.retreatbit()

Retreats position by 1 bit.

Equivalent to s.pos -= 1. 

retreatbits (deprecated)

s.retreatbits(bits) 

Retreats position by bits bits.

Equivalent to s.pos -= bits. 

retreatbyte (deprecated)

s.retreatbyte()

Retreats position by 8 bits.

Equivalent to pos -= 8.

retreatbytes (deprecated)

s.retreatbytes(bytes)

Retreats position by bytes*8 bits.

Equivalent to s.pos -= 8*bytes.

seek (deprecated)

s.seek(pos) 

Moves the current position to pos.
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Equivalent to s.pos = pos. 

seekbyte (deprecated)

s.seekbyte(bytepos)

Moves the current position to bytepos.

Equivalent to s.bytepos = bytepos, or 
s.pos = bytepos*8. 

slice (deprecated)

s.slice(start, end, step)

Returns the BitString slice s[start*step : 
end*step].

It's use is equivalent to using the slice notation 
s[start:end:step]; see __getitem__ for 
examples.

tell (deprecated)

s.tell()

Returns the current bit position.

Equivalent to using the pos property as a getter.

tellbyte (deprecated)

s.tellbyte()

Returns the current byte position.

Equivalent to using the bytepos property as a getter.
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B.  Exponential-Golomb Codes

As this type of representation of integers isn't as well known as the standard base-2 representation I 
thought that a short explanation of them might be welcome. This section can be safely skipped if 
you're not interested.

Exponential-Golomb codes represent integers using  bit patterns that get longer for larger numbers. For 
unsigned and signed numbers (the BitString properties ue and se respectively)  the patterns start 
like this:

Bit pattern! Unsigned Signed 

1! 0  0

010! 1! 1

011! 2! -1

00100! 3 ! 2

00101! 4! -2

00110! 5! 3

00111! 6 ! -3

0001000! 7! 4

0001001! 8 ! -4

0001010! 9! 5

0001011! 10! -5

0001100! 11! 6

...! ... ! ... 

They consist of a sequence of n '0' bits, followed by a '1' bit, followed by n more bits. The bits after 
the first '1' bit count upwards as ordinary base-2 binary numbers until they run out of space and an 
extra '0' bit needs to get included at the start.

The advantage of this method of representing  integers over many other methods is that it can be quite 
efficient at representing small numbers without imposing a limit on the maximum number that can be 
represented.

Exercise: Using the table above decode this sequence of unsigned Exponential Golomb codes:

001001101101101011000100100101

The answer is that it decodes to 3, 0, 0, 2, 2, 1, 0, 0, 8, 4. Note how you don’t need to know how 
many bits are used for each code in advance - there’s only one way to decode it. To create this 
bitstring you could have written something like:

a = BitString().join([BitString(ue=i) for i in [3,0,0,2,2,1,0,0,8,4]])
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and to read it back:

while a.pos != a.len:
    print a.read('ue')

The notation ue and se for the exponential-Golomb code properties comes from the H.264 video 
standard, which uses these types of code a lot. The particular way that the signed integers are 
represented might be peculiar to this standard as I haven't seen it elsewhere (and an obvious 
alternative is minus the one given here), but the unsigned mapping seems to be universal. 
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C. Internals

I am including some information on the internals of the BitString class here, things that the general 
user shouldn’t need to know. The objects and methods described here all start with an underscore, 
which means that they are a private part of the implementation, not a part of the public interface and 
that that I reserve the right to change, rename and remove them at any time!

This appendix isn't complete, and may not even be accurate as I am in the process of refactoring  the 
core, so with those disclaimers in mind...

The data in a BitString can be considered to consist of three parts.

The byte data, either contained in memory, or as part of a file.

A length in bits.

An offset to the data in bits.

Storing  the data in byte form is pretty essential, as anything else could be very memory inefficient. 
Keeping  an offset to the data allows lots of optimisations to be made as it means that the byte data 
doesn’t need to be altered for almost all operations. An example is in order:

a = BitString('0x01ff00')
b = a[7:12]

This is about as simple as it gets, but let’s look at it in detail. First a is created by parsing  the string  as 
hexadecimal (as it starts with 0x)  and converting  it to three data bytes \x01\xff\x00. By default the 
length is the bit length of the whole string, so it’s 24 in this case, and the offset is zero.

Next, b is created from a slice of a. This slice doesn’t begin or end on a byte boundary, so one way of 
obtaining  it would be to copy the data in a and start doing  bit-wise shifts to get it all in the right 
place. This can get really very computationally expensive, so instead we utilise the offset and length 
parameters.

The procedure is simply to copy the byte data containing the substring  and set the offset and length to 
get the desired result. So in this example we have:

a : bytes = '\x01\xff\x00', offset = 0, len = 24
b : bytes = '\x01\xff', offset = 7, len = 5

This method also means that BitString  objects initialised from a file don’t have to copy anything  into 
memory - the data instead is obtained with a byte offset into the file. This brings us onto the different 
types of datastores used.

The BitString has a _datastore member, which at present is either a _MemArray class or a 
_FileArray class. The _MemArray class is really just a light wrapper around an array.array object 
that contains the real byte data, so when we were talking  about the data earlier I was really referring 
to the byte data contained in the array.array, in the _MemArray, in the _datastore, in the 
BitString (but that seemed a bit much to give you in one go).
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