

collective.pdfpeek-0.8/MANIFEST.in

recursive-include docs *
recursive-include collective *
global-exclude *pyc
global-exclude *mo

collective.pdfpeek-0.8/PKG-INFO

Metadata-Version: 1.0
Name: collective.pdfpeek
Version: 0.8
Summary: A Plone product that generates image thumbnail previewsof PDF files stored on ATCT based objects.
Home-page: https://svn.plone.org/svn/collective/collective.pdfpeek
Author: David Brenneman
Author-email: db@davidbrenneman.com
License: GPL
Description: Introduction
 ============

 A Plone product that generates image thumbnail previews of PDF files uploaded
 to Archetypes based content objects.

 This product, when installed in a Plone 3.x site, will automatically generate
 preview and thumbnail images of each page of uploaded PDF files and store
 them annotated onto the content object containing the pdf file.

 Requires GNU ghostscript, PyPDF and PIL!

 The image generation currently takes place on object modified events.
 I am working on an implementation with a clock server process.
 This way the user does not have to wait for the images to be generated.

 - Code repository: https://svn.plone.org/svn/collective/collective.pdfpeek
 - Questions and comments to db@davidbrenneman.com
 - Report bugs to db@davidbrenneman.com

 Changelog
 =========

 0.8 (2009-10-13)

 - Fixed a bug in the transform code to allow functioning with any filefield,
 as long as it is called file.
 [dbrenneman]

 0.7 (2009-10-13)

 - Streamlined transform code.
 [dbrenneman]

 - Added ability to toggle the pdfpeek viewlet display on and off via configlet.
 [dbrenneman]

 0.6 (2009-10-05)

 - Bugfix release.
 [dbrenneman]

 0.5 (2009-10-05)

 - Added control panel configlet.
 [dbrenneman]

 - Removed unneeded xml files from uninstall profile.
 [dbrenneman]

 - Optimized transform.
 [dbrenneman]

 - Added storage of image thumbnail along with image, generated with PIL.
 [dbrenneman]

 - Changed annotation to store images in a dict instead of a list.
 [dbrenneman]

 - Changed event handler to listen on all AT based objects instead of ATFile.
 [dbrenneman]

 - Added custom pdfpeek icon for configlet.
 [dbrenneman]

 - Added custom traverser to allow easy access to the OFS.Image.Image()
 objects stored on IPDF objects.
 [dbrenneman]

 - Modified pdfpeek viewlet code to display images using the custom traverser.
 [dbrenneman]

 - Added custom scrollable gallery with tooltips using jQuery Tools to the
 pdfpeek viewlet for display.
 [dbrenneman]

 0.4 (2009-10-01)

 - Refactored storage to use OFS.Image.Image() objects instead of storing the
 raw binary data in string format.
 [dbrenneman]

 - Refactored event handler object variable name.
 [dbrenneman]

 - Removed unneeded files from default GS Ext. profile.
 [dbrenneman]

 - Removed unneeded javascript files and associated images and css.
 [dbrenneman]

 0.3 - 2009-08-03

 - fixed parsing of pdf files with multiple pages
 [piv]

 0.1 - Unreleased

 - Initial release

Keywords: Plone Zope Python PDF
Platform: UNKNOWN
Classifier: Framework :: Plone
Classifier: Programming Language :: Python
Classifier: Topic :: Software Development :: Libraries :: Python Modules

collective.pdfpeek-0.8/README.txt

Introduction
============

A Plone product that generates image thumbnail previews of PDF files uploaded
to Archetypes based content objects.

This product, when installed in a Plone 3.x site, will automatically generate
preview and thumbnail images of each page of uploaded PDF files and store
them annotated onto the content object containing the pdf file.

Requires GNU ghostscript, PyPDF and PIL!

The image generation currently takes place on object modified events.
I am working on an implementation with a clock server process.
This way the user does not have to wait for the images to be generated.

- Code repository: https://svn.plone.org/svn/collective/collective.pdfpeek
- Questions and comments to db@davidbrenneman.com
- Report bugs to db@davidbrenneman.com

collective.pdfpeek-0.8/setup.cfg

[egg_info]
tag_build =
tag_date = 0
tag_svn_revision = 0

collective.pdfpeek-0.8/setup.py

from setuptools import setup, find_packages

version = '0.8'

setup(name='collective.pdfpeek',
 version=version,
 description="A Plone product that generates image thumbnail previews" +
 "of PDF files stored on ATCT based objects.",
 long_description=open("README.txt").read() + "\n" +
 open("docs/CHANGES.txt").read(),
 # Get more strings from http://www.python.org/pypi?%3Aaction=list_classifiers
 classifiers=[
 "Framework :: Plone",
 "Programming Language :: Python",
 "Topic :: Software Development :: Libraries :: Python Modules",
],
 keywords='Plone Zope Python PDF',
 author='David Brenneman',
 author_email='db@davidbrenneman.com',
 url='https://svn.plone.org/svn/collective/collective.pdfpeek',
 license='GPL',
 packages=find_packages(exclude=['ez_setup']),
 namespace_packages=['collective'],
 include_package_data=True,
 zip_safe=False,
 install_requires=[
 'setuptools',
 'plone.browserlayer',
 'pyPdf',
],

 entry_points="""
 # stuff goes here
 """,
)

collective.pdfpeek-0.8/docs/CHANGES.txt

Changelog
=========

0.8 (2009-10-13)

 - Fixed a bug in the transform code to allow functioning with any filefield,
 as long as it is called file.
 [dbrenneman]

0.7 (2009-10-13)

 - Streamlined transform code.
 [dbrenneman]

 - Added ability to toggle the pdfpeek viewlet display on and off via configlet.
 [dbrenneman]

0.6 (2009-10-05)

 - Bugfix release.
 [dbrenneman]

0.5 (2009-10-05)

 - Added control panel configlet.
 [dbrenneman]

 - Removed unneeded xml files from uninstall profile.
 [dbrenneman]

 - Optimized transform.
 [dbrenneman]

 - Added storage of image thumbnail along with image, generated with PIL.
 [dbrenneman]

 - Changed annotation to store images in a dict instead of a list.
 [dbrenneman]

 - Changed event handler to listen on all AT based objects instead of ATFile.
 [dbrenneman]

 - Added custom pdfpeek icon for configlet.
 [dbrenneman]

 - Added custom traverser to allow easy access to the OFS.Image.Image()
 objects stored on IPDF objects.
 [dbrenneman]

 - Modified pdfpeek viewlet code to display images using the custom traverser.
 [dbrenneman]

 - Added custom scrollable gallery with tooltips using jQuery Tools to the
 pdfpeek viewlet for display.
 [dbrenneman]

0.4 (2009-10-01)

