
FUNCTION DESCRIPTION PANEL

Dataset
generation

Randomly generate the artificial dataset to test the
functions of QGrain, generating parameters could be fully
customized.

Users Guide for QGrain

Introduction

Objective

Grain size distributions (GSDs) of clastic sediments can record direct information on
changes in the source of material, transporting mechanism and sedimentary environment
(Friedman and Sanders, 1978). Therefore, it has the potential to reveal key information
about the paleoenvironment and paleoclimate by analyzing the GSDs. In the past
decades, lots of analysis tools have been proposed, which greatly promoted the
development of sedimentology. However, no platform can provide most of the analysis
methods to facilitate researchers. QGrain aims to provide an easy-to-use and
comprehensive analysis platform for grain size distributions. QGrain has implemented
many functions, e.g., all functions of GRADISTAT (Blott and Pye, 2001), single sample
unmixing (SSU, previously called curve-fitting), and end member modeling analysis
(EMMA). However, there still are many useful tools that have not been contained. Hence,
we published QGrain as an open-source project, and welcome other researchers to
contribute their ideas and codes. All source codes are available at this GitHub repository.

Current functions

af://n0
af://n2
af://n4
https://agris.fao.org/agris-search/search.do?recordID=US201300560426
https://doi.org/10.1002/esp.261
https://github.com/yuriok/QGrain/
af://n6

FUNCTION DESCRIPTION PANEL

Cumulative
frequency
chart

Plot the cumulative frequency chart of samples. Statistics

Frequency
distribution
chart

Plot the frequency distribution chart of samples. Statistics

Frequency 3D
chart

Plot the GSDs of samples as a 3D surface, easy to recognize
the variation trend of the stratigraphic sequence. However,
the back samples may be covered by the front samples.

Statistics

Frequency
heatmap

Plot the GSDs of samples as a heatmap. Compared to the 3D
chart, it is more suitable for use in publications.

Statistics

Classification
diagrams

Plot the gravel-sand-mud and sand-silt-clay diagrams of
Folk (1954)'s and Blott & Pye (2012)'s schemes.

Statistics

C-M diagram Plot the C-M diagram to reveal the characteristics of
depositional processes of sediments.

Statistics

Statistic
parameters

Calculate the statistic parameters (e.g. mean, sorting,
skewness, kurtosis) of grain-size distributions (GSDs).

Statistics

GSD
classification

Automatic classification of GSDs, including Folk (1954)’s
and Blott & Pye (2012)’s classification schemes.

Statistics

Principal
component
analysis

Apply the principal component analysis (PCA) algorithm to
extract the major and minor signal series in a grain size
dataset.

PCA

Hierarchical
clustering

Perform a hierarchical clustering (HC) algorithm to have an
overall cognition and pick out the typical samples of a grain
size dataset. Also could be used to briefly classify the
sedimentary facies.

Clustering

Single sample
unmixing

Single sample unmixing (SSU) is another unmixing method
to separate the mixed grain size distributions. Due to the
inherent difficulty of SSU problem, SSU may yield abnormal
results and hence be underestimated. To satisfy the existing
requirements, a new and enhanced SSU algorithm is
provided.

SSU

End member
modeling
analysis

Provide a new end member modeling analysis (EMMA)
algorithm based on the basic neural network to unmix the
grain size distributions and extract the latent information of
paleoenvironments and paleoclimates.

EMMA

http://www.jstor.org/stable/30065016
https://doi.org/10.1111/j.1365-3091.2012.01335.x

FUNCTION DESCRIPTION PANEL

Universal
decomposition
model

The universal decomposition model (UDM) is a new
decomposition approach that integrates the advantages of
SSU and EMMA, and it has generally overcome the problem
of instability.

UDM

Technical route

To achieve this objective, the software techniques were advisedly chosen. Python, the
programing language which has been widely used in scientific computation, machine
learning, and many other fields, was chosen as the major developing language of QGrain.
Python’s syntax is concise and easy to learn. Python is open-source and FREE (can be
modified at will, and need not pay), and its community is very prosperous. A large number
of mature packages (e.g., Matplotlib, NumPy, SciPy, scikit-learn, and PyTorch) can be
used, which means many repetitive underlying codes are not needed to be written, this
feature enables developers can focus on their specific scientific problems. To make
QGrain easy to use, it’s necessary to provide a well-designed GUI for users who are not
familiar with programming. Most of the codes were used to build the GUI. The GUI of
QGrain was based on the well-known cross-platform GUI platform, Qt, this makes QGrain
also cross-platform. QGrain also provides many high-quality charts based on the widely
used visualization library, Matplotlib.

At present, the basic algorithms are highly dependent on these widely used scientific
packages of Python. It's hard and heavy to switch the technology stack. Honestly,
developing a GUI client with Python is technically unwise. There are many other
more popular solutions, like WPF, electron, and many web front-end frameworks. The
software distribution is also a technological difficulty for Python programs. Although the
solution to these problems was not elegant, we finally finished this project. Meanwhile,
we are still thinking about how to improve it. A feasible solution is the separation of front
and back ends. Specifically, it uses Python to develop the back-end computational server
and uses other languages to develop the front-end GUI client to handle the user input.
And it is necessary to solve the communication problems of the front and back ends.
Since the 0.5.0 version, we have separated the core algorithms from the GUI and
refactored the basic data models and APIs to support the GRPC. At present, you can
start a back-end server on a high-performance PC or workstation to do the
calculation, and then open the GUI on another PC, the computing tasks and results
can be transmitted over a local area network. Theoretically, the server can also be
deployed on the Internet, but there are more authentication and security works must be
taken. With the GRPC server, other front-end technologies are also practicable, but we
don't have time to try that yet.

af://n68
https://www.python.org/
https://matplotlib.org/
https://numpy.org/
https://www.scipy.org/
https://scikit-learn.org/
https://pytorch.org/
https://en.wikipedia.org/wiki/Graphical_user_interface/
https://en.wikipedia.org/wiki/Cross-platform_software/
https://www.qt.io/qt-for-python/
https://matplotlib.org/
https://grpc.io/
af://n71

Contact

If you find some program bugs, or you do not know some technical details, it is
recommended to use GitHub's Issues to report and discuss problems. For some common
problems, other users also can check the answers over there to save time. If you have
some new functional requirements for QGrain, you can post your ideas in the Issues. Of
course, you can contact the author below, directly, do not hesitate.

