aenum --- support for advanced enumerations,
namedtuples, and constants

An Enum is a set of symbolic names (members) bound to unique, constant values. Within an
enumeration, the members can be compared by identity, and the enumeration itself can be iterated over.

A NanedTupl e is a class-based, fixed-length tuple with a name for each possible position accessible
using attribute-access notation.

A NanedConst ant is a class whose members cannot be rebound; it lacks all other Enum capabilities,
however; consequently, it can have duplicate values. There is also a nodul e function that can insert the
NanmedConst ant class into sys. nodul es where it will appear to be a module whose top-level names
cannot be rebound.

Note

const ant refers to names not being rebound; mutable objects can be
mutated.

Module Contents

This module defines five enumeration classes that can be used to define unique sets of names and
values, one Enum class decorator, one NamedTupl e class, one NanedConst ant class, and several
helpers.

NamedConst ant
NamedConstant class for creating groups of constants. These names cannot be rebound to other values.
Enum

Base class for creating enumerated constants. See section Enum Functional APl for an alternate
construction syntax.

Aut oNunber
Flag to Enum constructor specifying auto numbering (starts with 1, py3 only).
Mul ti Val ue

Flag to Enum constructor specifying that each item of tuple value is a separate value for that member; the
first tuple item is the canonical one (py3 only).

NoAl i as

Flag to Enum Constructor specifying that duplicate valued members are distinct and not aliases; by-value
lookups are disabled (py3 only).

Uni que

Flag to Enum constructor specifying that duplicate valued members are not allowed (py3 only).

Note

the flags are inherited by the enumeration's subclasses

I nt Enum

Base class for creating enumerated constants that are also subclasses of i nt .
Aut oNunber Enum

Derived class that automatically assigns an i nt value to each member.

O der edEnum

Derived class that adds <, <=, >=, and > methods to an Enum

Uni queEnum

Derived class that ensures only one name is bound to any one value.

uni que

Enum class decorator that ensures only one name is bound to any one value.

Note

the Uni queEnum class, the uni que decorator, and the Unique flag all do the same thing; you do
not need to use more than one of them at the same time.

NamedTupl e

Base class for creating NamedTuples, either by subclassing or via it's functional API.
const ant

Descriptor to add constant values to an Enum or advanced constants to NanedConst ant .
convert

Helper to transform target global variables into an Enum

enum

Helper for specifying keyword arguments when creating Enum members.

export

Helper for inserting Enum members NanedConst ant constants into a namespace (usually gl obal s() .
ext end_enum

Helper for adding new Enum members, both stdlib and aenum.

nodul e

Function to take a NanmedConst ant or Enum class and insert it into sys. nodul es with the affect of a
module whose top-level constant and member names cannot be rebound.

ski p

Descriptor to add a normal (non-Enum member) attribute to an Enum or NamedConst ant .

Creating an Enum

Enumerations are created using the cl ass syntax, which makes them easy to read and write. An
alternative creation method is described in Enum Functional API. To define an enumeration, subclass
Enum as follows:

>>> from aenum i nport Enum
>>> cl ass Col or (Enunj:

red = 1

green = 2

blue = 3

Nomenclature

» The class Col or is an enumeration (or enum)

e The attributes Col or.red, Col or.green, etc.,, are enumeration members (or enum
members).

« The enum members have names and values (the name of Col or. red is red, the value of
Col or. bl ue is 3, etc.)

Note

Even though we use the cl ass syntax to create Enums, Enums are not normal Python classes.
See How are Enums different? for more details.

Enumeration members have human readable string representations:

>>> print (Col or.red)
Col or.red

...while their r epr has more information:

>>> print(repr(Color.red))
<Col or.red: 1>

The type of an enumeration member is the enumeration it belongs to:

>>> type(Col or.red)

<aenum ' Col or' >

>>> j si nstance(Col or. green, Col or)
True

Enumerations support iteration. In Python 3.x definition order is used; in Python 2.x the definition order is
not available, but class attribute __or der __ is supported; otherwise, value order is used:

>>> cl ass Shake(Enum:
__order__ "vanilla chocol ate cookies mnt' # only needed in 2.x
vanilla =
chocol at e
cookies = 9

I~

4

mnt = 3

>>> for shake in Shake:
print (shake)

Shake. vani |l | a
Shake. chocol at e
Shake. cooki es
Shake. m nt

The __order_
(useful for py2&3 code bases); however, in the stdlib version it will be ignored and not removed.

