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Abstract

This thesis evaluates compiler techniques to efficiently evaluate local array ex-
pressions such as those found in APL, Fortran 90 and many other languages. We
show that merely eliminating temporary arrays is not enough, and we contribute a
reusable open source compiler called minivect that generates code which can
outperform commercial Fortran compilers for even moderate data sizes in several
test-cases, while retaining full runtime generality such as broadcasting as found in
NumPy (similar to Fortran’s SPREAD intrinsic) and arbitrarily strided arrays. In
extreme cases we measure speedups up to 9x compared to GNU Fortran, and up
to 1.7x for Intel Fortran. We show how these speedups may be further increased
through SIMD vector-sized transposes for certain array expressions, and by com-
puting tile sizes at runtime.

We furthermore provide insights and a working implementation of in-memory
Abstract Syntax Tree (AST) remapping from an original AST and type system to a
foreign AST and type system, enabling efficient full or partial mappings, allowing
reuse of external compiler technology. We provide a working implementation of
this for array expressions in the Cython language. We also contribute a minimal
library that uses lazy evaluation combined with runtime compilation to generate
efficient code. We also show how a compiler may be designed to facilitate adding
new code generators with minimal effort without the need for an explicit interme-
diate representation.

We finally show how we can circumvent temporary arrays by proving data in-
dependence using traditional dependence tests in various situations for arbitrary
runtime arrays (as opposed to compile-time aliases). In case of possible depen-
dence we construct distance and direction vectors at runtime in order to use well-
known compile-time optimizations, which we implement at runtime by adapting
the array view on memory.
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1 Introduction

Array expressions, also known as vector expressions, are expressions on multi-dimensional
arrays in which the expression is applied to the individual data items of the arrays. Array
expressions, pioneered by APL [1], can now be found in many languages and libraries,
such as Fortan 90 and Matlab, many of the C++ expression template based libraries
such as Eigen [2], Blitz++ [3] and uBlas [4], and among many others, the NumPy [5]
library for Python. Array expressions are useful not only for conciseness, but also to
enable optimizations since they make data access patterns more transparent to compil-
ers and obviate any reliance on auto-vectorization capabilities of the compiler. Further
restrictions imposed by the language on element-wise functions (for instance Fortran’s
pure restriction) allow compilers to change the element-wise traversal order and en-
able data parallelism, as well as generate several specializations of the code when data
layout is fixed at runtime, allowing portable performance for evaluation across different
data sets with different striding patterns and data alignment.

Array expressions may, depending on the language, allow further polymorphism by
allowing dimensionality of the operands to be fixed at runtime [6] [7], as well as allow
operands to be implicitly stretched (broadcast) along an axis. Reductions are explicit
and the language or library can define the special semantics, allowing parallel execution
in any appropriate form, and even execution on accelerator devices and GPUs.

We contribute a reusable array expression compiler, which for the purposes of this dis-
sertation only covers element-wise expressions. We implement all NumPy rules and
allow broadcasting [8] in any dimension, as well as arbitrary data ordering and overlap-
ping memory between operands and function parameters. We adopt the model where
array slicing creates new views on existing data, allowing the user tighter control over
when and how data is copied, since data no longer needs to remain contiguous. The
price paid for this generality is however that we no longer know at compile time what
the exact data layout will be at runtime, unless explicitly annotated by the user and
verified at runtime. We operate with the restriction, unlike NumPy, that the dimension-
ality of the arrays is fixed at compile time instead of runtime, in order to generate code
with maximal efficiency. To retain stable performance across any combination of data
layouts, several strategies can be taken:

1. We can apply the array expression on small data chunks, retaining the data in the
cache while all operations are performed iteratively, or in a fused fashion. This
allows data to be retained in the cache before eviction due to capacity constraints.

2. We could defer compilation until runtime, possibly combined with lazy evalua-
tion of the expressions, which may have somewhat higher - but constant in the
size of the data - overhead.

3. We could create one or several up-front specializations 1 for various runtime situ-

1With specialization we mean a special version of the code which is tailored to the input types in a
certain way, in this case efficiency.
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ations we want to cover, and select the specialization at runtime. This can further
be combined with a runtime component that can reorder the axes of the array
operands in question, to reduce the number of specializations (by reducing the
number of possible runtime data layouts) and increase the cases that can be han-
dled with near-optimal efficiency.