Yuming Liu, Ph.D. candidate, liuyuming@ieecas.cn

Installation

Quick start

To simplify the install procedure, we have packed the setup file for Windows users, just
download it, then you can install and run QGrain app. You can download the latest
version from GitHub. Or, you can download it from Google Drive. For the users in China,
you can download it from Baidu Drive, with code: 8bzg.

Advanced installation

However, we highly recommend you install Python, then install QGrain as a package.
Following this way, you can update QGrain much easier. In addition, the packed software
can not use NVIDIA GPU to accelerate the computation.

For Linux and Mac OS X users, the Python interpreter is built-in. For Windows users,
you need to install Python first. You can run the command python or python3 in your

Terminal (CMD or PowerShell in Windows) to check if Python is existing. Note, using

python or python3 depends on the alias or the filename of your Python3 interpreter,

rather than you can choose Python2 or Python3 at liberty. Python2 is too old and has
been obsoleted. For Linux and Mac OS X, command python3 usually is correct, and for

Windows , command python usually is correct. Furthermore, the choosing of command

pip and pip3 follows the same rule.

Then, you can use pip to install QGrain.

pip install QGrain1

af://n71
https://github.com/yuriok/QGrain/issues/
https://github.com/yuriok/QGrain/issues/
mailto:liuyuming@ieecas.cn
af://n75
af://n76
https://github.com/yuriok/QGrain/releases/
https://drive.google.com/drive/folders/1Z-xUVpxml9XHPWd0LOgxjtchCPMd1-tn?usp=sharing
https://pan.baidu.com/s/1hau7AruPkpgvzjF-mMCQaQ/
af://n78
https://www.python.org/

Figure 1. The initial interface of QGrain App. It is showing the generator panel.

You can update QGrain like this.

Or, install the specific version, if you have strong reasons. For example, your script was
written under the old version, and the new version changed the APIs.

Then, you can start the GUI of QGrain by running the command qgrain . The software

will generate an artificial dataset and perform all algorithms to demonstrate its functions.
So, it will start a bit slowly, please wait a moment.

Finally, you will see the initial interface below.

pip install -U QGrain1

pip install QGrain==0.5.1.01

af://n91

Enable CUDA

Some functions (e.g., EMMA and UDM algorithms) can use CUDA to accelerate the
computation. By default, QGrain app only packed the CPU version of PyTorch, because
not all users have a high-performance NVIDIA GPU, and the CPU is faster to handle a
small dataset. It needs more steps to enable the CUDA, not only install a CUDA version of
PyTorch, but NVIDIA GPU driver, CUDA Toolkit and CUDNN also should be installed.
Follow the guides of PyTorch and NVIDIA to install them. If all of them have been
installed, the cuda option in the device combo box can be selected.

Software usages

In this chapter, we will introduce the designs and usages of GUI. As mentioned above, the
GUI is easier to use compared to coding. However, only basic and mature functions have
corresponding interfaces. If you are not satisfied with the limited functions, you can
check the next chapter to see script usages.

Overview of UI

The GUI consists of several panels, you can switch the panel by clicking the corresponding
tab (e.g., Statistics) on the left side (see Fig. 1). Each panel provides a set of functions.

The details of each panel will be introduced below. In addition, there are a menu bar and a
status bar. By triggering the actions in the menu bar, you can open a new grain size
dataset, save analysis results, change languages and themes, etc. The status bar can show
some messages and hints for users. You can open the Runtime Log window to see more

runtime details by clicking the Log option in the menu bar.

Load a grain size dataset

Before analyzing, we should load the GSDs into the software. This procedure is most likely
to go wrong because only a specific layout of data can be read directly. If you are not sure
whether your data meets the requirements, you can generate an artificial dataset by the
Generator panel, and check its Dataset sheet for details.

By clicking the Grain Size Dataset action in the Open menu, you will see a dialog

popped up to ask you to select the filename, choose the sheet, and assign the rows and
columns. By clicking the Select button in the dialog, a file dialog will be popped up to

ask you to select a file. At present, this file could be *.csv , *.xls and *.xlsx formats. If

there is no error raised (e.g., the selected file is occupied by another program), the sheet

af://n91
https://developer.nvidia.com/cuda-toolkit/
https://developer.nvidia.com/cudnn/
af://n94
af://n96
af://n98

Figure 2. The dialog of dataset loader.

names of Excel files will be read as the options in the Sheet Name combo box. If you

select a *.csv file, there will be only one option in this combo box, that's the filename.

For Excel files, one file can contain multiple sheets, it's suitable for placing the related but
different types of information in different sheets. For example, the output files of QGrain
usually put a README sheet to give a brief description of this file and put other sheets after

this sheet. Here, we need to choose the Dataset sheet. By default, it will load the first

row as the grain size classes, and the first column is used to put the names of samples,
GSDs are tight with the classes and names. The default output layout of QGrain is correct,
so, just click the Try Load button. If your dataset does not follow this data layout, i.e., it

has additional rows or columns, you can change the layout settings to load it. Considering
the complexity, we only support the horizontal layout (i.e., each row is one sample). If
your dataset is vertical (i.e., each column is one sample), it's easy to transform it using
other software (e.g., Microsoft Excel).