Enumeration members are hashable, so they can be used in dictionaries and sets:

>>> apples = {}

>>> appl es[Col or.red] = 'red delicious'

>>> appl es[Col or.green] = 'granny smth'

>>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
True

In Python 3 the class syntax has a few extra advancements:

--> class Col or(
Enum
settings=(Aut oNunber, MuiltiVal ue, NoAlias, Unique),

init="field namel field nane2 ...",
start =7,

)

start is used to specify the starting value for Aut oNunber , and also enables Aut oNunber :

--> class Count (Enum start=11):
el even
twel ve

--> Count.twel ve.value == 12
True

ni t specifies the attribute names to store creation values to:

--> class Planet (Enum init="mass radius'):
MERCURY = (3. 303e+23, 2.4397e€6)
EARTH (5.976e+24, 6.37814e6)

--> Pl anet . EARTH. val ue
(5.976e+24, 6378140.0)
--> Pl anet . EARTH. r adi us
2.4397e6

The various settings enable special behavior:

» Aut oNurrber is the same as specifying st art =1

e Mul ti Val ue allows multiple values per member instead of the usual 1

attribute is always removed, but in 3.x it is used to verify that definition order is the same

* NoAl i as allows different members to have the same value

» Uni que disallows different members to have the same value

Programmatic access to enumeration members and
their attributes

Sometimes it's useful to access members in enumerations programmatically (i.e. situations where
Col or. red won't do because the exact color is not known at program-writing time). Enum allows such
access:

>>> Col or (1)
<Col or.red: 1>
>>> Col or (3)
<Col or. bl ue: 3>

If you want to access enum members by name, use item access:

>>> Color['red']
<Col or.red: 1>
>>> Col or[' green']
<Col or. green: 2>

If have an enum member and need its nanme or val ue:

>>> nenber = Col or.red
>>> nenber . nane

"red'

>>> nenber. val ue

1

Duplicating enum members and values

Having two enum members (or any other attribute) with the same name is invalid; in Python 3.x this would
raise an error, but in Python 2.x the second member simply overwrites the first:

python 2.x

--> cl ass Shape(Enum :
square = 2
square = 3

--> Shape. square
<Shape. square: 3>

python 3.x
--> cl ass Shape(Enum :
square = 2
. square = 3
Traceback (nmost recent call last):

TypeError: Attenpted to reuse key: 'square’

However, two enum members are allowed to have the same value. Given two members A and B with the
same value (and A defined first), B is an alias to A. By-value lookup of the value of A and B will return A.
By-name lookup of B will also return A:

>>> cl ass Shape(Enum:
__order__ = 'square dianmond circle alias_for_square' # needed in 2.x
square = 2
diamond = 1
circle =3
alias_for_square = 2

>>> Shape. squar e

<Shape. square: 2>

>>> Shape. al i as_for_square
<Shape. square: 2>

>>> Shape(2)

<Shape. square: 2>

Allowing aliases is not always desirable. uni que can be used to ensure that none exist in a particular
enumeration:

>>> from aenum i nport uni que
>>> @ni que
class M stake(Enun:
__order ___ = "'one two three four' # only needed in 2.x
one =1
two = 2
three = 3
four = 3
Traceback (nost recent call |ast):

Val ueError: duplicate nanes found in <aenum'M stake'>: four -> three
Iterating over the members of an enum does not provide the aliases:

>>> | i st (Shape)
[<Shape. square: 2>, <Shape.di anond: 1>, <Shape.circle: 3>]

The special attribute __menbers__ is a dictionary mapping names to members. It includes all names
defined in the enumeration, including the aliases:

>>> for name, nmenber in sorted(Shape. nenbers__.itens()):
nanme, menber

(*alias_for_square', <Shape.square: 2>)
(‘circle', <Shape.circle: 3>)

(' di anond', <Shape. di anond: 1>)

(' square', <Shape.square: 2>)

The __nenbers__ attribute can be used for detailed programmatic access to the enumeration members.
For example, finding all the aliases:

