
FUNCTION DESCRIPTION PANEL

Dataset
generation

Randomly generate the artificial dataset to test the
functions of QGrain, generating parameters could be fully
customized.

 

Users Guide for QGrain  

Introduction  

Objective  

Grain size distributions (GSDs) of clastic sediments can record direct information on 
changes in the source of material, transporting mechanism and sedimentary environment 
(Friedman and Sanders, 1978). Therefore, it has the potential to reveal key information 
about the paleoenvironment and paleoclimate by analyzing the GSDs. In the past 
decades, lots of analysis tools have been proposed, which greatly promoted the 
development of sedimentology. However, no platform can provide most of the analysis 
methods to facilitate researchers. QGrain aims to provide an easy-to-use and 
comprehensive analysis platform for grain size distributions. QGrain has implemented 
many functions, e.g., all functions of GRADISTAT (Blott and Pye, 2001), single sample 
unmixing (SSU, previously called curve-fitting), and end member modeling analysis 
(EMMA). However, there still are many useful tools that have not been contained. Hence, 
we published QGrain as an open-source project, and welcome other researchers to 
contribute their ideas and codes. All source codes are available at this GitHub repository.

Current functions  
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FUNCTION DESCRIPTION PANEL

Cumulative
frequency
chart

Plot the cumulative frequency chart of samples. Statistics

Frequency
distribution
chart

Plot the frequency distribution chart of samples. Statistics

Frequency 3D
chart

Plot the GSDs of samples as a 3D surface, easy to recognize
the variation trend of the stratigraphic sequence. However,
the back samples may be covered by the front samples.

Statistics

Frequency
heatmap

Plot the GSDs of samples as a heatmap. Compared to the 3D
chart, it is more suitable for use in publications.

Statistics

Classification
diagrams

Plot the gravel-sand-mud and sand-silt-clay diagrams of
Folk (1954)'s and Blott & Pye (2012)'s schemes.

Statistics

C-M diagram Plot the C-M diagram to reveal the characteristics of
depositional processes of sediments.

Statistics

Statistic
parameters

Calculate the statistic parameters (e.g. mean, sorting,
skewness, kurtosis) of grain-size distributions (GSDs).

Statistics

GSD
classification

Automatic classification of GSDs, including Folk (1954)’s
and Blott & Pye (2012)’s classification schemes.

Statistics

Principal
component
analysis

Apply the principal component analysis (PCA) algorithm to
extract the major and minor signal series in a grain size
dataset.

PCA

Hierarchical
clustering

Perform a hierarchical clustering (HC) algorithm to have an
overall cognition and pick out the typical samples of a grain
size dataset. Also could be used to briefly classify the
sedimentary facies.

Clustering

Single sample
unmixing

Single sample unmixing (SSU) is another unmixing method
to separate the mixed grain size distributions. Due to the
inherent difficulty of SSU problem, SSU may yield abnormal
results and hence be underestimated. To satisfy the existing
requirements, a new and enhanced SSU algorithm is
provided.

SSU

End member
modeling
analysis

Provide a new end member modeling analysis (EMMA)
algorithm based on the basic neural network to unmix the
grain size distributions and extract the latent information of
paleoenvironments and paleoclimates.

EMMA
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FUNCTION DESCRIPTION PANEL

Universal
decomposition
model

The universal decomposition model (UDM) is a new
decomposition approach that integrates the advantages of
SSU and EMMA, and it has generally overcome the problem
of instability.

UDM

Technical route  

To achieve this objective, the software techniques were advisedly chosen. Python, the 
programing language which has been widely used in scientific computation, machine 
learning, and many other fields, was chosen as the major developing language of QGrain. 
Python’s syntax is concise and easy to learn. Python is open-source and FREE (can be 
modified at will, and need not pay), and its community is very prosperous. A large number 
of mature packages (e.g., Matplotlib, NumPy, SciPy, scikit-learn, and PyTorch) can be 
used, which means many repetitive underlying codes are not needed to be written, this 
feature enables developers can focus on their specific scientific problems. To make 
QGrain easy to use, it’s necessary to provide a well-designed GUI for users who are not 
familiar with programming. Most of the codes were used to build the GUI. The GUI of 
QGrain was based on the well-known cross-platform GUI platform, Qt, this makes QGrain 
also cross-platform. QGrain also provides many high-quality charts based on the widely 
used visualization library, Matplotlib.

At present, the basic algorithms are highly dependent on these widely used scientific 
packages of Python.  It's hard and heavy to switch the technology stack. Honestly, 
developing a GUI client with Python is technically unwise. There are many other 
more popular solutions,  like WPF, electron,  and many web front-end frameworks. The 
software distribution is also a technological difficulty for Python programs. Although the 
solution to these problems was not elegant, we finally finished this project. Meanwhile, 
we are still thinking about how to improve it. A feasible solution is the separation of front 
and back ends. Specifically, it uses Python to develop the back-end computational server 
and uses other languages to develop the front-end GUI client to handle the user input. 
And it is necessary to solve the communication problems of the front and back ends. 
Since the 0.5.0 version, we have separated the core algorithms from the GUI and 
refactored the basic data models and APIs to support the GRPC. At present, you can 
start a back-end server on a high-performance PC or workstation to do the 
calculation, and then open the GUI on another PC, the computing tasks and results 
can be transmitted over a local area network. Theoretically, the server can also be 
deployed on the Internet, but there are more authentication and security works must be 
taken. With the GRPC server, other front-end technologies are also practicable, but we 
don't have time to try that yet.
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Contact  

If you find some program bugs, or you do not know some technical details, it is 
recommended to use GitHub's Issues to report and discuss problems. For some common 
problems, other users also can check the answers over there to save time. If you have 
some new functional requirements for QGrain, you can post your ideas in the Issues. Of 
course, you can contact the author below, directly, do not hesitate.