The unit of grain size classes should be , the values should be incremental (i.e., left
columns are finer and right columns are coarser), and the intervals between any two
adjacent classes should equal in scale. If there is a text cell in the row of grain size
classes, it will raise an error. The names of samples should be texts, if they are numbers,
they will be converted to texts. The distribution values of each sample should be
numerical, and the sum of them should be 1 or 100. Note, if there is an empty cell in the
row of distribution, it will raise an error. You can use empty rows to separate samples, but
the rows should be fully empty. In addition, please don't put some individual cells out of
the range of distributions. Note, although we have written some codes to validate the
data, there may still be some errors ignored. Please make sure your GSDs are valid. If the
loading failed, you can check the Runtime Log window for details, by clicking the Log

action in the menu bar.

af://n104

Generator panel

The Generator panel provides the functions to generate random datasets. You can use

artificial datasets to test other algorithms. If you want to try QGrain but have no dataset,
this module may be helpful. Or, if you are not clear with the functions and settings of
algorithms, you can generate a series of different datasets to observe the performances of
algorithms and explore the impacts of settings. Of course, it can be used to generate some
difficult datasets to test the limitations and constraints of these algorithms. By
generating a similar dataset as your real-world dataset, you can make sure whether these
algorithms can handle your real-world dataset well because all original information of an
artificial dataset is known. However, there is another critical question, that's how to make
the artificial dataset as realistic as possible.

Mixture versus decomposition

Before introducing the usages, you may need to know some related sedimentological
cognitions on the formation of GSDs. In other words, how did the GSDs of sediments
become polymodal? And, what are the geological meanings of the sub-populations?
Because the generation of an artificial dataset essentially is the simulation of this natural
mixing process. This article assumes you have corresponding knowledge background.

After understanding the mixture model of the formation of GSDs, it is easy to accept the
idea that mathematical decomposition can restore the mixture process and reveal the key
information of related sedimentary processes.

Generate one sample

A polymodal sample could be regarded as the mixture of several unimodal sub-
populations, and the sub-population can be associated with a certain sedimentary
process. Based on this theoretical model, it's very easy to generate artificial samples. In
mathematics, the mixture can be regarded as the summation of all sub-populations in
specific proportions. Therefore, for one sample, we need to generate a set of sub-
populations and corresponding proportions. Usually, we use an elementary distribution
function (e.g., Gaussian or Weibull) and specify the function parameters of all sub-
populations. In the choosing of the distribution function, there are many discussions but
no conclusion. Here, we provide 4 common distribution functions, i.e., normal (Gaussian),
skew-normal, Weibull, and general Weibull. Note that, all distribution functions are on a
logarithmic scale (i.e., the unit is , not). By default, we use the skew-normal
distribution as the elementary distribution to generate the sub-populations. skew-normal
distribution is based on normal (Gaussian) distribution but provides an additional
parameter to control the skewness. Therefore, it's more flexible than the normal

af://n104
af://n106
af://n109
https://en.wikipedia.org/wiki/Skew_normal_distribution

distribution, each elementary distribution has three parameters, shape (), location (

), and scale (). The shape () controls its skewness, when , it becomes a normal

distribution. Note, due to its mathematical definition, the skewness () is limited to the
interval . The interval integral should be applied to the probability density
function (PDF) to discretize and transform it to frequency. Multiply the proportions of
sub-populations to their frequencies, and then sum them, the mixed frequency is
obtained. By calculating the frequency of each grain size class, we can get the artificial
sample.

Mathematical definition

Let denote the PDF of standard normal distribution, there is

With the cumulative distribution function given by

where is the error function. Then the PDF of the skew-normal distribution with the
shape parameter is given by

To add the location () and scale () parameters, one makes the usual transform
. Then, the PDF becomes

To transform density to frequency, an interval integral should be applied

where is the frequency of -th grain size class, is its grain size in scale, is the
interval of adjacent grain size classes (in scale).

Let bold symbols denote the vectors, is the observed GSD of one sample, is the
elementary frequency distribution of -th sub-population. Let denote the proportion
of the -th sub-population. There is:

af://n111
https://en.wikipedia.org/wiki/Error_function

For other distribution functions, just change the PDF. Of course, the parameters except
may be different.

Generate a batch of samples

While generating one sample, it is easy to manually assign the function parameters and
proportions. Hoswever, in most test scenarios, we need a batch of samples (i.e., a dataset)
to evaluate the performance of different algorithms. To generate the dataset, a batch of
function parameters and proportions are needed. There are two approaches to generate
the parameters and proportions. The first approach is using random numbers. Another
way is using signal series (e.g., sinusoidal wave). The Generator panel provides the

former approach. Each parameter is randomly generated and controlled by mean and
standard deviation of a normal distribution. To simulate the actual observation, values
will be rounded to the precision (e.g., 0.01%), and a group of Gaussian noise (an order of
magnitude less than precision) will be overlaid on it.

The figure above shows the interface of the Generator panel. In the Control box, you

can control the sampling settings, i.e., sampling range, interval (number of classes) and
precision. In addition, you can change the elementary distribution function and the
number of components. By clicking the Preview button, artificial samples will be

generated and displayed successively, using the random parameters at the bottom. Each
small box is related to an artificial component, the number of parameters depends on the
distribution type. Finally, adjust the number of samples and click the Artificial

Dataset option in the Save menu, the artificial dataset can be saved into an Excel file.