>>> [n for n, nbr in Shape. nenbers_.itens() if nbr.nane != n]
["alias_for _square']

Comparisons

Enumeration members are compared by identity:

>>> Color.red is Color.red

True

>>> Color.red is Color.blue

Fal se

>>> Color.red is not Col or. blue
True

Ordered comparisons between enumeration values are not supported. Enum members are not integers
(but see IntEnum below):

>>> Col or.red < Col or. bl ue
Traceback (nmost recent call last):

File "<stdin>", line 1, in <nodul e>
TypeError: unorderabl e types: Color() < Color()

Warning

In Python 2 everything is ordered, even though the ordering may not make sense. If you want your
enumerations to have a sensible ordering consider using an OrderedEnum.

Equality comparisons are defined though:

>>> Col or.blue == Col or.red
Fal se

>>> Color.blue !'= Color.red
True

>>> Col or. bl ue == Col or. bl ue
True

Comparisons against non-enumeration values will always compare not equal (again, | nt Enum was
explicitly designed to behave differently, see below):

>>> Col or. bl ue ==
Fal se

Allowed members and attributes of enumerations

The examples above use integers for enumeration values. Using integers is short and handy (and
provided by default by the Enum Functional API), but not strictly enforced. In the vast majority of
use-cases, one doesn't care what the actual value of an enumeration is. But if the value is important,
enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as usual. If we have this
enumeration:

>>> cl ass Mood(Enum :
funky = 1
happy = 3

def describe(sel f):
self is the nenber here
return sel f.nanme, self.value

def _ str_ (self):
return 'my customstr! {0}'.format(self.val ue)

@| assnet hod

def favorite nood(cls):
cls here is the enuneration
return cls. happy

Then:

>>> Mpod. favorite_nood()
<Mbod. happy: 3>

>>> Mbod. happy. descri be()
(" happy', 3)

>>> str(Mood. f unky)

‘my customstr! 1

The rules for what is allowed are as follows: _sunder_ names (starting and ending with a single
underscore) are reserved by enum and cannot be used; all other attributes defined within an enumeration
will become members of this enumeration, with the exception of _ dunder__ names and descriptors
(methods are also descriptors).

Note

If your enumeration defines __new__ and/or __init__ then whatever value(s) were given to the
enum member will be passed into those methods. See Planet for an example.

Restricted subclassing of enumerations

Subclassing an enumeration is allowed only if the enumeration does not define any members. So this is
forbidden:

>>> cl ass MoreCol or(Col or):
pi nk = 17
Traceback (most recent call last):

TypeError: Cannot extend enumerations via subcl assing.
But this is allowed:

>>> cl ass Foo(Enum:
def sone_behavi or(self):
pass

>>> cl ass Bar (Foo):

happy = 1
sad = 2

Allowing subclassing of enums that define members would lead to a violation of some important invariants
of types and instances. On the other hand, it makes sense to allow sharing some common behavior
between a group of enumerations. (See OrderedEnum for an example.)

Pickling

Enumerations can be pickled and unpickled:

>>> fromaenumtest inport Fruit

>>> from pi ckl e i nport dunps, | oads

>>> Fruit.tomato is | oads(dunps(Fruit.tomato, 2))
True

The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module,
since unpickling requires them to be importable from that module.

Note

With pickle protocol version 4 (introduced in Python 3.4) it is possible to easily pickle enums
nested in other classes.

Enum Functional API

The Enum class is callable, providing the following functional API:

>>> Aninmal = Enun(' Animal', 'ant bee cat dog')

>>> Ani nal

<aenum ' Ani mal ' >

>>> Ani mal . ant

<Ani mal . ant: 1>

>>> Ani nal . ant . val ue

1

>>> | i st (Animal)

[<Animal .ant: 1>, <Aninal.bee: 2> <Aninal.cat: 3> <Aninal.dog: 4>]

The semantics of this API resemble narmedt upl e. The first argument of the call to Enum is the name of
the enumeration.