Yuming Liu, Ph.D. candidate, liuyuming@ieecas.cn

Installation  

Quick start  

To simplify the install procedure, we have packed the setup file for Windows users, just 
download it, then you can install and run QGrain app. You can download the latest 
version from GitHub. Or, you can download it from Google Drive. For the users in China, 
you can download it from Baidu Drive, with code: 8bzg.

Advanced installation  

However, we highly recommend you install Python, then install QGrain as a package. 
Following this way, you can update QGrain much easier. In addition, the packed software 
can not use NVIDIA GPU to accelerate the computation. 

For Linux and Mac OS X users, the Python interpreter is built-in. For Windows users, 
you need to install Python first. You can run the command python  or python3  in your 

Terminal  (CMD  or PowerShell  in Windows) to check if Python is existing. Note, using 

python  or python3  depends on the alias or the filename of your Python3 interpreter, 

rather than you can choose Python2 or Python3 at liberty. Python2 is too old and has 
been obsoleted. For Linux and Mac OS X, command python3  usually is correct, and for 

Windows , command python  usually is correct. Furthermore, the choosing of command 

pip  and pip3  follows the same rule.

Then, you can use pip  to install QGrain.

pip install QGrain1
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Figure 1. The initial interface of QGrain App. It is showing the generator panel.

You can update QGrain like this.

Or, install the specific version, if you have strong reasons. For example, your script was 
written under the old version, and the new version changed the APIs.

Then, you can start the GUI of QGrain by running the command qgrain . The software 

will generate an artificial dataset and perform all algorithms to demonstrate its functions. 
So, it will start a bit slowly, please wait a moment.

Finally, you will see the initial interface below.

pip install -U QGrain1

pip install QGrain==0.5.1.01
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Enable CUDA  

Some functions (e.g., EMMA and UDM algorithms) can use CUDA to accelerate the 
computation. By default, QGrain app only packed the CPU version of PyTorch, because 
not all users have a high-performance NVIDIA GPU, and the CPU is faster to handle a 
small dataset. It needs more steps to enable the CUDA, not only install a CUDA version of 
PyTorch, but NVIDIA GPU driver, CUDA Toolkit and CUDNN also should be installed. 
Follow the guides of PyTorch and NVIDIA to install them. If all of them have been 
installed, the cuda  option in the device  combo box can be selected.

Software usages  

In this chapter, we will introduce the designs and usages of GUI. As mentioned above, the 
GUI is easier to use compared to coding. However, only basic and mature functions have 
corresponding interfaces. If you are not satisfied with the limited functions, you can 
check the next chapter to see script usages.

Overview of UI  

The GUI consists of several panels, you can switch the panel by clicking the corresponding 
tab (e.g., Statistics ) on the left side (see Fig. 1). Each panel provides a set of functions. 

The details of each panel will be introduced below. In addition, there are a menu bar and a 
status bar. By triggering the actions in the menu bar, you can open a new grain size 
dataset, save analysis results, change languages and themes, etc. The status bar can show 
some messages and hints for users. You can open the Runtime Log  window to see more 

runtime details by clicking the Log  option in the menu bar.

Load a grain size dataset  

Before analyzing, we should load the GSDs into the software. This procedure is most likely 
to go wrong because only a specific layout of data can be read directly. If you are not sure 
whether your data meets the requirements, you can generate an artificial dataset by the 
Generator  panel, and check its Dataset  sheet for details.

By clicking the Grain Size Dataset  action in the Open  menu, you will see a dialog 

popped up to ask you to select the filename, choose the sheet, and assign the rows and 
columns. By clicking the Select  button in the dialog, a file dialog will be popped up to 

ask you to select a file. At present, this file could be *.csv , *.xls  and *.xlsx  formats. If 

there is no error raised (e.g., the selected file is occupied by another program), the sheet 
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Figure 2. The dialog of dataset loader.

names of Excel files will be read as the options in the Sheet Name  combo box. If you 

select a *.csv  file, there will be only one option in this combo box, that's the filename.

For Excel files, one file can contain multiple sheets, it's suitable for placing the related but 
different types of information in different sheets. For example, the output files of QGrain 
usually put a README  sheet to give a brief description of this file and put other sheets after 

this sheet. Here, we need to choose the Dataset  sheet. By default, it will load the first 

row as the grain size classes, and the first column is used to put the names of samples, 
GSDs are tight with the classes and names. The default output layout of QGrain is correct, 
so, just click the Try Load  button. If your dataset does not follow this data layout, i.e., it 

has additional rows or columns, you can change the layout settings to load it. Considering 
the complexity, we only support the horizontal layout (i.e., each row is one sample). If 
your dataset is vertical (i.e., each column is one sample), it's easy to transform it using 
other software (e.g., Microsoft Excel).