 - Refactored storage to use OFS.Image.Image() objects instead of storing the
 raw binary data in string format.
 [dbrenneman]

 - Refactored event handler object variable name.
 [dbrenneman]

 - Removed unneeded files from default GS Ext. profile.
 [dbrenneman]

 - Removed unneeded javascript files and associated images and css.
 [dbrenneman]

0.3 - 2009-08-03

- fixed parsing of pdf files with multiple pages
 [piv]

0.1 - Unreleased

- Initial release

collective.pdfpeek-0.8/docs/INSTALL.txt

collective.pdfpeek Installation

To install collective.pdfpeek into the global Python environment (or a workingenv),
using a traditional Zope 2 instance, you can do this:

* When you're reading this you have probably already run
 ``easy_install collective.pdfpeek``. Find out how to install setuptools
 (and EasyInstall) here:
 http://peak.telecommunity.com/DevCenter/EasyInstall

* If you are using Zope 2.9 (not 2.10), get `pythonproducts`_ and install it
 via::

 python setup.py install --home /path/to/instance

into your Zope instance.

* Create a file called ``collective.pdfpeek-configure.zcml`` in the
 ``/path/to/instance/etc/package-includes`` directory. The file
 should only contain this::

 <include package="collective.pdfpeek" />

.. _pythonproducts: http://plone.org/products/pythonproducts

Alternatively, if you are using zc.buildout and the plone.recipe.zope2instance
recipe to manage your project, you can do this:

* Add ``collective.pdfpeek`` to the list of eggs to install, e.g.:

 [buildout]
 ...
 eggs =
 ...
 collective.pdfpeek

* Tell the plone.recipe.zope2instance recipe to install a ZCML slug:

 [instance]
 recipe = plone.recipe.zope2instance
 ...
 zcml =
 collective.pdfpeek

* Re-run buildout, e.g. with:

 $./bin/buildout

You can skip the ZCML slug if you are going to explicitly include the package
from another package's configure.zcml file.

collective.pdfpeek-0.8/docs/LICENSE.GPL

		 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)
�
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
�
 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
�
 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		 END OF TERMS AND CONDITIONS

collective.pdfpeek-0.8/docs/LICENSE.txt

 collective.pdfpeek is copyright David Brenneman

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 MA 02111-1307 USA.

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/dependency_links.txt

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/entry_points.txt

 # stuff goes here

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/namespace_packages.txt

collective

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/not-zip-safe

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/PKG-INFO

Metadata-Version: 1.0
Name: collective.pdfpeek
Version: 0.8
Summary: A Plone product that generates image thumbnail previewsof PDF files stored on ATCT based objects.
Home-page: https://svn.plone.org/svn/collective/collective.pdfpeek
Author: David Brenneman
Author-email: db@davidbrenneman.com
License: GPL
Description: Introduction
 ============

 A Plone product that generates image thumbnail previews of PDF files uploaded
 to Archetypes based content objects.

 This product, when installed in a Plone 3.x site, will automatically generate
 preview and thumbnail images of each page of uploaded PDF files and store
 them annotated onto the content object containing the pdf file.

 Requires GNU ghostscript, PyPDF and PIL!

 The image generation currently takes place on object modified events.
 I am working on an implementation with a clock server process.
 This way the user does not have to wait for the images to be generated.

 - Code repository: https://svn.plone.org/svn/collective/collective.pdfpeek
 - Questions and comments to db@davidbrenneman.com
 - Report bugs to db@davidbrenneman.com

 Changelog
 =========

 0.8 (2009-10-13)

 - Fixed a bug in the transform code to allow functioning with any filefield,
 as long as it is called file.
 [dbrenneman]

 0.7 (2009-10-13)

 - Streamlined transform code.
 [dbrenneman]

 - Added ability to toggle the pdfpeek viewlet display on and off via configlet.
 [dbrenneman]

 0.6 (2009-10-05)

 - Bugfix release.
 [dbrenneman]

 0.5 (2009-10-05)

 - Added control panel configlet.
 [dbrenneman]

 - Removed unneeded xml files from uninstall profile.
 [dbrenneman]

 - Optimized transform.
 [dbrenneman]

 - Added storage of image thumbnail along with image, generated with PIL.
 [dbrenneman]

 - Changed annotation to store images in a dict instead of a list.
 [dbrenneman]

 - Changed event handler to listen on all AT based objects instead of ATFile.
 [dbrenneman]

 - Added custom pdfpeek icon for configlet.
 [dbrenneman]

 - Added custom traverser to allow easy access to the OFS.Image.Image()
 objects stored on IPDF objects.
 [dbrenneman]

 - Modified pdfpeek viewlet code to display images using the custom traverser.
 [dbrenneman]

 - Added custom scrollable gallery with tooltips using jQuery Tools to the
 pdfpeek viewlet for display.
 [dbrenneman]

 0.4 (2009-10-01)

 - Refactored storage to use OFS.Image.Image() objects instead of storing the
 raw binary data in string format.
 [dbrenneman]

 - Refactored event handler object variable name.
 [dbrenneman]

 - Removed unneeded files from default GS Ext. profile.
 [dbrenneman]

 - Removed unneeded javascript files and associated images and css.
 [dbrenneman]

 0.3 - 2009-08-03

 - fixed parsing of pdf files with multiple pages
 [piv]

 0.1 - Unreleased

 - Initial release

Keywords: Plone Zope Python PDF
Platform: UNKNOWN
Classifier: Framework :: Plone
Classifier: Programming Language :: Python
Classifier: Topic :: Software Development :: Libraries :: Python Modules