The second argument is the source of enumeration member names. It can be a whitespace-separated
string of names, a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g.
dictionary) of names to values. The last two options enable assigning arbitrary values to enumerations;
the others auto-assign increasing integers starting with 1. A new class derived from Enum is returned. In
other words, the above assignment to Ani mal is equivalent to:

>>> cl ass Ani mal s(Enum :
ant
bee
cat
dog

[A T 1|
A WONBE

Pickling enums created with the functional API can be tricky as frame stack implementation details are
used to try and figure out which module the enumeration is being created in (e.g. it will fail if you use a
utility function in separate module, and also may not work on IronPython or Jython). The solution is to
specify the module name explicitly as follows:

>>> Animals = Enun{' Animal s', 'ant bee cat dog', nodul e=__nanme_)

Derived Enumerations

INtEnum

A variation of Enum is provided which is also a subclass of i nt . Members of an | nt Enum can be
compared to integers; by extension, integer enumerations of different types can also be compared to each
other:

>>> from aenum i mport | nt Enum
>>> cl ass Shape(| nt Enum :
circle =1
square = 2

>>> cl ass Request (| nt Enum :

post =1
get = 2
>>> Shape ==
Fal se
>>> Shape.circle ==
True
>>> Shape. circl e == Request . post
True

However, they still can't be compared to standard Enum enumerations:

>>> cl ass Shape(| nt Enum:
circle =1
square = 2

>>> cl ass Col or (Enum :
red = 1
green = 2

>>> Shape.circle == Col or.red
Fal se

I nt Enum values behave like integers in other ways you'd expect:

>>> j nt (Shape. circl e)

1

>>> ['a'", 'b', 'c'][Shape.circle]

] bl

>>> [i for i in range(Shape.square)]
[0, 1]

For the vast majority of code, Enum is strongly recommended, since | nt Enum breaks some semantic
promises of an enumeration (by being comparable to integers, and thus by transitivity to other unrelated
enumerations). It should be used only in special cases where there's no other choice; for example, when
integer constants are replaced with enumerations and backwards compatibility is required with code that
still expects integers.

Others

While | nt Enum is part of the aenum module, it would be very simple to implement independently:

class IntEnun(int, Enunj:
pass

This demonstrates how similar derived enumerations can be defined; for example a St r Enum that mixes
instr instead ofi nt.

Some rules:

1. When subclassing Enum mix-in types must appear before Enum itself in the sequence of bases, as
in the | nt Enum example above.

2. While Enum can have members of any type, once you mix in an additional type, all the members
must have values of that type, e.g. i nt above. This restriction does not apply to mix-ins which only
add methods and don't specify another data type suchasint orstr.

3. When another data type is mixed in, the val ue attribute is not the same as the enum member itself,
although it is equivalant and will compare equal.

4. %-style formatting: % and % call Enumis __str__ and __repr__ respectively; other codes
(suchas % or % for IntEnum) treat the enum member as its mixed-in type.

5.str.__format__ (or format) will use the mixed-in type's _ fornmat . If the Enums str or
repr isdesiredusethe!s or!r str formatcodes.

Note

Prior to Python 3.4 there is a bug in str's %-formatting: i nt subclasses are printed as strings
and not numbers when the %, % , or %u codes are used.

Extra Goodies

aenum supports a few extra techniques not found in the stdlib version.

enum

If you have several items to initialize your Enum members with and would like to use keyword arguments,
the enum helper is for you:

>>> from aenum i nport enum
>>> cl ass Presi dents(Enhum:
Washi ngt on
Jackson
Li ncol n

enun(' Andrew Jackson',
enun(' Abraham Li ncol n',

>>> Presidents. Lincoln
<Presi dents. Li ncol n: enun(' Abraham Li ncol

extend_enum

For those rare cases when you need to create your Enum in pieces, you can use ext end_enum to add

new members after the initial creation:

>>> from aenum i nport extend_enum
>>> cl ass Col or (Enum :
red 1
green =
bl ue

2
3

>>> | ist(Col or)

[<Col or.red: 1>, <Color.green: 2>,
>>> extend_enunm(Col or, 'opacity',
>>> | ist(Col or)

[<Col or.red: 1>, <Color.green:
>>> Col or.opacity in Col or
True

>>> Col or. opacity. nane
True

>>> Col or. opacity. val ue
True

>>> Col or (4)

<Col or. opacity: 4>

>>> Col or[' opacity']
<Col or. opacity: 4>

4)