Our array expression compiler is a reusable compiler backend that can be suitably used
with either of the last two aforementioned approaches, and can generate static C spe-
cializations as well as generate code in the form of an LLVM 2 [9] intermediate rep-
resentation, which is further optimized by the LLVM runtime and compiled to native
code (or interpreted when the target platform is not supported). The compiler is fully
customizable and the generated code parametric, to allow various auto-tuned or oth-
erwise computed runtime parameters. Furthermore, it performs explicit vectorization,
allowing multiple versions of the code to be compiled simultaneously, and the optimal
version to be selected at runtime based on the supported SIMD CPU instruction set
[10].

To this low-level back-end we provide two front-ends. The first front-end is imple-
mented as part of the Cython compiler [11] [12], an ahead-of-time compiler which
compiles a language superset of Python to C or C++. We implement support for array
expressions in the Cython language by mapping the array expressions at compile time
to our lower level compiler, which creates several different specializations and feeds the
results back into the compilation unit. The compiler at the Cython side then generates
the code needed to select the right specialization at runtime, depending on data layout
of the respective operands and possible broadcasting dimensions. The compiler also
generates code to perform auto-tuning at runtime for tiling and threading parameters.
This cannot be performed at compile time, since Cython is a source-to-source compiler,
and the generated source files are often distributed.

Our second front-end is a minimal implementation of the second approach. It provides
a library for lazy-evaluation that builds an expression graph at runtime, recording the
operations as they are executed at runtime. This expression graph is compiled at runtime
and specialized for the data sets and operations in question. Note that our restriction
on polymorphic dimensionality at compile time is lifted, since our compilation process
now happens at runtime.

Our motivation to implement a reusable compiler for efficient array expressions is that
although there are several excellent existing projects such and Theano [13] and Num-
Expr [14] in the Python community, neither library provides optimal implementations
for execution of element-wise expressions on the CPU. This, together with the motive
to implement array expressions in the Cython language, has led us to create a reusable,
low-level expression compiler which does bring optimal or near-optimal performance,
and which can be reused by all respective projects. Each of these projects uses its own
internal representation, which is closely tied to how the library or language operates.

2The Low Level Virtual Machine, which for our purposes allows us to generate code at runtime in a
platform-independent way.
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Our goal is to create a shared compiler which is entirely agnostic of language syn-
tax and runtime or ahead-of-time compilation strategies, allowing reuse across these
projects and hopefully others in the future.

The rest of the dissertation is laid out as follows: In section 2 we describe the back-
ground theory for this thesis, in section 3 we describe the architecture of our compilers,
in section 4 we cover the specializations we use. Section 5 describes optimizations that
can be applied in various scenarios for ahead-of-time or runtime compilers. Section
6 describes the overall performance results, comparing with various Python libraries
and commercial and open-source Fortran compilers. We finally conclude in section 7,
followed by future work in section 8.
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2 Background Theory

There are many languages and libraries that support array expressions. Many libraries
try to retain data in the cache through elimination of temporaries arrays, for instance
through the use of expression templates like Blitz++ [3]. A lot of research focusses on
data-parallel execution of array expressions with implicit parallelism where commu-
nication is an important factor, such as High Performance Fortran or ZPL. We shall
focus only on local array expressions, where effective memory and cache use and clas-
sic compiler optimizations such as vectorization and dominant factors for performance
impact.

We will briefly review the syntax and semantics of array expressions supported by re-
spective libraries. For simplicity, we will write the equivalent expression of Fortran’s
a(:, :) = b(:, :) + c(:, :). We will focus on technologies present in the scientific Python
community that deal with evaluation of array expressions.