If you want to generate more complicated or realistic datasets. You can check the section
below.

Statistics panel

This panel is designed to provide the basic analysis and visualization for a brief view of
the dataset. All functions in GRADISTAT (Blott and Pye, 2001) can be found here. Its main
content is a table to display statistical parameters and classification groups. You can
resize the window or adjust the sliders to see more information. To keep it simple and
efficient, all samples have been divided into several pages, each page shows 20 samples.
By clicking the Previous or Next button, you can jump to the previous or next page. You

also can click the combo box to select a page directly. Below, there are two checkboxes
that control the method to calculate statistical parameters. Another combo box is used to
adjust the grades of proportions.

af://n126
af://n130
https://doi.org/10.1002/esp.261

Figure 3. The interface of the statistics panel.

You can choose the option Statistical Result in the Save menu to save the statistical

result to an Excel file.

Right-click the table region, then, a menu showing the available actions will be
popped up. By choosing the actions in the menu, you can plot some basic charts,
including the frequency distribution chart, frequency 3D chart, cumulative frequency
chart, and classification diagrams of Folk (1954) and Blott and Pye (2012).

To be more flexible, each chart provides 4 sub-actions.

Plot : Clear previous samples in the chart and plot selected samples.

Append : Append selected samples to the chart.

Plot All : Clear previous samples in the chart, and plot all samples of the

current dataset.
Append All : Append all samples of the current dataset to the chart.

These charts are based on the well-known visualization module Matplotlib and use the
style module SciencePlot to refine their appearances. In principle, all data are available, if
you can not find what you need, feel free to contact the author. By right-clicking the
chart, you will find the option to edit and save the figure. By clicking the edit option, a
dialog provided by Matplotlib will pop up and make you can modify the elements (e.g.,

https://www.jstor.org/stable/30065016
https://doi.org/10.1111/j.1365-3091.2012.01335.x
https://matplotlib.org/
https://github.com/garrettj403/SciencePlots
mailto:liuyuming@ieecas.cn
https://matplotlib.org/

Figure 4. The cumulative frequency chart shows two artificial samples.

Figure 5. The frequency distribution chart shows two artificial samples.

title, labels, colors, etc.) of the figure. Most bitmap (e.g., *.png , *.jpg , *.tif) and

vector graph (e.g., *.svg , *.eps) formats are supported.

Cumulative frequency chart

The cumulative frequency chart is classical. It is used to discriminate different
sedimentary dynamics.

Frequency distribution chart

The frequency distribution chart is the most commonly used chart to show the detailed
characteristics of grain size samples. With this chart, you can easily recognize the particle
abundances of different grain size classes. And you can easily take a comparison of several
samples.

af://n146
af://n150

Figure 6. The frequency 3D chart simultaneously shows a batch of samples as a 3D
surface.

Frequency 3D chart

If you want to show a batch of samples, the frequency distribution chart may be not
suitable, because the sample may be covered by other samples. You can use the frequency
3D chart to show them. In this chart, the variation trend of samples can be easily
discovered. In the chart window, hold down the left mouse button, move the mouse, you
can rotate the view.

Frequency heatmap

The frequency heatmap is another way to visualize the GSDs of many samples and has
been widely used in publications.

af://n154
af://n158

Figure 7. The frequency heatmap simultaneously shows a batch of samples as a heatmap.

Classification diagrams

There are many different classification diagrams which have been widely used in
sedimentology, geomorphology, soil science, aquatic ecology and civil engineering (Blott
& Pye, 2012). Due to the limitation of time, only Folk (1954)'s and Blott & Pye (2012)'s
schemes are provided at present.

Gravel-sand-mud diagram (Folk, 1954)

af://n162
https://doi.org/10.1111/j.1365-3091.2012.01335.x
http://www.jstor.org/stable/30065016
https://doi.org/10.1111/j.1365-3091.2012.01335.x
af://n164

Figure 8. The gravel-sand-mud diagram (Folk, 1954) shows the classification groups of a
batch of samples.

Figure 9. The sand-silt-clay diagram (Folk, 1954).

Sand-silt-clay diagram (Folk, 1954)

af://n167

Figure 10. The gravel-sand-mud diagram (Blott & Pye, 2012).

Figure 11. The sand-silt-clay diagram (Blott & Pye, 2012).

Gravel-sand-mud diagram (Blott & Pye, 2012)

Sand-silt-clay diagram (Blott & Pye, 2012)

af://n170
af://n173

Figure 12. The C-M diagram of generated samples.

C-M diagram

Since the first discussion of C-M patterns (Passega, 1957), the C-M diagram has been
widely used to reflect the depositional processes of sediments. The C-M diagram below is
modified after Mycielska-Dowgiałło & Ludwikowska-Kędzia (2011). See the description of
symbols from Passega (1964), Passega & Byramjee (1969) and Mycielska-Dowgiałło &
Ludwikowska-Kędzia (2011).

PCA panel

Principal component analysis (PCA) is a widely-used tool to handle high-dimensional
data. As typically high-dimensional data, grain size distributions also could be processed
by PCA. QGrain has integrated the basic PCA to extract the major and minor variations of
GSDs. The interface is very simple, when the grain size dataset is loaded, the PCA
algorithm will be performed automatically, and the PCA result will be shown in the PCA
panel. By clicking the PCA Result option in the Save menu, you can save the PCA result

to an Excel file.

af://n176
https://doi.org/10.1306/0BDA594E-16BD-11D7-8645000102C1865D
https://doi.org/10.2478/v10118-011-0010-9
https://doi.org/10.1306/74D711A4-2B21-11D7-8648000102C1865D
https://doi.org/10.1111/j.1365-3091.1969.tb00171.x
https://doi.org/10.2478/v10118-011-0010-9
af://n180
https://en.wikipedia.org/wiki/Principal_component_analysis

Figure 13. The interface of the PCA panel.