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/requires.txt

setuptools
plone.browserlayer
pyPdf

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/SOURCES.txt

MANIFEST.in
README.txt
setup.cfg
setup.py
collective/__init__.py
collective.pdfpeek.egg-info/PKG-INFO
collective.pdfpeek.egg-info/SOURCES.txt
collective.pdfpeek.egg-info/dependency_links.txt
collective.pdfpeek.egg-info/entry_points.txt
collective.pdfpeek.egg-info/namespace_packages.txt
collective.pdfpeek.egg-info/not-zip-safe
collective.pdfpeek.egg-info/requires.txt
collective.pdfpeek.egg-info/top_level.txt
collective/pdfpeek/TODO.txt
collective/pdfpeek/__init__.py
collective/pdfpeek/configure.zcml
collective/pdfpeek/events.py
collective/pdfpeek/events.zcml
collective/pdfpeek/genericsetup.zcml
collective/pdfpeek/interfaces.py
collective/pdfpeek/setuphandlers.py
collective/pdfpeek/transforms.py
collective/pdfpeek/traversal.py
collective/pdfpeek/browser/__init__.py
collective/pdfpeek/browser/configure.zcml
collective/pdfpeek/browser/interfaces.py
collective/pdfpeek/browser/pdf.py
collective/pdfpeek/browser/viewlets.py
collective/pdfpeek/browser/images/black.png
collective/pdfpeek/browser/images/black_arrow.png
collective/pdfpeek/browser/images/close.png
collective/pdfpeek/browser/images/h150.png
collective/pdfpeek/browser/images/h300.png
collective/pdfpeek/browser/images/h80.png
collective/pdfpeek/browser/images/hori_large.png
collective/pdfpeek/browser/images/loading.gif
collective/pdfpeek/browser/images/mask_gradient_1800.png
collective/pdfpeek/browser/images/pdfpeek_icon.png
collective/pdfpeek/browser/images/vert_large.png
collective/pdfpeek/browser/javascript/jquery.reflect.js
collective/pdfpeek/browser/stylesheets/pdfpeek.css
collective/pdfpeek/browser/templates/pdfpeek.pt
collective/pdfpeek/profiles/default/actionicons.xml
collective/pdfpeek/profiles/default/browserlayer.xml
collective/pdfpeek/profiles/default/collective.pdfpeek_various.txt
collective/pdfpeek/profiles/default/controlpanel.xml
collective/pdfpeek/profiles/default/cssregistry.xml
collective/pdfpeek/profiles/default/jsregistry.xml
collective/pdfpeek/profiles/default/metadata.xml
collective/pdfpeek/profiles/uninstall/actionicons.xml
collective/pdfpeek/profiles/uninstall/browserlayer.xml
collective/pdfpeek/profiles/uninstall/collective.pdfpeek_various.txt
collective/pdfpeek/profiles/uninstall/controlpanel.xml
collective/pdfpeek/profiles/uninstall/cssregistry.xml
collective/pdfpeek/profiles/uninstall/jsregistry.xml
collective/pdfpeek/profiles/uninstall/metadata.xml
collective/pdfpeek/tests/__init__.py
collective/pdfpeek/tests/base.py
collective/pdfpeek/tests/integration.txt
collective/pdfpeek/tests/plone.pdf
collective/pdfpeek/tests/plone.txt
collective/pdfpeek/tests/test_integration_doctests.py
docs/CHANGES.txt
docs/INSTALL.txt
docs/LICENSE.GPL
docs/LICENSE.txt

collective.pdfpeek-0.8/collective.pdfpeek.egg-info/top_level.txt

collective

collective.pdfpeek-0.8/collective/__init__.py

See http://peak.telecommunity.com/DevCenter/setuptools#namespace-packages
try:
 __import__('pkg_resources').declare_namespace(__name__)
except ImportError:
 from pkgutil import extend_path
 __path__ = extend_path(__path__, __name__)

collective.pdfpeek-0.8/collective/pdfpeek/__init__.py

def initialize(context):
 """Intializer called when used as a Zope 2 product."""

collective.pdfpeek-0.8/collective/pdfpeek/configure.zcml

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="collective.pdfpeek">

 <five:registerPackage package="." initialize=".initialize" />

 <include package=".browser" />
 <include package="." file="genericsetup.zcml" />
 <include package="." file="events.zcml" />

 <adapter
 factory=".traversal.PDFPeekImageScaleTraverser"
 name="images"
 />

</configure>

collective.pdfpeek-0.8/collective/pdfpeek/events.py

##
#
copyright (c) 2009 David Brenneman
open-source under the GPL v2.1 (see LICENSE.txt)
#
##

"""
PDFpeek Event Handlers
"""

__author__ = """David Brenneman <db@davidbrenneman.com>"""
__docformat__ = 'plaintext'

from zope.interface import alsoProvides, noLongerProvides
from zope.annotation.interfaces import IAnnotations, IAttributeAnnotatable

from collective.pdfpeek.transforms import convertPDFToPNG
from collective.pdfpeek.interfaces import IPDF

def pdf_changed(content, event):
 """
 This event handler is fired when ATFile objects are initialized or edited
 and calls the appropriate functions to convert the pdf to png thumbnails
 and store the list of thumbnails annotated on the file object.
 """

 if content.getContentType() == 'application/pdf':
 """Mark the object with the IPDF marker interface."""
 alsoProvides(content, IPDF)
 image_converter = convertPDFToPNG()
 images = image_converter.generate_thumbnails(content)
 alsoProvides(content, IAttributeAnnotatable)
 annotations = IAnnotations(content)
 annotations['pdfpeek'] = {}
 annotations['pdfpeek']['image_thumbnails'] = images
 else:
 # a file was uploaded that is not a PDF
 # remove the marker interface
 noLongerProvides(content, IPDF)
 # remove the annotated images
 IAnnotations(content)
 annotations = IAnnotations(content)
 if 'pdfpeek' in annotations:
 del annotations['pdfpeek']

 return None

collective.pdfpeek-0.8/collective/pdfpeek/events.zcml

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 i18n_domain="collective.pdfpeek">

 <subscriber
 for="Products.Archetypes.interfaces.IBaseObject
 Products.Archetypes.interfaces.IObjectEditedEvent"
 handler=".events.pdf_changed" />

 <subscriber
 for="Products.Archetypes.interfaces.IBaseObject
 Products.Archetypes.interfaces.IObjectInitializedEvent"
 handler=".events.pdf_changed" />

</configure>

collective.pdfpeek-0.8/collective/pdfpeek/genericsetup.zcml

<configure
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="genericsetup">
 <genericsetup:registerProfile
 name="default"
 title="PDFpeek"
 directory="profiles/default"
 description="Thumbnail Image Previews of PDF files."
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />
 <genericsetup:importStep
 name="collective.pdfpeek-various"
 title="PDFpeek Import Step"
 description="Import steps for collective.pdfpeek"
 handler="collective.pdfpeek.setuphandlers.importVarious">
 <!--<depends name="something.else"/>-->
 </genericsetup:importStep>
 <genericsetup:registerProfile
 name="uninstall"
 title="Uninstall PDFpeek"
 directory="profiles/uninstall"
 description="Uninstall Thumbnail Image Previews of PDF files."
 provides="Products.GenericSetup.interfaces.EXTENSION"
 />
</configure>

collective.pdfpeek-0.8/collective/pdfpeek/interfaces.py

##
#
copyright (c) 2009 David Brenneman
open-source under the GPL v2.1 (see LICENSE.txt)
#
##

"""pdfpeek interfaces"""

__author__ = """David Brenneman <db@davidbrenneman.com>"""
__docformat__ = 'plaintext'

from zope import schema
from zope.interface import Interface
from Products.CMFPlone import PloneMessageFactory as _

class IPDF(Interface):
 """Marker interface denoting a pdf document."""