2.1 NumPy

NumPy [5] [6] [7] is the de-facto Python library for dealing with multi-dimensional
arrays. Although very powerful, arbitrary array expressions are often not supported ef-
ficiently, since each operation introduces a new temporary array. This is due to the way
the expressions are evaluated, which is through overloads of operators at the Python
level. The application of each operator introduces a new temporary array, unless lazy
evaluation is used. To evaluate our array expression with NumPy, we write the follow-
ing:

Listing 1: Simple NumPy Array Expression

a[:, :] = b[:, :] + c[:, :]

An ellipsis (...) may be used instead of colons, expanding to however many colons are
omitted. For instance in 3-dimensional space we can write a[..., 0] instead of a[:, :, 0] to
select the first column in each dimension. Using either colons or ellipses indicates we
are performing array assignment as opposed to creating a new array which we assign to
a variable called a (this would be spelled a = b[:, :]+c[:, :]). Note also that, like Fortran,
we may omit any colons from operands on the right hand side, i.e. b + c is equivalent
to b[:, :] + c[:, :].

As mentioned in the introduction, array slicing always creates a new view on the data
(see also section 2.4.2), instead of performing copies to contiguous memory, which is
especially desirable for large data sets. This benefit also has downsides, which is that we
can no longer assume data contiguity, and subsequent array computations may become
less efficient.

NumPy has broadcasting rules [8] [6], which specify what happens when an array par-
ticipating in an expression has extent 1 in a certain dimension. In this case the dimen-
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sion is implicitly stretched (a SPREAD operation is implicitly applied) to match the
common extent N . All participating operands must have this common extent N , or an
extent of 1, otherwise an exception is raised.

Broadcasting dimensions can be conveniently inserted using newaxis indexing [15] [16]
or reshaping. For instance given a vector v, we obtain a row vector using v_row =
v[np.newaxis, :] and a column vector vT using v_col = v[:, np.newaxis] (the numpy
module is typically imported under the name np). Given a matrix M , we can now stretch
v_row along the rows of M and v_col along the columns of M in an expression, e.g.
we can compute the matrix-vector product using np.sum(M ∗ v_row, axis = 1). The
Python singleton None may be substituted for np.newaxis, which is also the way one-
sized dimensions are introduced in Cython. Broadcasting allows for memory-efficient
operations since the broadcasting data does not have to be duplicated along broadcasting
axes.

2.1.1 nditer

NumPy has an method called nditer [17] [18], which can be used to efficiently iterate
over multiple array operands. It has both a Python and C API, allowing iteration in
Python as well as in C or Cython. Among other features, it allows manual control over
the preferred order, allows a manually written inner loop and can allow or disallow
broadcasting and reductions. nditer allows us to evaluate our expression as follows:

Listing 2: NumPy’s nditer Approach

for x, y, z in np.nditer([a, b, c], op_flags=["readwrite"]):
x[...] = y + z

nditer sorts the array operands [18] in an agreeable element-wise C-like order (in order
of descending strides), allowing efficient cache-wise traversal if there is an agreeable
C-wise order. However, when there exists no agreeable order, for instance if some
operands are Fortran ordered and some are C ordered, element-wise traversal with
nditer may not be optimal, since it does not perform optimizations like tiling (see also
2.6). For our research we have not integrated nditer as of this writing, and our bench-
marks with mixed-ordered operands are mostly tailored towards mixing C and Fortran
ordered arrays. However, nditer’s sorting approach can be more effective since it han-
dles arbitrary axes swaps (as long as the operands agree on the swapping permutation).

We do not arbitrarily permute our looping order, since we provide static specializations
from our Cython compiler and we need to avoid combinatorial code explosion for run-
time properties such as data ordering. Integrating nditer’s sorting mechanism will be
very useful in the future to support arbitrary stride permutations efficiently as well as
generate C-ordered specializations and omit the Fortran ordered ones (where the loop
order is reversed). Reducing specializations is also important for runtime compilers, in
order to reduce runtime compilation overhead and reuse cached versions of the code,
even though they can arbitrarily permute loops to match a preferred order.
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The performance issues of array expression evaluation present in NumPy gave rise to
libraries like NumExpr [14] and Theano [13], discussed in the following sections.

2.2 NumExpr

To overcome the performance issues of array expressions present in NumPy, NumExpr
was invented. NumExpr uses the first approach listed in section 1, by blocking up the
execution, and furthermore allows threaded execution, providing good speedups over
NumPy array expressions for expressions with more than two element-wise operations
and for data-sets that justify the interpretation overhead 3.