The unit of grain size classes should be , the values should be incremental (i.e., left 
columns are finer and right columns are coarser), and the intervals between any two 
adjacent classes should  equal in  scale. If there is a text cell in the row of grain size 
classes, it will raise an error. The names of samples should be texts, if they are numbers, 
they will be converted to texts. The distribution values of each sample should be 
numerical, and the sum of them should be 1 or 100. Note, if there is an empty cell in the 
row of distribution, it will raise an error. You can use empty rows to separate samples, but 
the rows should be fully empty. In addition, please don't put some individual cells out of 
the range of distributions. Note, although we have written some codes to validate the 
data, there may still be some errors ignored. Please make sure your GSDs are valid. If the 
loading failed, you can check the Runtime Log  window for details, by clicking the Log  

action in the menu bar.
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Generator panel  

The Generator  panel provides the functions to generate random datasets. You can use 

artificial datasets to test other algorithms. If you want to try QGrain but have no dataset, 
this module may be helpful. Or, if you are not clear with the functions and settings of 
algorithms, you can generate a series of different datasets to observe the performances of 
algorithms and explore the impacts of settings. Of course, it can be used to generate some 
difficult datasets to test the limitations and constraints of these algorithms. By 
generating a similar dataset as your real-world dataset, you can make sure whether these 
algorithms can handle your real-world dataset well because all original information of an 
artificial dataset is known. However, there is another critical question, that's how to make 
the artificial dataset as realistic as possible.

Mixture versus decomposition  

Before introducing the usages, you may need to know some related sedimentological 
cognitions on the formation of GSDs. In other words, how did the GSDs of sediments 
become polymodal? And, what are the geological meanings of the sub-populations? 
Because the generation of an artificial dataset essentially is the simulation of this natural 
mixing process. This article assumes you have corresponding knowledge background.

After understanding the mixture model of the formation of GSDs, it is easy to accept the 
idea that mathematical decomposition can restore the mixture process and reveal the key 
information of related sedimentary processes.

Generate one sample  

A polymodal sample could be regarded as the mixture of several unimodal sub-
populations, and the sub-population can be associated with a certain sedimentary 
process. Based on this theoretical model, it's very easy to generate artificial samples. In 
mathematics, the mixture can be regarded as the summation of all sub-populations in 
specific proportions. Therefore, for one sample, we need to generate a set of sub-
populations and corresponding proportions. Usually, we use an elementary distribution 
function (e.g., Gaussian or Weibull) and specify the function parameters of all sub-
populations. In the choosing of the distribution function, there are many discussions but 
no conclusion. Here, we provide 4 common distribution functions, i.e., normal (Gaussian), 
skew-normal, Weibull, and general Weibull. Note that, all distribution functions are on a 
logarithmic scale (i.e., the unit is , not ). By default, we use the skew-normal 
distribution as the elementary distribution to generate the sub-populations. skew-normal 
distribution is based on normal (Gaussian) distribution but provides an additional 
parameter to control the skewness. Therefore, it's more flexible than the normal 
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distribution, each elementary distribution has three parameters, shape  ( ), location  (

), and scale  ( ). The shape  ( ) controls its skewness, when , it becomes a normal 

distribution. Note, due to its mathematical definition, the skewness ( ) is limited to the 
interval . The interval integral should be applied to the probability density 
function (PDF) to discretize and transform it to frequency. Multiply the proportions of 
sub-populations to their frequencies, and then sum them, the mixed frequency is 
obtained. By calculating the frequency of each grain size class, we can get the artificial 
sample.

Mathematical definition  

Let  denote the PDF of standard normal distribution, there is

With the cumulative distribution function given by

where  is the error function. Then the PDF of the skew-normal distribution with the 
shape parameter  is given by

To add the location ( ) and scale ( ) parameters, one makes the usual transform 
. Then, the PDF becomes

To transform density to frequency, an interval integral should be applied

where  is the frequency of -th grain size class,  is its grain size in  scale,  is the 
interval of adjacent grain size classes (in  scale).

Let bold symbols denote the vectors,  is the observed GSD of one sample,  is the 
elementary frequency distribution of -th sub-population. Let  denote the proportion 
of the -th sub-population. There is:
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For other distribution functions, just change the PDF. Of course, the parameters except  
may be different.

Generate a batch of samples  

While generating one sample, it is easy to manually assign the function parameters and 
proportions. Hoswever, in most test scenarios, we need a batch of samples (i.e., a dataset) 
to evaluate the performance of different algorithms. To generate the dataset, a batch of 
function parameters and proportions are needed. There are two approaches to generate 
the parameters and proportions. The first approach is using random numbers. Another 
way is using signal series (e.g., sinusoidal wave). The Generator  panel provides the 

former approach. Each parameter is randomly generated and controlled by mean  and 
standard deviation  of a normal distribution. To simulate the actual observation, values 
will be rounded to the precision (e.g., 0.01%), and a group of Gaussian noise (an order of 
magnitude less than precision) will be overlaid on it.