class IConvertPDFToPNG(Interface):
 """Marker interface identifying the pdf image thumbnail generator."""

class IPDFPeekConfiguration(Interface):
 """interface describing the pdfpeek control panel."""
 # toggle image preview viewlet on/off
 # control size of image preview
 # control size of image thumbnail

 preview_toggle = schema.Bool(title=_(u'Preview Toggle'),
 description=_(
 u'Display PDFPeek image previews in default content views.'),
 required=True,
 default=True)

 preview_size = schema.Text(title=_(u'Preview Size'),
 description=_(
 u'Control PDFPeek Image Preview Size.'),
 required=False,
 default=u'')

 thumbnail_size = schema.Text(title=_(u'Thumbnail Size'),
 description=_(
 u'Control PDFPeek Image Thumbnail Size.'),
 required=False,
 default=u'')

collective.pdfpeek-0.8/collective/pdfpeek/setuphandlers.py

##
#
copyright (c) 2009 David Brenneman
open-source under the GPL v2.1 (see LICENSE.txt)
#
##

from collective.pdfpeek.browser.pdf import PDFPeekConfiguration
from collective.pdfpeek.interfaces import IPDFPeekConfiguration

def importVarious(context):
 """Miscellanous steps import handle
 """

 # Ordinarily, GenericSetup handlers check for the existence of XML files.
 # Here, we are not parsing an XML file, but we use this text file as a
 # flag to check that we actually meant for this import step to be run.
 # The file is found in profiles/default.

 if context.readDataFile('collective.pdfpeek_various.txt') is None:
 return

 # Add additional setup code here
 portal = context.getSite()
 sm = portal.getSiteManager()

 if not sm.queryUtility(IPDFPeekConfiguration, name='pdfpeek_config'):
 sm.registerUtility(PDFPeekConfiguration(), IPDFPeekConfiguration, 'pdfpeek_config')

collective.pdfpeek-0.8/collective/pdfpeek/TODO.txt

=========================
 collective.pdfpeek TODO
=========================

* Implement control panel for adding and removing image previews on file objects
 containing PDF files.

collective.pdfpeek-0.8/collective/pdfpeek/transforms.py

##
#
copyright (c) 2009 David Brenneman
open-source under the GPL v2.1 (see LICENSE.txt)
#
##

"""
PDF to Image Converter Class
"""

__author__ = """David Brenneman <db@davidbrenneman.com>"""
__docformat__ = 'plaintext'

import subprocess
import StringIO

import pyPdf
from PIL import Image

from zope.interface import implements
from OFS.Image import Image as OFSImage

from collective.pdfpeek.interfaces import IConvertPDFToPNG

class convertPDFToPNG(object):
 """
 utility for converting each page of a pdf file to an image file
 returns a list of images, one per page of the pdf file
 """
 implements(IConvertPDFToPNG)

 def ghostscript_transform(self, pdf_file_data_string, page_num):
 """
 ghostscript_transform takes an AT based object with an IPDF interface
 and a page number argument and converts that page number of the pdf
 file to a png image file.
 """
 first_page = "-dFirstPage=%s" % (page_num)
 last_page = "-dLastPage=%s" % (page_num)
 gs_cmd = [
 "gs",
 "-q",
 "-sDEVICE=jpeg",
 "-dJPEGQ=99",
 "-dGraphicsAlphaBits=4",
 "-dTextAlphaBits=4",
 "-dDOINTERPOLATE",
 "-dSAFER",
 "-dBATCH",
 "-dNOPAUSE",
 first_page,
 last_page,
 "-r55W56",
 "-sOutputFile=%stdout",
 "-",
]

 jpeg = None
 """run the ghostscript command on the pdf file,
 capture the output png file of the specified page number"""
 gs_process = subprocess.Popen(gs_cmd,stdout=subprocess.PIPE,stdin=subprocess.PIPE,)
 gs_process.stdin.write(pdf_file_data_string.getvalue())
 jpeg = gs_process.communicate()[0]
 gs_process.stdin.close()
 return_code = gs_process.returncode
 if return_code == 0:
 return jpeg
 else:
 print "Warning: ghostscript process did not exit cleanly! Error Code: %d" % (return_code)
 raise Exception

 def generate_thumbnails(self, pdf_file):
 document_page_count = 0
 page_number = 0
 images = None
 """If the file is a pdf file then we look inside with PyPDF and see
 how many pages there are.
 """
 # if we've got a pdf file,
 # get the pdf file as a file object containing the data in a string
 pdf_file_data_string = StringIO.StringIO(pdf_file.getFile().data)
 # create a pyPdf object from the pdf file data
 pdf = pyPdf.PdfFileReader(pdf_file_data_string)
 # get the number of pages in the pdf file from the pyPdf object
 document_page_count = pdf.getNumPages()
 print "Found a PDF file with %d pages." % (document_page_count)
 images = None
 if document_page_count > 0:
 # if we're dealing with a pdf file,
 # set the thumbnail size
 thumb_size = 128, 128
 # set up the images dict
 images = {}
 for page in range(document_page_count):
 # for each page in the pdf file,
 # set up a human readable page number counter starting at 1
 page_number = page + 1
 # set up the image object ids and titles
 image_id = "%d_preview" % page_number
 image_title = "Page %d Preview" % page_number
 image_thumb_id = "%d_thumb" % page_number
 image_thumb_title = "Page %d Thumbnail" % page_number
 # create a file object to store the thumbnail in
 raw_image_thumb = StringIO.StringIO('')
 # run ghostscript, convert pdf page into image
 raw_image = self.ghostscript_transform(
 pdf_file_data_string, page_number)
 # use PIL to generate thumbnail from jpeg
 img_thumb = Image.open(StringIO.StringIO(raw_image))
 img_thumb.thumbnail(thumb_size, Image.ANTIALIAS)
 # save the resulting thumbnail in the file object
 img_thumb.save(raw_image_thumb, "JPEG")
 # create the OFS.Image objects
 image_full_object = OFSImage(image_id, image_title, raw_image)
 image_thumb_object = OFSImage(image_thumb_id, image_thumb_title, raw_image_thumb)
 # add the objects to the images dict
 images[image_id] = image_full_object
 images[image_thumb_id] = image_thumb_object
 print "Thumbnail generated."
 else:
 print "Error: %d pages in PDF file." % (document_page_count)
 return images

collective.pdfpeek-0.8/collective/pdfpeek/traversal.py

from zope.interface import implements
from zope.component import adapts

from zope.traversing.interfaces import ITraversable
from zope.publisher.interfaces.http import IHTTPRequest

from collective.pdfpeek.interfaces import IPDF

class PDFPeekImageScaleTraverser(object):
 """Used to traverse to images stored on IPDF objects

 Traversing to portal/object/++images++/++page++1 will retrieve the first
 page of the pdf, acquisition-wrapped.
 """
 implements(ITraversable)
 adapts(IPDF, IHTTPRequest)

 def __init__(self, context, request=None):
 self.context = context
 self.request = request

 def traverse(self, name, ignore):
 annotations = dict(self.context.__annotations__)
 image = annotations['pdfpeek']['image_thumbnails'][name]
 return image

collective.pdfpeek-0.8/collective/pdfpeek/tests/__init__.py

#flag file

collective.pdfpeek-0.8/collective/pdfpeek/tests/base.py

"""Test setup for integration and functional tests.