In NumExpr, a user provides the expression as string input and the array operands as a
dictionary. We implement our expression as follows:

Listing 3: A NumExpr implementation

numexpr.evaluate("b + c", {"b": b, "c": c}, out=a)

The out argument is optional and it determines the difference between array assignment
and returning a newly allocated array. NumExpr compiles this string to bytecode, which
it interprets and executes in blocks small enough to fit in the cache.

Although an excellent effort, NumExpr’s approach does not provide optimal execution,
since blocked execution means repeated execution of load and store instructions to load
the data into registers and to write back the results. NumExpr uses nditer (section
2.1.1) to sort the strides into an agree-able C-like order, but this does not utilize tiling
optimizations where appropriate.

2.3 Theano

Theano [19] [13], a mathematical expression compiler, on the other hand uses lazy eval-
uation with statically typed, symbolic, variables, compiling a mathematical expression
graph at runtime when requested. This happens when the user requests a callable func-
tion from a given expression with input and output variables. Theano can do much more
than just element-wise expressions and reductions, such as symbolic differentiation.
Theano can also generate optimized CUDA kernels for most expressions, and optimize
for speed and numerical stability. Among many, Theano performs speed optimizations
such as eliminating common (array) sub-expressions, constant folding, element-wise
fusion and recognizing special cases of multiplication and exponentiation which faster
equivalents.

Theano has a strict typing system that is more powerful and static than the type sys-
tem in Cython, since it considers broadcasting information a part of a variable’s type.

3NumExpr first compiles the expression to byte-code, which is then interpreted.
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For instance it has a matrix type [20] which is guaranteed to not be a row or column
vector. This information is crucial to provide an optimal implementation for the expres-
sion, since Theano compiles the graph when the user requests a function to be build,
when the actual data sets are still unknown. Specializing for broadcasting situations is
generally impossible, since the number of possible broadcasting tuples is

∏n
i=1 2

rank(i),
where rank returns the dimensionality of array operand i 4, which grows infeasible very
quickly.

To define our expression using Theano, we write the following:

Listing 4: A Theano Implementation

1 import theano.tensor
2 a, b, c = theano.tensor.dmatrices([’a’, ’b’, ’c’])
3 expr = theano.tensor.set_subtensor(a[:, :], b + c, inplace=True)
4 func = theano.function(inputs=[a, b, c], outputs=expr,
5 accept_inplace=True)

The first line imports the theano module and its sub-module tensor. The second
line defines three symbolic array variables of dtype double (64-bit floating points).
Line three defines the expression, which is a lazy computation returning an expression
graph. We specify that we want this operation to operate in-place, i.e. we want to
assign directly to the memory of matrix input operand a. To use this expression we
build a function on line four, specifying three array input matrices of type double, and
the output. We also have to specify that inplace operations are permitted.

At this point we have a function ready to evaluate our expression. Through various
configuration options [21] [22], Theano decides the way expressions are evaluated. Op-
tions include the GPU, a C++-compiled kernel for the CPU and evaluation in Python.
To evaluate our expression we write func(x, y, x), where x, y and z are the actual
matrices containing data.

2.4 Cython

Python is a highly dynamic programming language where everything is an object and
the typing of done entirely at runtime. Due to its dynamic nature the language is very
flexible, but it makes it also harder to write a fast interpreter [23], [24], [25]. As pointed
out in [26] and [27], Python is typically not suitable for numerical kernels, since the
interpreter overhead is too great, especially in the face of scalar computation. [26]
mentions that it might be a good idea to move such code to Fortran, C or C++ and wrap
it. Fortran code can easily be wrapped using for instance F2PY [28].

Cython [11] is a language superset of Python, which compiles to C or C++, and is often
used in two domains. The first is to wrap native code - usually written in C, C++ or

4The number of specializations may be greatly reduced in various cases, for instance if a binary opera-
tor is commutative for operands of equal dimensionality. It should also be noted that not all permutations
in the search space may not be useful to optimize for.
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Fortran - and expose it to Python where needed. Another is to move computationally
expensive parts from Python to Cython to get a speedup, often through type annotations.
When fully typed, Cython generates code that is often without any calls into the Python
interpreter, providing speed close to native C programs. Indeed, [27] describes how
Cython can be used to write low-level numerical kernels directly in Cython itself. Since
Cython is often used by the scientific Python community to speed up numerical codes,
we implement array expressions in the compiler for this language.