The figure above shows the interface of the Generator  panel. In the Control  box, you 

can control the sampling settings, i.e., sampling range, interval (number of classes) and 
precision. In addition, you can change the elementary distribution function and the 
number of components. By clicking the Preview  button, artificial samples will be 

generated and displayed successively, using the random parameters at the bottom. Each 
small box is related to an artificial component, the number of parameters depends on the 
distribution type. Finally, adjust the number of samples and click the Artificial 

Dataset  option in the Save  menu, the artificial dataset can be saved into an Excel file.

If you want to generate more complicated or realistic datasets. You can check the section 
below.

Statistics panel  

This panel is designed to provide the basic analysis and visualization for a brief view of 
the dataset. All functions in GRADISTAT (Blott and Pye, 2001) can be found here. Its main 
content is a table to display statistical parameters and classification groups. You can 
resize the window or adjust the sliders to see more information. To keep it simple and 
efficient, all samples have been divided into several pages, each page shows 20 samples. 
By clicking the Previous  or Next  button, you can jump to the previous or next page. You 

also can click the combo box to select a page directly. Below, there are two checkboxes 
that control the method to calculate statistical parameters. Another combo box is used to 
adjust the grades of proportions.
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Figure 3. The interface of the statistics panel.

You can choose the option Statistical Result  in the Save  menu to save the statistical 

result to an Excel file.

Right-click the table region, then, a menu showing the available actions will be 
popped up. By choosing the actions in the menu, you can plot some basic charts, 
including the frequency distribution chart, frequency 3D chart, cumulative frequency 
chart, and classification diagrams of Folk (1954) and Blott and Pye (2012).

To be more flexible, each chart provides 4 sub-actions.

Plot : Clear previous samples in the chart and plot selected samples.

Append : Append selected samples to the chart.

Plot All : Clear previous samples in the chart, and plot all samples of the 

current dataset.
Append All : Append all samples of the current dataset to the chart.

These charts are based on the well-known visualization module Matplotlib and use the 
style module SciencePlot to refine their appearances. In principle, all data are available, if 
you can not find what you need, feel free to contact the author. By right-clicking the 
chart, you will find the option to edit and save the figure. By clicking the edit option, a 
dialog provided by Matplotlib will pop up and make you can modify the elements (e.g., 
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Figure 4. The cumulative frequency chart shows two artificial samples.

Figure 5. The frequency distribution chart shows two artificial samples.

title, labels, colors, etc.) of the figure. Most bitmap (e.g., *.png , *.jpg , *.tif ) and 

vector graph (e.g., *.svg , *.eps ) formats are supported.

Cumulative frequency chart  

The cumulative frequency chart is classical. It is used to discriminate different 
sedimentary dynamics.

Frequency distribution chart  

The frequency distribution chart is the most commonly used chart to show the detailed 
characteristics of grain size samples. With this chart, you can easily recognize the particle 
abundances of different grain size classes. And you can easily take a comparison of several 
samples.
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Figure 6. The frequency 3D chart simultaneously shows a batch of samples as a 3D
surface.

Frequency 3D chart  

If you want to show a batch of samples, the frequency distribution chart may be not 
suitable, because the sample may be covered by other samples. You can use the frequency 
3D chart to show them. In this chart, the variation trend of samples  can be easily 
discovered. In the chart window, hold down the left mouse button, move the mouse, you 
can rotate the view.

Frequency heatmap  

The frequency heatmap is another way to visualize the GSDs of many samples and has 
been widely used in publications.
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Figure 7. The frequency heatmap simultaneously shows a batch of samples as a heatmap.

Classification diagrams  

There are many different classification diagrams which have been widely used in 
sedimentology, geomorphology, soil science, aquatic ecology and civil engineering (Blott 
& Pye, 2012). Due to the limitation of time, only Folk (1954)'s and Blott & Pye (2012)'s 
schemes are provided at present.

Gravel-sand-mud diagram (Folk, 1954)  
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Figure 8. The gravel-sand-mud diagram (Folk, 1954) shows the classification groups of a
batch of samples.

Figure 9. The sand-silt-clay diagram (Folk, 1954).

Sand-silt-clay diagram (Folk, 1954)  
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Figure 10. The gravel-sand-mud diagram (Blott & Pye, 2012).

Figure 11. The sand-silt-clay diagram (Blott & Pye, 2012).

Gravel-sand-mud diagram (Blott & Pye, 2012)  

Sand-silt-clay diagram (Blott & Pye, 2012)  
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Figure 12. The C-M diagram of generated samples.

C-M diagram  

Since the first discussion of C-M patterns (Passega, 1957), the C-M diagram has been 
widely used to reflect the depositional processes of sediments. The C-M diagram below is 
modified after Mycielska-Dowgiałło & Ludwikowska-Kędzia (2011). See the description of 
symbols from Passega (1964), Passega & Byramjee (1969) and Mycielska-Dowgiałło & 
Ludwikowska-Kędzia (2011).

PCA panel  

Principal component analysis (PCA) is a widely-used tool to handle high-dimensional 
data. As typically high-dimensional data, grain size distributions also could be processed 
by PCA. QGrain has integrated the basic PCA to extract the major and minor variations of 
GSDs. The interface is very simple, when the grain size dataset is loaded, the PCA 
algorithm will be performed automatically, and the PCA result will be shown in the PCA 
panel. By clicking the PCA Result  option in the Save  menu, you can save the PCA result 

to an Excel file.
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Figure 13. The interface of the PCA panel.