When we import PloneTestCase and then call setupPloneSite(), all of Plone's
products are loaded, and a Plone site will be created. This happens at module
level, which makes it faster to run each test, but slows down test runner
startup.
"""

from Products.Five import zcml
from Products.Five import fiveconfigure

from Testing import ZopeTestCase as ztc

from Products.PloneTestCase import PloneTestCase as ptc
from Products.PloneTestCase.layer import onsetup

#
When ZopeTestCase configures Zope, it will *not* auto-load products in
Products/. Instead, we have to use a statement such as:

ztc.installProduct('SimpleAttachment')

This does *not* apply to products in eggs and Python packages (i.e. not in
the Products.*) namespace. For that, see below.

All of Plone's products are already set up by PloneTestCase.

@onsetup
def setup_pdfpeek():
 """Set up the package and its dependencies.

 The @onsetup decorator causes the execution of this body to be deferred
 until the setup of the Plone site testing layer. We could have created our
 own layer, but this is the easiest way for Plone integration tests.
 """

 # Load the ZCML configuration for the example.tests package.
 # This can of course use <include /> to include other packages.

 fiveconfigure.debug_mode = True
 import collective.pdfpeek
 zcml.load_config('configure.zcml', collective.pdfpeek)
 fiveconfigure.debug_mode = False

 # We need to tell the testing framework that these products
 # should be available. This can't happen until after we have loaded
 # the ZCML. Thus, we do it here. Note the use of installPackage() instead
 # of installProduct().
 #
 # This is *only* necessary for packages outside the Products.* namespace
 # which are also declared as Zope 2 products, using
 # <five:registerPackage /> in ZCML.

 # We may also need to load dependencies, e.g.:
 #
 # ztc.installPackage('borg.localrole')
 #

 ztc.installPackage('collective.pdfpeek')

The order here is important: We first call the (deferred) function which
installs the products we need for this product. Then, we let PloneTestCase
set up this product on installation.

setup_pdfpeek()
ptc.setupPloneSite(products=['collective.pdfpeek'])

class PDFPeekTestCase(ptc.PloneTestCase):
 """We use this base class for all the tests in this package. If necessary,
 we can put common utility or setup code in here. This applies to unit
 test cases.
 """

class PDFPeekFunctionalTestCase(ptc.FunctionalTestCase):
 """We use this class for functional integration tests that use doctest
 syntax. Again, we can put basic common utility or setup code in here.
 """

collective.pdfpeek-0.8/collective/pdfpeek/tests/integration.txt

collective.pdfpeek integration doctest
======================================

This test is an integration test that uses PloneTestCase. Here, 'self' is
the test class, so we can use 'self.folder', 'self.portal' and so on. The
setup is done in tests/test_integration_doctests.py

We first test that the low level machinery of the PDF to PNG transform works,
we then test our event handlers to see if they fire the transform.

Setup:

log in as the portal owner:

 >>> self.loginAsPortalOwner()

create a few file objects to work with:

 >>> self.portal.invokeFactory('File', id='test_pdf', title='Test PDF File')
 'test_pdf'

create another file object we keep empty for later:

 >>> self.portal.invokeFactory('File', id='test_pdf_2', title='Second Test PDF File')
 'test_pdf_2'

Testing the inner-workings of the collective.pdfpeek.transforms module:

Put some content in the file object (yes, we're basically testing ATFile here, what?):

 >>> self.portal.test_pdf.setFile('this is a test')
 >>> self.portal.test_pdf_2.setFile('this is another test for later')
 >>> self.portal.test_pdf.getFile().get_data()
 'this is a test'

Let's get the current path and pass in the path with the test pdf file in
the tests/ directory called plone.pdf:

 >>> def mydir():
 ... import os.path, sys
 ... if __name__ == '__main__':
 ... filename = sys.argv[0]
 ... else:
 ... filename = __file__
 ... return os.path.abspath(os.path.dirname(filename))
 >>> file_path = mydir() + """/plone.pdf"""
 >>> pdf_file = open(file_path, mode='rb')

Ok, now put a PDF file in the file object. Now we store the pdf_file we just opened
on the first ATFile object we created:

 >>> self.portal.test_pdf.setFile(pdf_file)

Let's check to be sure we've got the PDF in the ATFile object:

 >>> self.portal.test_pdf.getFile().get_data()
 '%PDF-1.5\r%\xe2\xe3\xcf\xd3\r\n10 0 obj\r...>>stream\r\nh\xdebb\x00\x01&FFCC\x06& \xab\x15D\xf2W\x82\xd9= \x92Q\x16(\xfb\x7f\xbf&X\x84\x81\x11D2\xfd\x07\x91\x8c\x0c\x00\x01\x06\x00\x86.\x05\x1b\rendstream\rendobj\rstartxref\r116\r%%EOF\r'

Get the mime type of the file stored in the ATFile object:

 >>> field = self.portal.test_pdf.getField('file')
 >>> field.getContentType(self.portal.test_pdf)
 'application/pdf'

Check that the mime type of the file with no pdf is text/plain:

 >>> field2 = self.portal.test_pdf_2.getField('file')
 >>> field2.getContentType(self.portal.test_pdf_2)
 'text/plain'

Now initialize an instance of the transform class which will convert
the pdf stored on the ATFile object to one PNG per page:

 >>> from collective.pdfpeek.transforms import convertPDFToPNG
 >>> converter = convertPDFToPNG()

Now try the converter with the good data, it should work:

 >>> images = converter.generate_thumbnails(self.portal.test_pdf)
 Found a PDF file with 1 pages.
 Thumbnail generated.

And store the list of jpegs on the ATFile object as an annotation.