To write performing numerical kernels in Cython, users need to type variables and
buffers (multi-dimensional arrays), allowing efficient indexing operations with native
access to un-boxed elements stored in multi-dimensional arrays. Cython also supports
slicing of these views in many of the same ways NumPy allows, always creating a new
view by adjusting the data pointer and the strides.

2.4.1 Typed Views on Memory

Typed views on memory allow the programmer to declare the type of a multi-dimensional
array, by specifying the element type and the number of dimensions, analogous to how
Fortran arrays are typed. Additional flags can specify contiguity in individual dimen-
sions, or C or Fortran contiguity can be specified, allowing for some optimizations,
as well as validation of data layout [29]. Below we declare a strided (which includes
contiguous) array and slice it to get a view on "every other row":

Listing 5: Cython Example of a Typed Memory View and Slicing

cdef double[:, :] a = ...
print a[::2, :]

These multi-dimensional arrays are obtained through the buffer interface (PEP 3118,
[30]), which specifies the C-level protocol for exposing multi-dimensional arrays to
other code. Libraries such as NumPy expose their data through the buffer interface,
allowing the consumer to access the data directly and more efficiently, without needing
to go through any Python or NumPy layer. This is exactly what typed memoryviews are
for, and it makes indexing orders of magnitude faster [27]. Typed memoryviews can be
initialized by:

1. Assigning another, initialized, memory view to it, i.e. a = b.

2. By assigning an object exposing the Buffer Interface to it (see 2.4.2). E.g.

Listing 6: PEP 3118 buffer object assignment

cdef double[:, :] a = numpy.empty((10, 10),
dtype=numpy.float64)

3. By casting a C pointer or array to a typed memoryview, inserting the appropriate
shape information. In example:

8



Listing 7: Casting a pointer to a multi-dimensional array

cdef double[:, :] a = <double[:10, :10]> double_pointer

To understand how these views on memory operate, we describe the buffer interface
below.

2.4.2 Buffer Interface

As mentioned, the buffer interface specifies the C-level protocol for exposing multi-
dimensional arrays to other code. The interface works roughly as follows:

1. The consumer allocates a structure to hold certain information (on either the stack
or the heap), and calls a function in the Python C API [31], passing in a pointer
to the structure, and the object exposing the interface. It also passes in flags to
specify what kind of buffer it is expecting, for instance a C-contiguous buffer. If
information which needs to be exported in order to support consuming the array
data is not requested, an exception is raised.

2. The function for obtaining buffers retrieves a C-level method exposed on the type
structure of the object and calls it, passing in a pointer to the structure. This
method fills out the required information, which we discuss below.

3. The consumer now has the information needed and has native access to the data
stored in the multi-dimensional array.

4. When the consumer is finished with the buffer, it disposes of it in an analogous
manner to item (2). As long as there are outstanding buffers, the array will not
be garbage collected (in the CPython reference implementation, the buffer struct
holds a reference).

The information needed to support arbitrarily strided views consists of a data pointer, a
shape vector, a strides vector, the number of dimensions and whether the data is read-
only. It also exposes information regarding the element type, namely the size and a for-
mat string, which is a string of characters that supports specification of structures, align-
ment properties, padding, function pointers, multi-dimensional arrays (nested within the
multi-dimensional array that is being exposed), byte-order, and so forth.

We illustrate the workings of strides by example. Let array be a two-dimensional C-
contiguous array of doubles of shape (10, 10). This results in the strides vector (80, 8).
Below we show what slicing does to the strides:

Listing 8: Strides Example

1 array[:, ::2] # strides = (80, 16)
2 array[::2, :] # strides = (160, 8)
3 array[:, ::-1] # strides = (80, -8)
4 array.T # strides = (8, 80)
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5 array[np.newaxis, :, :] # strides = (0, 80, 8)

The first two examples should be self-explanatory. On the third line we reverse the
elements in the rows, which leads to a negative stride. This furthermore leads to the data
pointer being shifted by strides[dim] ∗ shape[dim], effectively making it point to the
last element of the first row. The transpose operation on the fourth line simply reverses
the strides vector. Finally, in the last example we insert a new axis in the array, which
leads to a stride of zero. This effects generic low-level loops containing index/stride
multiplication to not move the data pointer for that dimension. This is useful when other
operands have an extent greater than one, which means you’re effectively broadcasting,
without changing any code.