 

The only question for you is how to understand the result. There are many documents 
introducing the algorithm of PCA. After reading them, you may understand the result 
better. The subfigure at the top-left is modified from the biplot, it uses the principal 
components, PC1 and PC2, to construct the coordinate system, hence showing the 
relationships of the original dimensions. Because the number of dimensions of GSDs is 
too large, it is not suitable to show all dimensions with arrows. Therefore, only the 
dimensions which are closest to PC1 and PC2 are presented with arrows. The points of 
other dimensions are connected to form a shape. The gray points show the grain size 
samples.

The subfigure at the top-right shows the eigenvector (viz. distribution) of PC1 and PC2. 
The curves are similar to the frequency distribution curves. The difference is that the 
values may be negative and their sums may not equal 1. Due to this difference, it is 
difficult to link the distributions of PCs to geological meanings. However, we can 
determine the sensitive grain size classes by checking this subfigure. For example, the 
grain size classes of the peaks are most sensitive and preserve the key information of 
GSDs.



Figure 14. The interface of the clustering panel.

The subfigure at the bottom shows the variations of eigenvalues of PC1 and PC2. The 
labels in the legend give the explained variance ratios which can be regarded as the 
degrees of importance for corresponding principal components. For example, the 
explained ratio of PC1 in the figure above is 97.26%, which means PC1 is the absolute 
predominant component.

Clustering panel  

Hierarchical clustering (HC) is one kind of clustering method. The hierarchical algorithm 
provided by the hierarchy submodule in SciPy has been integrated into QGrain. You can 
use this function to filter the typical samples, trim the dataset and take a brief 
classification of sedimentary facies. The algorithm will be automatically performed if a 
new dataset has been loaded. By clicking the Clustering Result  option in the Save  

menu, you can save the clustering result to an Excel file.

You could see a dendrogram at the interface. It shows the relationships between different 
samples. At the top, all samples are in the same cluster. When it goes down, the cluster 
will be split into two new clusters, and so on. At the bottom, each sample is in its cluster. 
If the number of samples is too great, it’s difficult to show all labels of the bottom layer. 
Hence, it’s truncated and only shows p  bottom leaves, you can change the p  to show 
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more or fewer bottom leaves. Note that, p  only affects the figure, it has no influence on 

the clustering result. You can change the Number of Clusters  to control the clustering 

algorithm.

If you want to classify sedimentary facies, you must make sure that the number of clusters 
could distinguish different sedimentary facies. After that, you could map the clusters to 
certain sedimentary facies according to the geological settings and other evidence. Note 
that, different functions which are used to calculate the similarities between samples may 
have different sensibilities to the transition of sedimentary facies. There is no research on 
which distance metric is more suitable for the classification of sedimentary facies. 
Therefore, the current version of QGrain only uses the whole GSDs to calculate distances, 
this may ignore some minor sub-populations. It may be better to do clustering with the 
decomposition results.

SSU panel  

SSU (viz. curve-fitting) is the first mathematical method to decompose the polymodal 
GSD into several elementary components (Sheridan et al., 1987; Weltje & Prins, 2003). 
SSU has been widely used in different types of sediments. Although it has been gradually 
replaced by EMMA, there are still some researchers thinking it has some unique features 
(Wu et al., 2020; Liu et al., 2021; Peng et al., 2022).

The interface of the SSU panel is the most complex among these panels. But don't worry, 
these options and parameters are designed to make you have the ability to handle the 
most difficult samples, and it's no need to do tedious adjusting work for all samples.
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Figure 15. The interface of the SSU panel.

You can adjust the Sample Index  to switch the current sample which is ready for fitting. 

The Sample Name  below is going to change synchronously as Sample Index  changes. By 

clicking the Try Fit  button, the current sample will be decomposed with current 

settings. The introduction to adjusting the settings will be given at the following 
paragraphs. By clicking the Try Previous  or Try Next  button, you can decompose the 

previous or next sample. After fitting, the decomposed result will be displayed in the 
Result  table, you can see some basic information about the fitting process.  At the same 

time, the result will be visualized in the chart.

Right-click on the Result  table, you can see the menu to do actions on the decomposed 

results, e.g., remove the selected or all results. You also can show the selected result in 
the chart if you want to check the previous result. While the Auto Show  option is 

checked, the selected result will be automatically displayed in the chart. In addition, you 
can show the variation of loss in the fitting process and the resolved parameters. There 
are several sub-options in the Check  action, you can use them to remove the outliers in 

the table. Right-click on the Chart  region, you can see the menu to affect the chart. By 

checking the Animated  option, the fitting process will be displayed with the animation.



Figure 16. The algorithm settings of SSU.

You can click the SSU Algorithm  option in the Configure  menu to open the dialog to 

adjust the algorithm settings of SSU. Basically, you don't need to change the following 
settings. At first, you can choose the loss function to calculate the distance between the 
observed and predicated GSDs. In practice, the logarithmic mean squared error (LMSE) is 
better than other loss functions. Moreover, you can select the optimizer (i.e. optimization 
algorithm). For some optimizers (e.g., Powell), it needs more iterations, you may need to 
change the Maximum Number of Iterations of Optimizer . If you check the Global 

Optimization , it will use the basinhopping  algorithm to find the global minimum.