The only question for you is how to understand the result. There are many documents
introducing the algorithm of PCA. After reading them, you may understand the result
better. The subfigure at the top-left is modified from the biplot, it uses the principal
components, PC1 and PC2, to construct the coordinate system, hence showing the
relationships of the original dimensions. Because the number of dimensions of GSDs is
too large, it is not suitable to show all dimensions with arrows. Therefore, only the
dimensions which are closest to PC1 and PC2 are presented with arrows. The points of
other dimensions are connected to form a shape. The gray points show the grain size
samples.

The subfigure at the top-right shows the eigenvector (viz. distribution) of PC1 and PC2.
The curves are similar to the frequency distribution curves. The difference is that the
values may be negative and their sums may not equal 1. Due to this difference, it is
difficult to link the distributions of PCs to geological meanings. However, we can
determine the sensitive grain size classes by checking this subfigure. For example, the
grain size classes of the peaks are most sensitive and preserve the key information of
GSDs.

Figure 14. The interface of the clustering panel.

The subfigure at the bottom shows the variations of eigenvalues of PC1 and PC2. The
labels in the legend give the explained variance ratios which can be regarded as the
degrees of importance for corresponding principal components. For example, the
explained ratio of PC1 in the figure above is 97.26%, which means PC1 is the absolute
predominant component.

Clustering panel

Hierarchical clustering (HC) is one kind of clustering method. The hierarchical algorithm
provided by the hierarchy submodule in SciPy has been integrated into QGrain. You can
use this function to filter the typical samples, trim the dataset and take a brief
classification of sedimentary facies. The algorithm will be automatically performed if a
new dataset has been loaded. By clicking the Clustering Result option in the Save

menu, you can save the clustering result to an Excel file.

You could see a dendrogram at the interface. It shows the relationships between different
samples. At the top, all samples are in the same cluster. When it goes down, the cluster
will be split into two new clusters, and so on. At the bottom, each sample is in its cluster.
If the number of samples is too great, it’s difficult to show all labels of the bottom layer.
Hence, it’s truncated and only shows p bottom leaves, you can change the p to show

af://n187
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://www.scipy.org/

more or fewer bottom leaves. Note that, p only affects the figure, it has no influence on

the clustering result. You can change the Number of Clusters to control the clustering

algorithm.

If you want to classify sedimentary facies, you must make sure that the number of clusters
could distinguish different sedimentary facies. After that, you could map the clusters to
certain sedimentary facies according to the geological settings and other evidence. Note
that, different functions which are used to calculate the similarities between samples may
have different sensibilities to the transition of sedimentary facies. There is no research on
which distance metric is more suitable for the classification of sedimentary facies.
Therefore, the current version of QGrain only uses the whole GSDs to calculate distances,
this may ignore some minor sub-populations. It may be better to do clustering with the
decomposition results.

SSU panel

SSU (viz. curve-fitting) is the first mathematical method to decompose the polymodal
GSD into several elementary components (Sheridan et al., 1987; Weltje & Prins, 2003).
SSU has been widely used in different types of sediments. Although it has been gradually
replaced by EMMA, there are still some researchers thinking it has some unique features
(Wu et al., 2020; Liu et al., 2021; Peng et al., 2022).

The interface of the SSU panel is the most complex among these panels. But don't worry,
these options and parameters are designed to make you have the ability to handle the
most difficult samples, and it's no need to do tedious adjusting work for all samples.

af://n192
https://doi.org/10.1130/0091-7613(1987)15%3C367:DOGSIP%3E2.0.CO;2
https://doi.org/10.1016/S0037-0738(03)00235-5
https://doi.org/10.1016/j.sedgeo.2020.105590
https://doi.org/10.1016/j.sedgeo.2021.105980
https://doi.org/10.1016/j.sedgeo.2022.106211

Figure 15. The interface of the SSU panel.

You can adjust the Sample Index to switch the current sample which is ready for fitting.

The Sample Name below is going to change synchronously as Sample Index changes. By

clicking the Try Fit button, the current sample will be decomposed with current

settings. The introduction to adjusting the settings will be given at the following
paragraphs. By clicking the Try Previous or Try Next button, you can decompose the

previous or next sample. After fitting, the decomposed result will be displayed in the
Result table, you can see some basic information about the fitting process. At the same

time, the result will be visualized in the chart.

Right-click on the Result table, you can see the menu to do actions on the decomposed

results, e.g., remove the selected or all results. You also can show the selected result in
the chart if you want to check the previous result. While the Auto Show option is

checked, the selected result will be automatically displayed in the chart. In addition, you
can show the variation of loss in the fitting process and the resolved parameters. There
are several sub-options in the Check action, you can use them to remove the outliers in

the table. Right-click on the Chart region, you can see the menu to affect the chart. By

checking the Animated option, the fitting process will be displayed with the animation.

Figure 16. The algorithm settings of SSU.

You can click the SSU Algorithm option in the Configure menu to open the dialog to

adjust the algorithm settings of SSU. Basically, you don't need to change the following
settings. At first, you can choose the loss function to calculate the distance between the
observed and predicated GSDs. In practice, the logarithmic mean squared error (LMSE) is
better than other loss functions. Moreover, you can select the optimizer (i.e. optimization
algorithm). For some optimizers (e.g., Powell), it needs more iterations, you may need to
change the Maximum Number of Iterations of Optimizer . If you check the Global

Optimization , it will use the basinhopping algorithm to find the global minimum.