2>,

‘opacity’

--> Color.__nmenbers__
OrderedDict ([
('red, <Color.red:
('green', <Color.green: 2>),
(' blue', <Color.blue: 3>),
('opacity', <Color.opacity: 4>)
1)

1>),

constant

enun(' George Washi ngton',

<Col or. bl ue:

<Col or. bl ue:

circa=1776, death=1797)
ci rca=1830, deat h=1837)
ci rca=1860, deat h=1865)

n', circa=1860, death=1865) >

3>]

3>, <Col or.opacity: 4>]

If you need to have some constant value in your Enum that isn't a member, use const ant :

>>> from aenum i nport const ant
>>> cl ass Pl anet (Enum:

MERCURY = (3.303e+23, 2.4397e6)
EARTH = (5.976e+24, 6.37814e6)
JUPI TER = (1.9e+27, 7.1492e7)
URANUS = (8.686e+25, 2.5559e7)

G = constant (6. 67300E- 11)

def __init_ (self, mass, radius):
sel f. mass = nass # in kil ograns
sel f.radi us = radius #in neters
@roperty

def surface gravity(self):
uni versal gravitational constant (nB kg-1 s-2)
return self.G* self.mass / (self.radius * self.radius)

>>> Pl anet . EARTH. val ue
(5.976e+24, 6378140.0)

>>> Pl anet. EARTH. surface _gravity
9. 802652743337129

>>> Pl anet. G

6.673e-11
>>> Planet. G =9
Traceback (nost recent call |ast):

AttributeError: Cannot rebind constant (6.673e-11)

skip

If you need a standard attribute that is not converted into an Enum member, use ski p:

>>> from aenum i nport skip
>>> cl ass Col or (Enum :

red =1

green = 2

blue = 3

opacity = skip(0. 45)

>>> Col or.opacity

0. 45

>>> Col or.opacity = 0.77
>>> Col or.opacity

0.77

start (py3 only)

When using Python 3 you have the option of turning on auto-numbering (useful for when you don't care
which numbers are assigned as long as they are consistent and in order):

>>> cl ass Col or (Enum start=1): # doctest: +SKIP
red, green, blue

>>> Col or. bl ue
<Col or. bl ue: 3>

Note

auto-numbering turns off when a non-member is defined

init (py3 only)

If youneedan __init__ method that does nothing besides save its arguments, i ni t is for you:

>>> class Planet (Enum init="mass radius'): # doctest: +SKIP
MERCURY = (3.303e+23, 2.4397e6)
EARTH = (5.976e+24, 6.37814€6)
JUPI TER = (1. 9e+27, 7.1492e7)
URANUS = (8.686e+25, 2.5559¢e7)

G = constant (6. 67300E- 11)

@r operty

def surface_gravity(self):
universal gravitational constant (nB kg-1 s-2)
return self.G* self.mass / (self.radius * self.radius)

>>> Pl anet . JUPI TER. val ue
(1.9e+27, 71492000.0)
>>> Pl anet . JUPI TER. nass
1. 9e+27

Decorators

unique
A cl ass decorator specifically for enumerations. It searches an enumeration's __nmenber s__ gathering
any aliases it finds; if any are found Val ueEr r or is raised with the details:

>>> @ni que
cl ass NoDupes(Enunj:

first = 'one'
second = 'two'
third = 'two’
Traceback (nost recent call |ast):

Val ueError: duplicate nanes found in <aenum ' NoDupes'>: third -> second

Interesting examples

While Enum and | nt Enum are expected to cover the majority of use-cases, they cannot cover them all.
Here are recipes for some different types of enumerations that can be used directly (the first three are
included in the module), or as examples for creating one's own.

AutoNumber

Avoids having to specify the value for each enumeration member:

>>> cl ass Aut oNumber (Enun) :
def __new_ (cls):

value = len(cls. nenbers_) + 1
obj = object. new (cls)

obj . _value_ = val ue

return obj

>>> cl ass Col or (Aut oNunber):

__order__ = "red green blue" # only needed in 2.x

red = ()
green = ()
blue = ()
>>> Col or. green.val ue ==
True
Note

The __new__ method, if defined, is used during creation of the Enum members; it is then replaced
by Enum's __new__ which is used after class creation for lookup of existing members. Due to the
way Enums are supposed to behave, there is no way to customize Enum's _ new__ without

modifying the class after it is created.