The buffer protocol additionally supports indirect C-style arrays, where a dimension
can be indirect, which means the data in that dimension is to be dereferenced and an
offset applied, allowing the following dimension to be sliced. Although this scheme
is flexible, it does not allow one to remove consecutive indirect dimensions which are
preceded by at least one indirect dimension, without changing the data or tracking ad-
ditional information. We only support indexing for these types of arrays, and will not
consider these type of arrays in our expression compiler. We justify this decision by
pointing out not only are these styles not commonly used, it is also expensive to prove
or disprove overlapping memory between the left-hand side and right hand sides of a
given expression assignment, since we suddenly have to compare a number of pointers
proportional to the data size with the pointers from the array on the left-hand side of the
assignment.

2.5 Related Work

[32] discusses how consecutive array expressions using one or multiple operands and
various intrinsic functions can be fused together to obtain a composite access function
with a single pass over the data. It supports data movement operations such as shifts,
as well as masked array operations, reshapes, transposes and spreads. We have not yet
implemented this type of fusion, but it is very applicable to what we are doing. We also
note the virtue of lazy evaluation in this context, which obviates the need for statements
to appear in consecutive source code statements, and trivially bypasses control flow by
building the graph at runtime in the order the operations appear.

2.6 Efficient Array Expression Evaluation

To provide good performance for array expressions that may be arbitrarily strided, we
may face various sorts of situations which we want to handle efficiently. For this, we
specify order to mean the vector that specifies for each stride in the strides vector the
index into the sorted list of strides. For instance, the order corresponding to the strides
(40, 80, 8) would be (1, 2, 0).
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1. Array operands have agreeable data order. We say the data order of two operands
is agreeable if the orders of the stride vectors are equivalent. The two simplest
special cases are when both operands have ascending or both operands have de-
scending order (discarding broadcasting rules for the moment). The solution for
these special cases is simple, if the strides are descending, use C-ordered loops (in
2D, index the array from left to right with outer index i and inner index j). If the
strides are ascending, use Fortran ordered loops (that is, either reverse the loops,
or reverse the indices in the subscript). The more general case is encountered in
for instance the case where you start with one of the simple special cases and you
swap axes arbitrarily in three- or higher-dimensional space. This general case can
be handled through a sorting mechanism like nditer, discussed in section 2.1.1.

2. Array operands do not have agreeable data order. We show how this scenario can
be handled through tiling.

3. We have broadcasting operands and we want to avoid repeated computation. Con-
sider for instance matrix+row_vector∗row_vector, where we need to compute
the squaring of the elements in row_vector only once. Optimizations for these
sorts of scenarios are discussed in section 3.3 and 5.1.

To address the second case listed above, we apply the well-known tiling optimization
[33]. This allows us to keep our data in the cache long enough to use all data items that
fit in the cache line. For instance, consider the expression a + transpose(a). If a is
C contiguous, then tranpose(a) is Fortran contiguous, and a given loop permutation
that would be efficient in either C or Fortran order is no longer applicable, because
data may be evicted from the cache before successive items may be used. For instance,
assume we handle the expression using C-ordered loops. This means that we to fetch
successive column items in our inner loop. For the C-contiguous operand these items
fall in the same cache line (assuming the elements have a size smaller than the cache
line), whereas for the Fortran contiguous operand it means they are far apart in memory.
Before we can read the second value of the first column, the data may have already been
evicted.

To accurately address the problem, we first review types of reuse presented in [34], for
each of which we will determine its applicability for our work.

1. Self-temporal reuse. This refers to reuse of data in different iterations. Since
we use each data item only once, unless we are broadcasting, this is of limited
applicability. If we are broadcasting however, it may be fruitful to tile, allowing
the data that is broadcast to stay in the L1 cache.