If your sample has more than 3 components and the proportions of some components are
very low, it's recommended to click the Edit Parameters button to fitting the current

sample manually. At the Parameter Editor , you can manually set the initial parameters

to each component. No need to be very accurate. Then click the Enable checkbox, and try

to fit the sample again. Note that, if the Enable checkbox is not checked, the

parameters in the Parameter Editor will not work. The Parameter Editor is very

important. It enables you to handle the complex samples. By clicking the Refer

Parameter action in the result menu of SSU, you can transmit the resolved parameters of

the selected SSU result to the Parameter Editor . It is convenient to utilize the fitting

results of other samples as the references to decompose the next sample. Furthermore,
the panels of SSU, EMMA and UDM share the same Parameter Editor , which means you

can utilize the result of SSU while performing the EMMA or UDM algorithm to the whole
dataset.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html

Figure 17. The interface of the parameter editor.

Finally, you can select the SSU Results action in the Save menu to save the results into

an Excel file or a binary file. It's recommended to also save a binary file because it
could preserve the fitting history and could be reloaded by the QGrain software.

EMMA panel

This panel provides a new EMMA algorithm (NNEMMA) which is based on the basic
neural network (Liu et al., 2021). It supports bot only nonparametric EMMA but also
parametric EMMA. In addition, you even can customize the end members, if you could
determine them by other methods, e.g., taking samples from the sources. Just click the
Try Fit button, it will decompose the dataset with the current settings. After fitting, the

EMMA result will be placed in the Result list. You can click the Remove or Show button

at below to remove or show the selected result. Right-click on the chart, the chart menu
will be popped up, you also can display the fitting process by checking the Animated

checkbox.

af://n203
https://doi.org/10.1016/j.sedgeo.2021.105980

Figure 18. The interface of the EMMA panel.

You can click the EMMA Algorithm option in the Configure menu to open the dialog to

adjust the algorithm settings of NNEMMA. By observing the chart of the selected fitting
result, you can judge that whether the algorithm has converged to the limit and whether
the fitting result has unmixed the end members well. If it did not converge to the limit,
please increase the minimum and maximum number of epochs in the algorithm settings.
If the loss variation is too volatile, you need to decrease the learning rate. Adjust the
settings until you are satisfied, and then save the corresponding result to an Excel file or a
binary file.

Figure 19. The algorithm settings of EMMA.

UDM panel

The interface of the UDM panel is very similar to that of the EMMA panel.

af://n209

Figure 20. The interface of the UDM panel.

Script usages

How to load a grain size dataset

The io submodule provides the functions to load a grain size dataset and save different

results to the Excel files.

It is very easy to load a grain size dataset by codes. Just call the load_dataset function.

You can load a more complicated data file with additional parameters.

from QGrain.io import load_dataset

dataset = load_dataset("GSDs.xlsx")

1

2

af://n214
af://n215

How to generate a random dataset

The generate submodule provides the functions to generate artificial datasets. If you just

need some samples but do not care about their details, you can get the samples as follow.
It will use the built-in preset to generate a sample (ArtificialSample object) or a

dataset (ArtificialDataset object).

You can define your own preset to generate a specific random dataset. The preset is a

dict . target is a list that contains n elements, each element also is a list and related

to an artificial component. Each tuple is corresponding to the parameter of an artificial

component and contains the and , respectively. For this case, the parameters of the
skew-normal distribution are shape (), location (), scale (), weight (), respectively.

from QGrain.io import load_dataset, DataLayoutSetting

dataset = load_dataset("GSDs.xlsx", sheet_index=0,

 class_row=0, name_col=0, start_row=1,

start_col=2)

1

2

3

from QGrain.generate import random_sample, random_dataset,

SIMPLE_PRESET

sample = random_sample(**SIMPLE_PRESET)

dataset = random_dataset(**SIMPLE_PRESET, n_samples=200)

1

2

3

from QGrain.models import DistributionType

from QGrain.generate import random_dataset

preset = dict(target=[

 [(0.0, 0.0), (10.2, 0.0), (1.1, 0.0), (1.0, 0.1)],

 [(0.0, 0.0), (7.5, 0.0), (1.2, 0.0), (2.0, 0.2)],

 [(0.0, 0.0), (5.0, 0.0), (1.0, 0.0), (2.5, 0.5)]],

 distribution_type=DistributionType.SkewNormal)

dataset = random_dataset(**preset, n_samples=100,

 min_size=0.02, max_size=2000.0,

n_classes=101,

 precision=4, noise=5)

1

2

3

4

5

6

7

8

9

10

11

12

af://n221
af://n226

DISTRIBUTION
FUNCTION

SHAPE LOCATION SCALE WEIGHT
NUMBER OF
PARAMETERS

Normal × √ √ √ 3

Skew Normal √ √ √ √ 4

Weibull √ × √ √ 3

General Weibull √ √ √ √ 4

How to generate a more complicated dataset

Here, we will show you how to generate a more complicated dataset. You can generate the
function parameters for all samples. Then, pack them into a three-dimensional array with
the specific form, and call the constructor of ArtificalDataset to generate the dataset.

For different distribution functions, the parameters of each artificial component are
different. You can check the following table for details. You can generate several one-
dimensional arrays, and transform them to parameter series. The length of these series is
the number of samples. If you want to make the dataset realistic, it is better to take more
geological and sedimentological considerations while making the parameter series. For
example, you should imagine a sedimentary model. Then, you can determine the number
of necessary components. Later, you can arrange a major dynamics process for each
component. Finally, you can create the parameter series by simulating the variations of
dynamics processes. Or, you can use some paleoenvironmental or paleoclimatic records to
represent the variations. In the following case, we did not take too many geological and
sedimentological considerations on it. Just use sinusoidal signals to generate the
parameter series.