 >>> from zope.annotation.interfaces import IAnnotations
 >>> from zope.annotation.interfaces import IAttributeAnnotatable
 >>> from zope.interface import alsoProvides
 >>> alsoProvides(self.portal.test_pdf, IAttributeAnnotatable)
 >>> annotations = IAnnotations(self.portal.test_pdf)
 >>> annotations['pdfpeek'] = {}
 >>> annotations['pdfpeek']['image_thumbnails'] = images

OK, now let's try to access the annotation on the object:

 >>> self.portal.test_pdf.__annotations__
 <BTrees._OOBTree.OOBTree object at ...>

Let's put the annotations in a dict:

 >>> dict(self.portal.test_pdf.__annotations__)
 {'pdfpeek': {'image_thumbnails': {'1_preview': <Image at 1_preview>, '1_thumb': <Image at 1_thumb>}}, 'Archetypes.storage.AnnotationStorage-file': <File at file>}

Testing collective.pdfpeek's event handler subsystem:

So the converter works, let's try creating an ATFile object, the object
should get the pdfpeek annotation when we add a pdf file to it and fire the proper event.

 >>> self.portal.invokeFactory('File', id='test_pdf_3', title='Yet Another Test PDF File')
 'test_pdf_3'

OK, we've got another ATFile object, let's input the pdf file:

 >>> self.portal.test_pdf_3.setFile(pdf_file)

We have the plone.pdf file stored in this third ATFile object, let's notify
our event handler that the object has been edited; the event handler should detect
the event and fire the transform, annotating the results on the ATFile object:

 >>> from zope.event import notify
 >>> import zope.component.event
 >>> from Products.Archetypes.event import ObjectEditedEvent
 >>> notify(ObjectEditedEvent(self.portal.test_pdf_3))
 Found a PDF file with 1 pages.
 Thumbnail generated.

Now we should have the annotation on the object because the event handler fired:

 >>> self.portal.test_pdf_3.__annotations__
 <BTrees._OOBTree.OOBTree object at ...>

Ok, so we have the annotations on there, but do they contain what we expect? Let's see:

 >>> dict(self.portal.test_pdf_3.__annotations__)
 {'pdfpeek': {'image_thumbnails': {'1_preview': <Image at 1_preview>, '1_thumb': <Image at 1_thumb>}}, 'Archetypes.storage.AnnotationStorage-file': <File at file>}

 >>> annotations = dict(self.portal.test_pdf_3.__annotations__)
 >>> image = annotations['pdfpeek']['image_thumbnails']['1_preview']
 >>> image
 <Image at 1_preview>

 >>> image.getContentType()
 'image/jpeg'

Hooray, the annotations are there after the event is fired, and they contain what we expect,
the list of images output by the transform!

Now let's try putting some non-pdf content in the file object:

First we open a text file to replace the pdf with:

 >>> text_file_path = mydir() + """/plone.txt"""
 >>> text_file = open(text_file_path, mode='rb')
 >>> text_file
 <open file ...>

 >>> self.portal.test_pdf_3.setFile(text_file)
 >>> self.portal.test_pdf_3.getContentType()
 'text/plain'

Then let's notify the subscriber / event handler that our file object has changed:

 >>> notify(ObjectEditedEvent(self.portal.test_pdf_3))

Now there shouldn't be any annotations any more:

 >>> dict(self.portal.test_pdf_3.__annotations__)
 {'Archetypes.storage.AnnotationStorage-file': <File at file>}

collective.pdfpeek-0.8/collective/pdfpeek/tests/plone.pdf

Search this site…

Log in

Home

Downloads

Documentation

Get Involved

Plone Foundation

Support

What is Plone?

A powerful, flexible Content Management

solution that is easy to install, use and extend

Plone lets non-technical people create and maintain information using

only a web browser. Perfect for web sites or intranets, Plone offers

superior security without sacrificing extensibility or ease of use.

Explore the possibilities

Plone in Numbers

Plone is among the top 2% of all open source projects worldwide, with 200 core developers and more

than 300 solution providers in 57 countries. The project has been actively developed since 2001, is

available in more than 40 languages, and has the best security track record of any major CMS.

It is owned by the Plone Foundation, a 501(c)(3) not-for-profit organization, and is available for all major

operating systems.

Sources: CVE and Ohloh.

Plone CMS: Open Source Content Management http://plone.org/

1 of 3 4/16/09 4:48 PM

collective.pdfpeek-0.8/collective/pdfpeek/tests/plone.txt

What is Plone?
A powerful, flexible Content Management
solution that is easy to install, use and extend

Plone lets non-technical people create and maintain information using
only a web browser. Perfect for web sites or intranets, Plone offers
superior security without sacrificing extensibility or ease of use.
Plone is among the top 2% of all open source projects worldwide, with 200 core developers and more than 300 solution providers in 57 countries.
The project has been actively developed since 2001, is available in more than 40 languages, and has the best security track record of any major CMS.
It is owned by the Plone Foundation, a 501(c)(3) not-for-profit organization, and is available for all major operating systems.
Sources: CVE and Ohloh.

collective.pdfpeek-0.8/collective/pdfpeek/tests/test_integration_doctests.py

"""This is an integration doctest test. It uses PloneTestCase and doctest
syntax.
"""

import unittest
import doctest

from zope.testing import doctestunit
from Testing import ZopeTestCase as ztc

from collective.pdfpeek.tests import base

def test_suite():
 """This sets up a test suite that actually runs the tests in the class
 above
 """
 return unittest.TestSuite([

 # Here, we create a test suite passing the name of a file relative
 # to the package home, the name of the package, and the test base
 # class to use. Here, the base class is a full PloneTestCase, which
 # means that we get a full Plone site set up.

 # The actual test is in integration.txt

 ztc.ZopeDocFileSuite(
 'tests/integration.txt', package='collective.pdfpeek',
 test_class=base.PDFPeekFunctionalTestCase,
 optionflags=doctest.REPORT_ONLY_FIRST_FAILURE | doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS),

 # We could add more doctest files here as well, by copying the file
 # block above.

])

collective.pdfpeek-0.8/collective/pdfpeek/profiles/uninstall/actionicons.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/uninstall/browserlayer.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/uninstall/collective.pdfpeek_various.txt

##flag file

collective.pdfpeek-0.8/collective/pdfpeek/profiles/uninstall/controlpanel.xml

 collective.pdfpeek: Manage PDF Peek

collective.pdfpeek-0.8/collective/pdfpeek/profiles/uninstall/cssregistry.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/uninstall/jsregistry.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/uninstall/metadata.xml

 0.6

collective.pdfpeek-0.8/collective/pdfpeek/profiles/default/actionicons.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/default/browserlayer.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/default/collective.pdfpeek_various.txt

##flag file

collective.pdfpeek-0.8/collective/pdfpeek/profiles/default/controlpanel.xml

 collective.pdfpeek: Manage PDF Peek

collective.pdfpeek-0.8/collective/pdfpeek/profiles/default/cssregistry.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/default/jsregistry.xml

collective.pdfpeek-0.8/collective/pdfpeek/profiles/default/metadata.xml

 0.6

collective.pdfpeek-0.8/collective/pdfpeek/browser/__init__.py

#flag file

collective.pdfpeek-0.8/collective/pdfpeek/browser/configure.zcml

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:plone="http://namespaces.plone.org/plone"
 i18n_domain="collective.pdfpeek">