2. self-spatial reuse. This refers to accesses of data that fall in the same cache line.
We exploit this type of reuse by making sure we reference data in an order with
monotonically decreasing stride. This type of reuse can only be exploited when
our strides are small enough to not exceed cache-line sizes.

3. group-temporal and group-spatial reuse. This refers to different code references
referencing the same data and data in the same cache line, respectively. This
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occurs when there is overlapping memory between operands. We do not provide
any optimizations for these scenarios.

The performance effects of tiling depend heavily on the data size of the operands [35]
[36] [37], and even slight variations in data sizes can lead to large variations in perfor-
mance [35]. Research shows that self-interference and cross-interference must be kept
at a minimum to get good performance. Pathological cases, where the contiguous or
smallest strided dimension has a data size that is a power of 2 and divides the cache
size, or is a multiple of the cache size, create great self-interference, since tiled rows
(assuming row-major order) map to the same cache locations. If the row size divides
the cache size, each kth row maps to the same cache line where k is the quotient.

Optimizations like array padding [38] can be used to avoid these pathological cases.
However, since we do not have control over allocation and storage order over the
operands themselves, we do not further consider this approach. This restriction also
precludes blocked memory layouts with efficient mappings from indices to the data
items [36], which implicitly turns normal indexing operations into tiled accesses.

To provide more stable performance with varying data sizes and strides and avoid intra-
tile interference misses, it may be beneficial to employ a more complicated model than
simple linear transformations on auto-tuned tiling parameters. In our approach we will
focus mostly on minimizing self-interference, as done in [35], [37] and [39]. Most pa-
pers focus however on problems with temporal locality, such as matrix multiplication,
where data items are reused. This is not the case for element-wise expressions, so we
will focus on eliminating self-interference and thereby maximizing reuse for spatial
locality.
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3 Architecture

We will now describe the architecture of the low level specializing compiler and how it
can be integrated in a runtime or compile-time environment. The compilation process
can be roughly divided into the following steps:

1. Create or map the expression which is to be evaluated.

2. Create one or several specialization for the given expression, depending on needs.

3. Generate the code for each specialization.

The next section describes aspects of array expressions and data sets we want to opti-
mize for.

3.1 Specialization Properties

To provide efficient runtime evaluation, we need to establish which aspects we want to
optimize for.

We can divide the properties of the array operands into two categories, namely runtime
and compile-time properties. A runtime compiler will generate only a single optimized
specialization for a given array expression and array operands, since all properties of the
operands are known at that point. An ahead-of-time compiler would, on the other hand,
generate several specializations based on only the compile-time properties, generating
code to select the best specialization based on the runtime properties.

Compile-time properties include:

1. Dimensionality.- If the dimensionality is greater than one, a tiled special-
ization can be created.

2. Element type. Based on the element type, our compiler can generate explic-
itly vectorized specializations.

3. Data order or striding pattern. This determines the permutation
of the loops as well as whether we generate vectorized or strided accesses to the
data.

4. Contiguity. In Cython, this information is optional.

5. Broadcasting rules for operands with lesser dimensionality. Operands with
lesser dimensionality are prepended one-sized leading dimensions until their di-
mensionality matches the dimensionality of the highest-dimensional operand.

6. Agreeability of data-order between the operands (see section 2.6).
At compile time, this can only be inferred from contiguity flags from the operand
type declarations.
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The properties for contiguity include full C or Fortran contiguity as well as contiguity
in only a single dimension. The runtime properties are listed below:

1. Data size. Based on data size and user-control, we may or may not run the
expression in multiple threads.

2. Data alignment. This determines the types of SIMD loads and stores we
generate, i.e. can make the difference between aligned and unaligned loads and
stores. We only generate code with unaligned load and store instructions.

3. Agreeability of data-order between the operands. We list this again
since this is typically only known at runtime. This determines whether we will
perform tiling or not. Depending further on contiguity and data size, it may be
vectorized and SIMD transposed and it may perform square or non-square tiling.

The combinations of these given properties determine which code is generated. In
our Cython implementation, an ahead-of-time compiler, only the runtime properties are
variable. So we select the most important runtime properties, weighed by their expected
impact on performance, and select a specialized version of the code, which assumes a
value for the each property. At runtime, we test for all these values, and select the best
specialization. A discussion of specializations can be found in section 4.