UniqueEnum
Raises an error if a duplicate member name is found instead of creating an alias:

>>> cl ass Uni queEnum(Enum :
def __init__ (self, *args):
cls = self. class__
if any(self.value == e.value for e in cls):
a = self.name
e = cl s(self.val ue).nane

rai se Val ueError (
"aliases not allowed in Uni queEnum % --> %"

% (a, e))

>>> cl ass Col or (Uni queEnunj :

__order__ = "'red green blue'

red = 1

green = 2

blue = 3
.. grene = 2
Traceback (nmost recent call last):
Val ueError: aliases not allowed in Uni queEnum 'grene' --> 'green'
OrderedEnum

An ordered enumeration that is not based on | nt Enum and so maintains the normal Enum invariants
(such as not being comparable to other enumerations):

>>> cl ass Order edEnun{ Enunj:
def __ge (self, other):
if self. class___ is other. class_:
return self._value_ >= other._val ue_
return Not I npl enent ed
def gt (self, other):

if self. class___ is other. class_:
return self. value_ > other. _value_
return Notl npl enent ed
def _le (self, other):
if self. class___ is other. class_:
return self. value_ <= other. value_
return Notl npl enent ed
def It (self, other):
if self. class___ is other. class_:
return self. value_ < other. _value_
return Notl npl enent ed

>>> cl ass G ade(O der edEnum :
.. _ordered. ="'"ABCDF

MmMoOw>
T T TR T T
RN WAoo

>>> Gade.C < Grade. A
True

Planet

If _new _ or__init__ isdefined the value of the enum member will be passed to those methods:

>>> cl ass Pl anet (Enunj:

MERCURY = (3.303e+23, 2.4397€6)

VENUS = (4.869e+24, 6.0518e6)

EARTH = (5.976e+24, 6.37814€6)

MARS = (6.421e+23, 3.3972€6)

JUPI TER = (1. 9e+27, 7.1492e7)

SATURN = (5.688e+26, 6.0268e7)

URANUS = (8.686e+25, 2.5559¢e7)

NEPTUNE = (1.024e+26, 2.4746e7)

def __init_ (self, mass, radius):
sel f. mass = nass # in kil ograns
sel f.radi us = radius #in nmeters

@r operty

def surface_gravity(self):
universal gravitational constant (nB kg-1 s-2)
G = 6. 67300E-11
return G* self.mss / (self.radius * self.radius)

>>> Pl anet . EARTH. val ue
(5.976e+24, 6378140.0)

>>> P| anet. EARTH. surface_gravity
9. 802652743337129

How are Enums different?

Enums have a custom metaclass that affects many aspects of both derived Enum classes and their
instances (members).

Enum Classes

The Enum\vet a metaclass is responsible for providing the _ contains__, dir__, iter__ and
other methods that allow one to do things with an Enum class that fail on a typical class, such as
list(Color) or some_var in Color. Enumveta is responsible for ensuring that various other

methods on the final Enum class are correct (such as __new_, getnewargs_ , _ str__ and
__repr_).
Note
__dir__ is not changed in the Python 2 line as it messes up some of the decorators included in
the stdlib.

Enum Members (aka instances)

The most interesting thing about Enum members is that they are singletons. Enunivet a creates them all
while it is creating the Enum class itself, and then puts a custom __new__ in place to ensure that no new
ones are ever instantiated by returning only the existing member instances.

Finer Points

Enum members are instances of an Enum class, and even though they are accessible as
EnumClass.memberl.member2, they should not be accessed directly from the member as that lookup
may fail or, worse, return something besides the Enum member you were looking for (changed in version
1.1.1):

>>> cl ass Fiel dTypes(Enum :

name = 1
value = 2
size = 3

>>> Fi el dTypes. val ue. si ze
<Fi el dTypes. si ze: 3>

>>> Fi el dTypes. si ze. val ue
3

The __nenbers__ attribute is only available on the class.