 <include package="plone.browserlayer" />

 <!-- Resource directory for javascripts -->
 <browser:resourceDirectory
 name="collective.pdfpeek.javascript"
 directory="javascript"
 layer=".interfaces.IPDFpeekLayer"
 />

 <!-- Resource directory for stylesheets -->
 <browser:resourceDirectory
 name="collective.pdfpeek.stylesheets"
 directory="stylesheets"
 layer=".interfaces.IPDFpeekLayer"
 />

 <!-- Resource directory for images -->
 <browser:resourceDirectory
 name="collective.pdfpeek.images"
 directory="images"
 layer=".interfaces.IPDFpeekLayer"
 />

 <browser:page
 for="Products.CMFPlone.Portal.PloneSite"
 name="pdfpeek"
 class=".pdf.PDFPeekControlPanel"
 permission="cmf.ManagePortal"
 />

 <adapter
 for="*"
 provides="collective.pdfpeek.interfaces.IPDFPeekConfiguration"
 factory=".pdf.form_adapter" />

 <browser:page
 for="collective.pdfpeek.interfaces.IPDF"
 name="view-image-annotation"
 class=".pdf.PdfImageAnnotationView"
 permission="zope2.View"
 />

 <browser:page
 for="Products.ATContentTypes.interface.file.IATFile"
 name="check-pdf"
 class=".pdf.IsPdfView"
 permission="zope2.View"
 />

 <browser:page
 for="*"
 name="check-preview"
 class=".pdf.IsPreviewOnView"
 permission="zope2.View"
 />

 <!-- A custom viewlet for PDFs only -->
 <browser:viewlet
 name="pdfpeek.content"
 for="collective.pdfpeek.interfaces.IPDF"
 manager="plone.app.layout.viewlets.interfaces.IAboveContentBody"
 layer=".interfaces.IPDFpeekLayer"
 template="templates/pdfpeek.pt"
 permission="zope2.View"
 />

</configure>

collective.pdfpeek-0.8/collective/pdfpeek/browser/interfaces.py

##
#
copyright (c) 2009 David Brenneman
open-source under the GPL v2.1 (see LICENSE.txt)
#
##

"""
PDFpeek browser view interfaces
"""

__author__ = """David Brenneman <db@davidbrenneman.com>"""
__docformat__ = 'plaintext'

from zope.interface import Interface

class IPDFpeekLayer(Interface):
 """Marker interface that defines a Zope 3 browserlayer.
 """

collective.pdfpeek-0.8/collective/pdfpeek/browser/pdf.py

##
#
copyright (c) 2009 David Brenneman
open-source under the GPL v2.1 (see LICENSE.txt)
#
##

from Acquisition import aq_inner
from zope.component import getUtility
from zope.app.component.hooks import getSite
from zope.interface import implements
from zope.schema.fieldproperty import FieldProperty
from OFS.SimpleItem import SimpleItem
from Products.Five.browser import BrowserView
from zope.formlib.form import FormFields
from Products.CMFPlone import PloneMessageFactory as _
from plone.app.controlpanel.form import ControlPanelForm
from collective.pdfpeek.interfaces import IPDFPeekConfiguration
from collective.pdfpeek.interfaces import IPDF

class PdfImageAnnotationView(BrowserView):
 """view class used to access the image thumbnails that pdfpeek annotates on ATFile objects.
 """

 @property
 def num_pages(self):
 context = aq_inner(self.context)
 annotations = dict(context.__annotations__)
 num_pages = range(len(annotations['pdfpeek']['image_thumbnails']) / 2)
 return num_pages

class IsPdfView(BrowserView):
 """check to see if the object is a PDF
 """

 @property
 def is_pdf(self):
 if IPDF.providedBy(self.context):
 return True
 return False

class IsPreviewOnView(BrowserView):
 """
 check to see if the image previews are on.
 """

 @property
 def previews_on(self):
 portal = getSite()
 config = getUtility(IPDFPeekConfiguration, name='pdfpeek_config', context=portal)
 if config.preview_toggle == True:
 return True
 return False

class PDFPeekControlPanel(ControlPanelForm):
 """Control panel form for setting ALM site specific properties"""
 form_fields = FormFields(IPDFPeekConfiguration)
 label = _(u'PDF Peek Settings')
 description = _(u'Global settings for the PDF Peek Product')
 form_name = _(u'PDF Peek Settings')

class PDFPeekConfiguration(SimpleItem):
 implements(IPDFPeekConfiguration)
 preview_toggle = FieldProperty(IPDFPeekConfiguration['preview_toggle'])
 preview_size = FieldProperty(IPDFPeekConfiguration['preview_size'])
 thumbnail_size = FieldProperty(IPDFPeekConfiguration['thumbnail_size'])

def form_adapter(context):
 portal = getSite()
 return getUtility(IPDFPeekConfiguration, name='pdfpeek_config', context=portal)

collective.pdfpeek-0.8/collective/pdfpeek/browser/viewlets.py

##
#
copyright (c) 2009 David Brenneman
open-source under the GPL v2.1 (see LICENSE.txt)
#
##

"""
PDFpeek Viewlets
"""

__author__ = """David Brenneman <db@davidbrenneman.com>"""
__docformat__ = 'plaintext'

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
from plone.app.layout.viewlets import ViewletBase

class PdfpeekViewlet(ViewletBase):
 """This viewlet displays the pdfpeek interface
 """
 def update(self):
 """
 Arguments:
 - `self`:
 """

 index = ViewPageTemplateFile('templates/pdfpeek.pt')

collective.pdfpeek-0.8/collective/pdfpeek/browser/templates/pdfpeek.pt

	

		 [image:]

	

	
	

		

			

				
					 A Blue Flower

					 Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, consectetur.