If your sample has more than 3 components and the proportions of some components are 
very low, it's recommended to click the Edit Parameters  button to fitting the current 

sample manually. At the Parameter Editor , you can manually set the initial parameters 

to each component. No need to be very accurate. Then click the Enable  checkbox, and try 

to fit the sample again. Note that, if the Enable  checkbox is not checked, the 

parameters in the Parameter Editor  will not work. The Parameter Editor  is very 

important. It enables you to handle the complex samples. By clicking the Refer 

Parameter  action in the result menu of SSU, you can transmit the resolved parameters of 

the selected SSU result to the Parameter Editor . It is convenient to utilize the fitting 

results of other samples as the references to decompose the next sample. Furthermore, 
the panels of SSU, EMMA and UDM share the same Parameter Editor , which means you 

can utilize the result of SSU while performing the EMMA or UDM algorithm to the whole 
dataset.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html


Figure 17. The interface of the parameter editor.

Finally, you can select the SSU Results  action in the Save  menu to save the results into 

an Excel file or a binary file. It's recommended to also save a binary file because it 
could preserve the fitting history and could be reloaded by the QGrain software.

EMMA panel  

This panel provides a new EMMA algorithm (NNEMMA) which is based on the basic 
neural network (Liu et al., 2021). It supports bot only nonparametric EMMA but also 
parametric EMMA. In addition, you even can customize the end members, if you could 
determine them by other methods, e.g., taking samples from the sources. Just click the 
Try Fit  button, it will decompose the dataset with the current settings. After fitting, the 

EMMA result will be placed in the Result  list. You can click the Remove  or Show  button 

at below to remove or show the selected result. Right-click on the chart, the chart menu 
will be popped up, you also can display the fitting process by checking the Animated  

checkbox.
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Figure 18. The interface of the EMMA panel.

You can click the EMMA Algorithm  option in the Configure  menu to open the dialog to 

adjust the algorithm settings of NNEMMA. By observing the chart of the selected fitting 
result, you can judge that whether the algorithm has converged to the limit and whether 
the fitting result has unmixed the end members well. If it did not converge to the limit, 
please increase the minimum and maximum number of epochs in the algorithm settings. 
If the loss variation is too volatile, you need to decrease the learning rate. Adjust the 
settings until you are satisfied, and then save the corresponding result to an Excel file or a 
binary file.



Figure 19. The algorithm settings of EMMA.

UDM panel  

The interface of the UDM panel is very similar to that of the EMMA panel.

af://n209


Figure 20. The interface of the UDM panel.

Script usages  

How to load a grain size dataset  

The io  submodule provides the functions to load a grain size dataset and save different 

results to the Excel files.

It is very easy to load a grain size dataset by codes. Just call the load_dataset  function.

You can load a more complicated data file with additional parameters.

from QGrain.io import load_dataset

dataset = load_dataset("GSDs.xlsx")
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How to generate a random dataset  

The generate  submodule provides the functions to generate artificial datasets. If you just 

need some samples but do not care about their details, you can get the samples as follow. 
It will use the built-in preset to generate a sample (ArtificialSample  object) or a 

dataset (ArtificialDataset  object).

You can define your own preset to generate a specific random dataset. The preset  is a 

dict . target  is a list that contains n  elements, each element also is a list  and related 

to an artificial component. Each tuple  is corresponding to the parameter  of an artificial 

component and contains the  and , respectively. For this case, the parameters of the 
skew-normal distribution are shape ( ), location ( ), scale ( ), weight ( ), respectively.

from QGrain.io import load_dataset, DataLayoutSetting

dataset = load_dataset("GSDs.xlsx", sheet_index=0,

                       class_row=0, name_col=0, start_row=1, 

start_col=2)
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from QGrain.generate import random_sample, random_dataset, 

SIMPLE_PRESET

sample = random_sample(**SIMPLE_PRESET)

dataset = random_dataset(**SIMPLE_PRESET, n_samples=200)
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3

from QGrain.models import DistributionType

from QGrain.generate import random_dataset




preset = dict(target=[

    [(0.0, 0.0), (10.2, 0.0), (1.1, 0.0), (1.0, 0.1)],

    [(0.0, 0.0), (7.5, 0.0), (1.2, 0.0), (2.0, 0.2)],

    [(0.0, 0.0), (5.0, 0.0), (1.0, 0.0), (2.5, 0.5)]],

    distribution_type=DistributionType.SkewNormal)




dataset = random_dataset(**preset, n_samples=100,

                         min_size=0.02, max_size=2000.0, 

n_classes=101,

                         precision=4, noise=5)
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DISTRIBUTION
FUNCTION

SHAPE LOCATION SCALE WEIGHT
NUMBER OF
PARAMETERS

Normal × √ √ √ 3

Skew Normal √ √ √ √ 4

Weibull √ × √ √ 3

General Weibull √ √ √ √ 4

How to generate a more complicated dataset  

Here, we will show you how to generate a more complicated dataset. You can generate the 
function parameters for all samples. Then, pack them into a three-dimensional array with 
the specific form, and call the constructor of ArtificalDataset  to generate the dataset.