In practice, it is difficult to generate the dataset based on Weibull (or general Weibull)
function. Because, it is hard to control the mean grain size and sorting coefficient. But for
the normal distribution, the location parameter is mean grain size, the scale parameter

 is sorting coefficient. It is easy to interpret them and link them to specific dynamics
parameters.

import numpy as np

from QGrain.models import ArtificialDataset, DistributionType

from QGrain.distributions import Normal

from QGrain.io import save_artificial_dataset

distribution_type = DistributionType.Normal

n_components = 3

n_samples = 200

generate signal series

1

2

3

4

5

6

7

8

9

10

af://n226

x = np.linspace(-10, 10, n_samples)

series_1 = np.sin(x)

series_2 = np.cos(x)

use series to generate parameters

mean, std are the function parameters of normal distribution

weight is used to calculate the proportion

C1_mean = np.random.random(n_samples) * 0.05 + 10.2

C1_std = np.random.random(n_samples) * 0.05 + 0.55

C1_weight = np.random.random(n_samples) * 0.01

C2_mean = series_1 * 0.1 + 7.8 + np.random.random(n_samples) *

0.01

C2_std = np.random.random(n_samples) * 0.04 + 0.8

C2_weight = series_1 * 0.2 + 1.0 + np.random.random(n_samples) *

0.01

C3_mean = series_2 * 0.2 + 5.5 + np.random.random(n_samples) *

0.01

C3_std = np.random.random(n_samples) * 0.04 + 0.7

C3_weight = series_2 * 0.4 + 1.0 + np.random.random(n_samples) *

0.01

pack the parameters

parameters = np.ones((n_samples, Normal.N_PARAMETERS+1,

n_components))

parameters[:, 0, 0] = C1_mean

parameters[:, 1, 0] = C1_std

parameters[:, 2, 0] = C1_weight

parameters[:, 0, 1] = C2_mean

parameters[:, 1, 1] = C2_std

parameters[:, 2, 1] = C2_weight

parameters[:, 0, 2] = C3_mean

parameters[:, 1, 2] = C3_std

parameters[:, 2, 2] = C3_weight

construct the dataset

dataset = ArtificialDataset(parameters, distribution_type,

 min_size=0.02, max_size=2000,

n_classes=101,

 precision=4, noise=5)

save_artificial_dataset(dataset, "./Artificial Dataset.xlsx")

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Figure 21. The frequency heatmap of this artificial dataset.

How to perform statistical analysis and save the result

The statistics submodule provides the functions to calculate the statistical

parameters. The all_statistics function will use all statistical methods in GRADISTAT

(Blott and Pye, 2001) to analyze the GSD. You need to pass there one-dimensional arrays,
they are the grain size classes in and scales, and the GSD.

The result of all_statistics function is a dict , you can check the following fragment

for more details.

from QGrain.generate import SIMPLE_PRESET, random_sample

from QGrain.statistics import all_statistics

sample = random_sample(**SIMPLE_PRESET)

statistics = all_statistics(sample.classes, sample.classes_phi,

sample.distribution)

1

2

3

4

5

{'arithmetic': {'mean': 24.416012713219324,

 'std': 28.745497203626858,

 'skewness': 2.5993653712218205,

 'kurtosis': 14.571969009591882},

 'geometric': {'mean': 11.01298368038815,

 'std': 4.457238315788177,

 'skewness': -0.6317811838318534,

1

2

3

4

5

6

7

af://n269
https://doi.org/10.1002/esp.261

 'kurtosis': 2.678393555741556,

 'std_description': 'Very poorly sorted',

 'skewness_description': 'Fine skewed',

 'kurtosis_description': 'Mesokurtic',

 'median': 14.06324632030902,

 'mean_description': 'Medium Silt',

 'mode': 28.2507508924551,

 'modes': (28.2507508924551,)},

 'logarithmic': {'mean': 6.504650807362412,

 'std': 2.1561500997915255,

 'skewness': 0.6317811838318537,

 'kurtosis': 2.678393555741555,

 'std_description': 'Very poorly sorted',

 'skewness_description': 'Fine skewed',

 'kurtosis_description': 'Mesokurtic',

 'median': 6.151926529246772,

 'mean_description': 'Medium Silt',

 'mode': 5.14556697554162,

 'modes': (5.14556697554162,)},

 'geometric_fw57': {'mean': 10.48617511007019,

 'std': 4.272953356391491,

 'skewness': -0.3091153710808348,

 'kurtosis': 0.9328536255538155,

 'std_description': 'Very poorly sorted',

 'skewness_description': 'Very fine skewed',

 'kurtosis_description': 'Mesokurtic',

 'median': 14.06324632030902,

 'mean_description': 'Medium Silt',

 'mode': 28.2507508924551,

 'modes': (28.2507508924551,)},

 'logarithmic_fw57': {'mean': 6.575367646845154,

 'std': 2.0952335686291423,

 'skewness': 0.309115371080835,

 'kurtosis': 0.9328536255538153,

 'std_description': 'Very poorly sorted',

 'skewness_description': 'Very fine skewed',

 'kurtosis_description': 'Mesokurtic',

 'median': 6.151926529246772,

 'mean_description': 'Medium Silt',

 'mode': 5.14556697554162,

 'modes': (5.14556697554162,)},

 'proportions_gsm': (0.0, 0.0969, 0.9030999999999999),

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

If you just want to perform the statistical analysis on a grain size dataset. You can call the
save_statistics function in io submodule.