		
			
		

	

	
	

	

	

collective.pdfpeek-0.8/collective/pdfpeek/browser/stylesheets/pdfpeek.css

/* define background image for the expose mask */
#mask {
	background:#123 url(++resource++collective.pdfpeek.images/mask_gradient_1800.png) no-repeat;
	background-position:50% -200px;
}

/* general settings for both scrollables */
div.items {	
	width:20000em;	
	position:absolute;
	clear:both;
}

/* next/prev buttons */
div.navi {
	background-image:url(++resource++collective.pdfpeek.images/hori_large.png);
	width:30px;
	height:30px;
	float:left;
	margin-top:55px;
}

div.navi:hover 		{ background-position:-30px 0; }
div.navi:active 		{ background-position:-60px 0; }
div.nextPage 			{ background-position: 0 -30px; clear:right; }
div.nextPage:hover 	{ background-position:-30px -30px; }
div.nextPage:active 	{ background-position:-60px -30px; }

div.navi.disabled {
	visibility:hidden;		
}

/* the thumbnail scrollable */
#thumbnails {
	position:relative;
	overflow:hidden;	 	
	float:left;	
	width: 602px;	
	height:240px;
	background:#222 url(++resource++collective.pdfpeek.images/h150.png) repeat-x;
	margin:15px;
	border:2px solid #fff;
	outline:1px solid #333;
	-moz-outline-radius:4px;
}

#thumbnails div.items div {
	padding:5px;
	float:left;		
}

/* box styling */
#box {
	background-image:url(++resource++collective.pdfpeek.images/black.png);
	width:656px;
	height:724px;
	position:absolute;
	display:none;
}

/*
	image is contained on the overlay background image.
	the closing button is thus just a transparent container.
*/
#box .close {
	position:absolute;
	left:8px;
	top:8px;
	cursor:pointer;
	height:35px;
	width:35px;
	text-decoration:none;
}

/* overlay scrollable */
#images {	
	position:absolute;
	overflow:hidden;
	margin:50px;
	width:557px;
	height:600px;	
}

/* single image */
#images div.items div {
	float:left;
	width:557px;
	height:600px;
	margin-right:30px;
}

/* the tooltip */
#images div.items div.info {
	float:none;
	background:#333;
	color:#fff;
	font-size:13px;
	margin-top:-137px;
	padding:5px 75px;
	height:125px;
	display:none;
	width:490px;
}

#images div.items div.info h3 {
	color:#cde;
	margin-top:10px;
}
	

/* override button style on the overlay */
#box div.navi {
	position:absolute;
	bottom:33px;
	left:50px;
}

#box div.nextPage {
	left:580px;
}

collective.pdfpeek-0.8/collective/pdfpeek/browser/javascript/jquery.reflect.js

/**
 * reflection.js v1.6 for jquery
 *
 * Contributors: Cow http://cow.neondragon.net
 * Gfx http://www.jroller.com/page/gfx/
 * Sitharus http://www.sitharus.com
 * Andreas Linde http://www.andreaslinde.de
 * Tralala, coder @ http://www.vbulletin.org
 *				 Danny Ferguson, jquery plugin http://www.brendoman.com/dbc
 *
 * Freely distributable under MIT-style license.
 */

jQuery.fn.reflect = function(settings) {
	settings = jQuery.extend({
		height: 0.5,
		opacity: 0.5,
		inline: false
	}, settings);
	
	this.each(function() {
		var rheight = null;
		var ropacity = null;
		
		if (settings["inline"])
		{
			var classes = this.className.split(' ');
			for (j=0;j<classes.length;j++) {
				if (classes[j].indexOf("rheight") == 0) {
					settings["height"] = classes[j].substring(7)/100;
				} else if (classes[j].indexOf("ropacity") == 0) {
					settings["opacity"] = classes[j].substring(8)/100;
				}
			}
		}

		jQuery.Reflection.add(this, settings);
		
	})
	return this;
}

jQuery.Reflection = {
	
	add: function(image, options) {
		jQuery.Reflection.remove(image);
			
		try {
			var d = document.createElement('div');
			var p = image;
			
			var classes = p.className.split(' ');
			var newClasses = '';
			for (j=0;j<classes.length;j++) {
				if (classes[j] != "reflect") {
					if (newClasses) {
						newClasses += ' '
					}
					
					newClasses += classes[j];
				}
			}

			var reflectionHeight = Math.floor(p.height*options['height']);
			var divHeight = Math.floor(p.height*(1+options['height']));
			
			var reflectionWidth = p.width;
			
			if (document.all && !window.opera) {
				/* Copy original image's classes & styles to div */
				d.className = newClasses;
				p.className = 'reflected';
				
				d.style.cssText = p.style.cssText;
				p.style.cssText = 'vertical-align: bottom';
			
				var reflection = document.createElement('img');
				reflection.src = p.src;
				reflection.style.width = reflectionWidth+'px';
				
				reflection.style.marginBottom = "-"+(p.height-reflectionHeight)+'px';
				reflection.style.filter = 'flipv progid:DXImageTransform.Microsoft.Alpha(opacity='+(options['opacity']*100)+', style=1, finishOpacity=0, startx=0, starty=0, finishx=0, finishy='+(options['height']*100)+')';
				
				d.style.width = reflectionWidth+'px';
				d.style.height = divHeight+'px';
				p.parentNode.replaceChild(d, p);
				
				d.appendChild(p);
				d.appendChild(reflection);
			} else {
				var canvas = document.createElement('canvas');
				if (canvas.getContext) {
					/* Copy original image's classes & styles to div */
					d.className = newClasses;
					p.className = 'reflected';
					
					d.style.cssText = p.style.cssText;
					p.style.cssText = 'vertical-align: bottom';
			
					var context = canvas.getContext("2d");
				
					canvas.style.height = reflectionHeight+'px';
					canvas.style.width = reflectionWidth+'px';
					canvas.height = reflectionHeight;
					canvas.width = reflectionWidth;
					
					d.style.width = reflectionWidth+'px';
					d.style.height = divHeight+'px';
					p.parentNode.replaceChild(d, p);
					
					d.appendChild(p);
					d.appendChild(canvas);
					
					context.save();
					
					context.translate(0,image.height-1);
					context.scale(1,-1);
					
					context.drawImage(image, 0, 0, reflectionWidth, image.height);
	
					context.restore();
					
					context.globalCompositeOperation = "destination-out";
					var gradient = context.createLinearGradient(0, 0, 0, reflectionHeight);
					
					gradient.addColorStop(1, "rgba(255, 255, 255, 1.0)");
					gradient.addColorStop(0, "rgba(255, 255, 255, "+(1-options['opacity'])+")");
		
					context.fillStyle = gradient;
					if (navigator.appVersion.indexOf('WebKit') != -1) {
						context.fill();
					} else {
						context.fillRect(0, 0, reflectionWidth, reflectionHeight*2);
					}
				}
			}
		} catch (e) {
	 }
	},
	
	remove : function(image) {
		if (image.className == "reflected") {
			image.className = image.parentNode.className;
			image.parentNode.parentNode.replaceChild(image, image.parentNode);
		}
	}
}

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/black.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/black_arrow.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/close.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/h150.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/h300.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/h80.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/hori_large.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/loading.gif

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/mask_gradient_1800.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/pdfpeek_icon.png

collective.pdfpeek-0.8/collective/pdfpeek/browser/images/vert_large.png