__nmenbers__ is always an Or der edDi ct, with the order being the definition order in Python 3.x or the
order in __order__ in Python 2.7; if no __order__ was specified in Python 2.7 then the order of
__menbers__ is meaningless.

If you give your Enum subclass extra methods, like the Planet class above, those methods will show up in
a dir of the member, but not of the class (in Python 3.x):

--> dir (Pl anet)
[EARTH , "JUPITER , 'MARS' , 'MERCURY', 'NEPTUNE' , 'SATURN , ' URANUS',

"VENUS', ' class_ ', ' _doc_ ', ' nmenbers__', ' nodule_ ']
--> dir (Pl anet. EARTH)
[' _class_', ' doc_ ', ' nodule_', 'name', 'surface gravity', 'value']

A __new__ method will only be used for the creation of the Enum members -- after that it is replaced.
This means if you wish to change how Enum members are looked up you either have to write a helper
function or a cl assnet hod.

If the stdlib enum is available (Python 3.4+ and it hasn't been shadowed by, for example, enun84) then
aenum will inherit from it.

Creating NamedTuples

Simple

The most common way to create a new NamedTuple will be via the functional API:

>>> from aenum i nport NamedTupl e
>>> Book = NamedTupl e(' Book', 'title author genre', nodul e=__nanme_)

This creates a NanedTupl e called Book that will always contain three items, each of which is also
addressable astitl e, aut hor, or genre.

Book instances can be created using positional or keyword argements or a mixture of the two:

>>> pl = Book('Lord of the Rings', 'J.R R Tolkien', 'fantasy')
>>> b2 = Book(title="Jhereg', author='"Steven Brust', genre=' fantasy')
>>> b3 = Book('Enmpire', 'Orson Scott Card', genre='scifi')

If too few or too many arguments are used a TypeEr r or will be raised:

>>> b4 = Book(' Hi dden Enpire')
Traceback (nost recent call |ast):

TypeError: values not provided for field(s): author, genre
>>> b5 = Book(genre='busi ness')
Traceback (nobst recent call |ast):

TypeError: values not provided for field(s): title, author
As acl ass the above Book NamedTupl e would look like:

>>> cl ass Book(NanedTupl e):

title =0
author =1
genre = 2

For compatibility with the stdlib namedt upl e, NamedTuple also has the _asdict, _neke, and
_repl ace methods, and the _fi el ds attribute, which all function similarly:

>>> cl ass Poi nt (NamedTupl e) :
X 0, 'horizontal coordinate', 1
y 1, 'vertical coordinate', -1

>>> cl ass Col or (NamedTupl e) :
r 0, 'red conponent', 11

g 1, 'green component', 29
b 2, 'blue component', 37
>>> Pj xel NanmedTupl e(' Pi xel ', Poi nt +Col or, nodul e=__nane_)

>>> pixel = Pixel (99, -101, 255, 128, 0)

>>> pixel . _asdict()
OrderedDict ([("x", 99), ('y', -101), ('r', 255), ('g', 128), ('b', 0)])

>>> Poi nt. _make((4, 5))
Poi nt (x=4, y=5)

>>> purple = Color (127, 0, 127)

>>> md_gray = purple. _replace(g=127)
>>> md_gray

Col or (r=127, g=127, b=127)

>>> pi xel. fields
['X" 'y" 'r" 'g" 'b']
>>> Pixel. fields

['X"'y"'r"'g"'b']

Advanced

The simple method of creating NanmedTupl es requires always specifying all possible arguments when
creating instances; failure to do so will raise exceptions:

>>> cl ass Poi nt (NamedTupl e) :
X 0

y 1

>>> Point ()
Traceback (npst recent call last):

TypeError: values not provided for field(s): x, y
>>> Point (1)
Traceback (nost recent call last):

TypeError: values not provided for field(s): vy
>>> Poi nt (y=2)
Traceback (nost recent call last):

TypeError: values not provided for field(s): x

However, it is possible to specify both docstrings and default values when creating a NanedTupl e using
the class method:

>>> cl ass Poi nt (NamedTupl e) :
X 0, 'horizontal coordinate', 0O
y 1, 'vertical coordinate', O

>>> Poi nt ()
Poi nt (x=0, y=0)
>>> Point (1)
Poi nt (x=1, y=0)
>>> Poi nt (y=2)
Poi nt (x=0, y=2)