For different distribution functions, the parameters of each artificial component are 
different. You can check the following table for details. You can generate several one-
dimensional arrays, and transform them to parameter series. The length of these series is 
the number of samples. If you want to make the dataset realistic, it is better to take more 
geological and sedimentological considerations while making the parameter series. For 
example, you should imagine a sedimentary model. Then, you can determine the number 
of necessary components. Later, you can arrange a major dynamics process for each 
component. Finally, you can create the parameter series by simulating the variations of 
dynamics processes. Or, you can use some paleoenvironmental or paleoclimatic records to 
represent the variations. In the following case, we did not take too many geological and 
sedimentological considerations on it. Just use sinusoidal signals to generate the 
parameter series.

In practice, it is difficult to generate the dataset based on Weibull (or general Weibull) 
function. Because, it is hard to control the mean grain size and sorting coefficient. But for 
the normal distribution, the location parameter  is mean grain size, the scale parameter 

 is sorting coefficient. It is easy to interpret them and link them to specific dynamics 
parameters.

import numpy as np

from QGrain.models import ArtificialDataset, DistributionType

from QGrain.distributions import Normal

from QGrain.io import save_artificial_dataset




distribution_type = DistributionType.Normal

n_components = 3

n_samples = 200




# generate signal series
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x = np.linspace(-10, 10, n_samples)

series_1 = np.sin(x)

series_2 = np.cos(x)




# use series to generate parameters

# mean, std are the function parameters of normal distribution

# weight is used to calculate the proportion

C1_mean = np.random.random(n_samples) * 0.05 + 10.2

C1_std = np.random.random(n_samples) * 0.05 + 0.55

C1_weight = np.random.random(n_samples) * 0.01

C2_mean = series_1 * 0.1 + 7.8 + np.random.random(n_samples) * 

0.01

C2_std = np.random.random(n_samples) * 0.04 + 0.8

C2_weight = series_1 * 0.2 + 1.0 + np.random.random(n_samples) * 

0.01

C3_mean = series_2 * 0.2 + 5.5 + np.random.random(n_samples) * 

0.01

C3_std = np.random.random(n_samples) * 0.04 + 0.7

C3_weight = series_2 * 0.4 + 1.0 + np.random.random(n_samples) * 

0.01




# pack the parameters

parameters = np.ones((n_samples, Normal.N_PARAMETERS+1, 

n_components))

parameters[:, 0, 0] = C1_mean

parameters[:, 1, 0] = C1_std

parameters[:, 2, 0] = C1_weight

parameters[:, 0, 1] = C2_mean

parameters[:, 1, 1] = C2_std

parameters[:, 2, 1] = C2_weight

parameters[:, 0, 2] = C3_mean

parameters[:, 1, 2] = C3_std

parameters[:, 2, 2] = C3_weight




# construct the dataset

dataset = ArtificialDataset(parameters, distribution_type,

                            min_size=0.02, max_size=2000, 

n_classes=101,

                            precision=4, noise=5)

save_artificial_dataset(dataset, "./Artificial Dataset.xlsx")

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44



Figure 21. The frequency heatmap of this artificial dataset.

How to perform statistical analysis and save the result  

The statistics  submodule provides the functions to calculate the statistical 

parameters. The all_statistics  function will use all statistical methods in GRADISTAT 

(Blott and Pye, 2001) to analyze the GSD. You need to pass there one-dimensional arrays, 
they are the grain size classes in  and  scales, and the GSD.

The result of all_statistics  function is a dict , you can check the following fragment 

for more details.

from QGrain.generate import SIMPLE_PRESET, random_sample

from QGrain.statistics import all_statistics




sample = random_sample(**SIMPLE_PRESET)

statistics = all_statistics(sample.classes, sample.classes_phi, 

sample.distribution)
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5

{'arithmetic': {'mean': 24.416012713219324,

  'std': 28.745497203626858,

  'skewness': 2.5993653712218205,

  'kurtosis': 14.571969009591882},

 'geometric': {'mean': 11.01298368038815,

  'std': 4.457238315788177,

  'skewness': -0.6317811838318534,
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  'kurtosis': 2.678393555741556,