 'proportions_ssc': (0.0969, 0.7523, 0.1508),

 'proportions_bgssc': (0.0, 0.0, 0.0969, 0.7523, 0.1508),

 'proportions': {('', 'Megaclasts'): 0.0,

 ('Very large', 'Boulder'): 0.0,

 ('Large', 'Boulder'): 0.0,

 ('Medium', 'Boulder'): 0.0,

 ('Small', 'Boulder'): 0.0,

 ('Very small', 'Boulder'): 0.0,

 ('Very coarse', 'Gravel'): 0.0,

 ('Coarse', 'Gravel'): 0.0,

 ('Medium', 'Gravel'): 0.0,

 ('Fine', 'Gravel'): 0.0,

 ('Very fine', 'Gravel'): 0.0,

 ('Very coarse', 'Sand'): 0.0,

 ('Coarse', 'Sand'): 0.0,

 ('Medium', 'Sand'): 0.0008000000000000001,

 ('Fine', 'Sand'): 0.0138,

 ('Very fine', 'Sand'): 0.08230000000000001,

 ('Very coarse', 'Silt'): 0.1989,

 ('Coarse', 'Silt'): 0.211,

 ('Medium', 'Silt'): 0.1431,

 ('Fine', 'Silt'): 0.11250000000000002,

 ('Very fine', 'Silt'): 0.0868,

 ('Very coarse', 'Clay'): 0.0669,

 ('Coarse', 'Clay'): 0.052,

 ('Medium', 'Clay'): 0.0251,

 ('Fine', 'Clay'): 0.006,

 ('Very fine', 'Clay'): 0.0007999999999999999},

 'group_folk54': 'Slit',

 '_group_bp12_symbols': ['(s)', '(c)', 'SI'],

 'group_bp12_symbol': '(s)(c)SI',

 'group_bp12': 'Slightly Sandy Slightly Clayey Silt'}

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

from QGrain.generate import SIMPLE_PRESET, random_dataset

from QGrain.io import save_statistics

dataset = random_dataset(**SIMPLE_PRESET, n_samples=200)

save_statistics(dataset, "./Statistics.xlsx")

1

2

3

4

5

af://n276

How to calculate partial statistical parameters

In some cases, we do not need all statistical results. The following codes show you how to
use the functions to calculate partial statistical parameters.

How to decompose a dataset

You can call the functions, try_ssu , try_emma and try_udm , to perform the SSU, EMMA

and UDM algorithms respectively.

from QGrain.generate import SIMPLE_PRESET, random_sample

from QGrain.statistics import *

sample = random_sample(**SIMPLE_PRESET)

statistical parameters

s = arithmetic(sample.classes, sample.distribution)

s = geometric(sample.classes, sample.distribution)

s = logarithmic(sample.classes_phi, sample.distribution)

ppf = reversed_phi_ppf(sample.classes_phi, sample.distribution)

s = geometric_fw57(ppf)

s = logarithmic_fw57(ppf)

proportions

p = proportions_gsm(sample.classes_phi, sample.distribution)

p = proportions_ssc(sample.classes_phi, sample.distribution)

p = proportions_bgssc(sample.classes_phi, sample.distribution)

p = all_proportions(sample.classes_phi, sample.distribution)

classification groups

g = group_folk54(sample.classes_phi, sample.distribution)

g = group_bp12(sample.classes_phi, sample.distribution)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

import pickle

import numpy as np

from QGrain.models import KernelType

from QGrain.generate import random_dataset, SIMPLE_PRESET

from QGrain.ssu import try_ssu

from QGrain.emma import try_emma

from QGrain.udm import try_udm

dataset = random_dataset(**SIMPLE_PRESET, n_samples=200)

1

2

3

4

5

6

7

8

9

10

af://n276
af://n279

x0 = np.mean(dataset.parameters, axis=0)

ssu_results = []

for sample in dataset:

 result, msg = try_ssu(sample, dataset.distribution_type,

dataset.n_components, x0=x0)

 assert result is not None

 ssu_results.append(result)

kernel_type =

KernelType.__members__[dataset.distribution_type.name]

emma_result = try_emma(dataset, kernel_type,

dataset.n_components, x0=x0[:-1])

udm_result = try_udm(dataset, kernel_type, dataset.n_components,

x0=x0[:-1])

with open("./results.ssu", "wb") as f:

 pickle.dump(ssu_results, f)

with open("./result.emma", "wb") as f:

 pickle.dump(emma_result, f)

with open("./result.udm", "wb") as f:

 pickle.dump(udm_result, f)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

	Users Guide for QGrain
	Introduction
	Objective
	Current functions
	Technical route
	Contact

	Installation
	Quick start
	Advanced installation
	Enable CUDA

	Software usages
	Overview of UI
	Load a grain size dataset
	Generator panel
	Mixture versus decomposition
	Generate one sample
	Mathematical definition
	Generate a batch of samples

	Statistics panel
	Cumulative frequency chart
	Frequency distribution chart
	Frequency 3D chart
	Frequency heatmap
	Classification diagrams
	Gravel-sand-mud diagram (Folk, 1954)
	Sand-silt-clay diagram (Folk, 1954)
	Gravel-sand-mud diagram (Blott & Pye, 2012)
	Sand-silt-clay diagram (Blott & Pye, 2012)

	C-M diagram

	PCA panel
	Clustering panel
	SSU panel
	EMMA panel
	UDM panel

	Script usages
	How to load a grain size dataset
	How to generate a random dataset
	How to generate a more complicated dataset
	How to perform statistical analysis and save the result
	How to calculate partial statistical parameters
	How to decompose a dataset