It is also possible to create NamedTupl es that only have named attributes for certain fields; any fields
without names can still be accessed by index:

>>> cl ass Person(NamedTupl e) :
full name = 2
phone = 5

>>> p = Person(' Ethan', 'Furman', 'Ethan Furman',

‘et han at stonel eaf dot us',

B "ethan. furman', '999.555.1212")

>>> p

Person(' Ethan', 'Furman', 'Ethan Furman', 'ethan at stonel eaf dot us',
"ethan. furman', '999.555.1212")

>>> p. ful | name

' Et han Fur man’

>>> p. phone

' 999. 555. 1212’

>>> p[0]

' Et han'

In the above example the last named field was also the last field possible; in those cases where you don't
need to have the last possible field named, you can provide a _si ze_ of Tupl eSi ze. m ni num to
declare that more fields are okay:

>>> from aenum i nport Tupl eSi ze
>>> cl ass Person(NanmedTupl e) :
size = Tupl eSi ze. m ni num
first =0
last =1

or, optionally if using Python 3:

>>> cl ass Person(NamedTupl e, size=Tupl eSi ze. m ni mum : # doctest: +SKIP
first =0
last =1

and in use:

>>> Person(' Ethan', 'Furman')

Person(first="Ethan', |ast="Furman')

>>> Person(' Ethan', 'Furman', 'ethan.furman')

Person(' Ethan', ' Furman', 'ethan.furmn')

>>> Person(' Ethan', 'Furman', 'ethan.furman', 'yay Python!')

Person(' Ethan', 'Furman', 'ethan.furman', 'yay Python!')

>>> Person(' Ethan')
Traceback (nmpst recent call last):

TypeError: values not provided for field(s): |ast

Also, for those cases where even named fields may not be present, you can specify
Tupl eSi ze. vari abl e:

>>> cl ass Person(NanmedTupl e) :
size = Tupl eSi ze.vari abl e
first =0
last =1

>>> Person(' Et han')
Per son(' Et han')

>>> Person(| ast="Furnman')
Traceback (nost recent call |ast):

TypeError: values not provided for field(s): first

Creating new NanedTupl es from existing NanedTupl es is simple:

>>> Poi nt = NanedTuple('Point', '"x y')

>>> Col or = NamedTuple('Color', 'r g b")

>>> Pi xel = NamedTupl e(' Pi xel', Poi nt+Col or, nodul e=__nane_)
>>> Pj xel

<NamedTupl e ' Pi xel ' >

The existing fields in the bases classes are renumbered to fit the new class, but keep their doc strings and
default values. If you use standard subclassing:

>>> Point = NanedTupl e(' Poi nt"',
>>> cl| ass Pixel (Point):
r 2, 'red conmponent', 11

X y')

g = 3, 'green conponent', 29

b = 4, 'blue conmponent', 37
>>> Pixel. fields__
['X"'y"'r"'g"'b']

You must manage the numbering yourself.

Creating NamedConstants

A NanmedConst ant class is created much like an Enum

>>> from aenum i nport NamedConst ant
>>> cl ass Konst ant (NamedConst ant) :
Pl = 3.14159
TAU = 2 * PI

>>> Konst ant . Pl
<Konstant.Pl: 3.14159>

>> print (Konstant. Pl)
3. 14159

>>> Konstant.Pl = '"apple'
Traceback (nmost recent call last):

AttributeError: Cannot rebind constant <Konstant.Pl>

	Module Contents
	Creating an Enum
	Programmatic access to enumeration members and their attributes
	Duplicating enum members and values
	Comparisons
	Allowed members and attributes of enumerations
	Restricted subclassing of enumerations
	Pickling
	Enum Functional API
	Derived Enumerations
	IntEnum
	Others

	Extra Goodies
	enum
	extend_enum
	constant
	skip
	start (py3 only)
	init (py3 only)

	Decorators
	unique

	Interesting examples
	AutoNumber
	UniqueEnum
	OrderedEnum
	Planet

	How are Enums different?
	Enum Classes
	Enum Members (aka instances)
	Finer Points

	Creating NamedTuples
	Simple
	Advanced

	Creating NamedConstants