  'std_description': 'Very poorly sorted',

  'skewness_description': 'Fine skewed',

  'kurtosis_description': 'Mesokurtic',

  'median': 14.06324632030902,

  'mean_description': 'Medium Silt',

  'mode': 28.2507508924551,

  'modes': (28.2507508924551,)},

 'logarithmic': {'mean': 6.504650807362412,

  'std': 2.1561500997915255,

  'skewness': 0.6317811838318537,

  'kurtosis': 2.678393555741555,

  'std_description': 'Very poorly sorted',

  'skewness_description': 'Fine skewed',

  'kurtosis_description': 'Mesokurtic',

  'median': 6.151926529246772,

  'mean_description': 'Medium Silt',

  'mode': 5.14556697554162,

  'modes': (5.14556697554162,)},

 'geometric_fw57': {'mean': 10.48617511007019,

  'std': 4.272953356391491,

  'skewness': -0.3091153710808348,

  'kurtosis': 0.9328536255538155,

  'std_description': 'Very poorly sorted',

  'skewness_description': 'Very fine skewed',

  'kurtosis_description': 'Mesokurtic',

  'median': 14.06324632030902,

  'mean_description': 'Medium Silt',

  'mode': 28.2507508924551,

  'modes': (28.2507508924551,)},

 'logarithmic_fw57': {'mean': 6.575367646845154,

  'std': 2.0952335686291423,

  'skewness': 0.309115371080835,

  'kurtosis': 0.9328536255538153,

  'std_description': 'Very poorly sorted',

  'skewness_description': 'Very fine skewed',

  'kurtosis_description': 'Mesokurtic',

  'median': 6.151926529246772,

  'mean_description': 'Medium Silt',

  'mode': 5.14556697554162,

  'modes': (5.14556697554162,)},

 'proportions_gsm': (0.0, 0.0969, 0.9030999999999999),
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If you just want to perform the statistical analysis on a grain size dataset. You can call the 
save_statistics  function in io  submodule.

 'proportions_ssc': (0.0969, 0.7523, 0.1508),

 'proportions_bgssc': (0.0, 0.0, 0.0969, 0.7523, 0.1508),

 'proportions': {('', 'Megaclasts'): 0.0,

  ('Very large', 'Boulder'): 0.0,

  ('Large', 'Boulder'): 0.0,

  ('Medium', 'Boulder'): 0.0,

  ('Small', 'Boulder'): 0.0,

  ('Very small', 'Boulder'): 0.0,

  ('Very coarse', 'Gravel'): 0.0,

  ('Coarse', 'Gravel'): 0.0,

  ('Medium', 'Gravel'): 0.0,

  ('Fine', 'Gravel'): 0.0,

  ('Very fine', 'Gravel'): 0.0,

  ('Very coarse', 'Sand'): 0.0,

  ('Coarse', 'Sand'): 0.0,

  ('Medium', 'Sand'): 0.0008000000000000001,

  ('Fine', 'Sand'): 0.0138,

  ('Very fine', 'Sand'): 0.08230000000000001,

  ('Very coarse', 'Silt'): 0.1989,

  ('Coarse', 'Silt'): 0.211,

  ('Medium', 'Silt'): 0.1431,

  ('Fine', 'Silt'): 0.11250000000000002,

  ('Very fine', 'Silt'): 0.0868,

  ('Very coarse', 'Clay'): 0.0669,

  ('Coarse', 'Clay'): 0.052,

  ('Medium', 'Clay'): 0.0251,

  ('Fine', 'Clay'): 0.006,

  ('Very fine', 'Clay'): 0.0007999999999999999},

 'group_folk54': 'Slit',

 '_group_bp12_symbols': ['(s)', '(c)', 'SI'],

 'group_bp12_symbol': '(s)(c)SI',

 'group_bp12': 'Slightly Sandy Slightly Clayey Silt'}
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from QGrain.generate import SIMPLE_PRESET, random_dataset

from QGrain.io import save_statistics




dataset = random_dataset(**SIMPLE_PRESET, n_samples=200)

save_statistics(dataset, "./Statistics.xlsx")
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How to calculate partial statistical parameters  

In some cases, we do not need all statistical results. The following codes show you how to 
use the functions to calculate partial statistical parameters.

How to decompose a dataset  

You can call the functions, try_ssu , try_emma  and try_udm , to perform the SSU, EMMA 

and UDM algorithms respectively.

from QGrain.generate import SIMPLE_PRESET, random_sample

from QGrain.statistics import *




sample = random_sample(**SIMPLE_PRESET)

# statistical parameters

s = arithmetic(sample.classes, sample.distribution)

s = geometric(sample.classes, sample.distribution)

s = logarithmic(sample.classes_phi, sample.distribution)

ppf = reversed_phi_ppf(sample.classes_phi, sample.distribution)

s = geometric_fw57(ppf)

s = logarithmic_fw57(ppf)




# proportions

p = proportions_gsm(sample.classes_phi, sample.distribution)

p = proportions_ssc(sample.classes_phi, sample.distribution)

p = proportions_bgssc(sample.classes_phi, sample.distribution)

p = all_proportions(sample.classes_phi, sample.distribution)




# classification groups

g = group_folk54(sample.classes_phi, sample.distribution)

g = group_bp12(sample.classes_phi, sample.distribution)
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import pickle

import numpy as np




from QGrain.models import KernelType

from QGrain.generate import random_dataset, SIMPLE_PRESET

from QGrain.ssu import try_ssu

from QGrain.emma import try_emma

from QGrain.udm import try_udm




dataset = random_dataset(**SIMPLE_PRESET, n_samples=200)
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x0 = np.mean(dataset.parameters, axis=0)

ssu_results = []

for sample in dataset:

    result, msg = try_ssu(sample, dataset.distribution_type, 

dataset.n_components, x0=x0)

    assert result is not None

    ssu_results.append(result)

kernel_type = 

KernelType.__members__[dataset.distribution_type.name]

emma_result = try_emma(dataset, kernel_type, 

dataset.n_components, x0=x0[:-1])

udm_result = try_udm(dataset, kernel_type, dataset.n_components, 

x0=x0[:-1])




with open("./results.ssu", "wb") as f:

    pickle.dump(ssu_results, f)

with open("./result.emma", "wb") as f:

    pickle.dump(emma_result, f)

with open("./result.udm", "wb") as f:

    pickle.dump(udm_result, f)
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