3.2 Ahead of Time Compilation

To use minivect [40] from an ahead-of-time compiler, we have to define a mapping
from the AST from the original compiler to minivect, as well as a mapping from the
original type system to the new one. Furthermore, we need to select the specializations
depending on our compile-time properties, and generate the runtime code to select the
right specialization. We shall refer to the ahead-of-time compiler as Cython and our
array expression compiler as minivect, but these concepts should be universally ap-
plicable (in fact, the point of this separation in the first place is reuse among multiple
projects).

3.2.1 AST Mapping

We allow full or partial AST mappings and full or partial type mappings in minivect.
This may seem strange, and indeed it brings complications, but what it gives is reuse of
code which is available on the original compiler, but not in the new one. For instance in
Cython we want to support many element types (in the nomenclature of the NumPy and
Python community, this is referred to as dtype), including Python objects and complex
numbers. However, minivect does not, at the time of writing, support arithmetic on
scalar of these types. In this case we can provide a partial mapping, which wraps a
Cython AST in a minivect AST (in fact, this concept is applied recursively), allowing
the minivect compiler to generate code for operations it would not normally support.
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The steps of the mapping process are listed below:

1. During type analysis in Cython, recognize element-wise expressions and set a
flag in the respective AST node. Among others, this includes unary and binary
operation nodes, and calls to functions, in this case calling a function that takes a
scalar argument where a multi-dimensional array is given.

2. After type analysis, rewrite the AST in several steps:

(a) Find the outermost node marked as an element-wise expression, mark it as
the root of the expression.

(b) If the root node of the element-wise expression is not an assignment that
should assign to the memory of another array, create a new node which
should allocate a new multi-dimensional array variable backed up with mem-
ory from the heap. We also have to calculate the strides vector for this new
contiguous memory.

(c) Invoke a new AST transform (a visitor that can replace AST nodes), which
purpose is to map nodes and types from Cython to minivect. This bottom-
up process registers non-elemental sub-expressions as operands to the ex-
pression. We define operands below (3.2.1). Note that the reference of an
array variable is not considered element-wise. Thus, arrays and sub-slices
of arrays are mapped automatically to minivectAST variable nodes with
array types. An example of a full mapping is depicted in Figure 1.

This post-order replacement strategy is only intercepted in a pre-order fash-
ion when an operation is not natively supported by minivect, in which case
Cython provides the functionality.

This case is handled through yet another transform, which operates in an
analogous manner to the transform it was invoked from, except that instead
of mapping nodes, it changes the type for element-wise nodes from arrays
to scalars. This transform again registers any non-elementwise expression
nodes as operands to the expression, which for array variables means the
respective elements will be used instead of the array variable itself. Al-
though this process could be invoked recursively, i.e. we could run our
minivect mapper on the children of the node that cannot be mapped, this
is unnecessary since Cython already implements all scalar operations that
need to be supported, and since Cython uses the C code generation backend
of minivect. So instead only the leaf nodes of a wrapped Cython AST are
minivect AST nodes, since they reference the operands passed into the func-
tion. A partial AST mapping is depicted in Figure 2. The nodes coloured
red are the nodes that bridge from Cython to minivect or vice-versa, and the
pink nodes are Cython nodes.

(d) Wrap the newly generated tree in a Cython node has the responsibility to
invoke the minivect code generator. It has further responsibilities, such as
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Figure 1: Full AST mapping of the expression a[:, :] = b[:, :] + c[:, :]
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Figure 2: A partial AST mapping of the expression a[:, :] = b[:, :] + c[:, :]
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checking for possible read-after-writes, to create a broadcast shape, and to
select a specialization at runtime. We recognize that reuse of this functional-
ity itself would be beneficial, and will integrate it in the future into minivect
itself. However, for the purposes of this dissertation, we recognized that this
was easier to implement, given that Cython has extensive support already for
writing utilities, needed by the runtime, in C and in Cython itself.

The operands to the array expression are the arrays that partake in the expression as
well as any scalars. The operands are the leafs of the expression tree which constitute
the actual data. Consider the following expression:

Listing 9: Operands Example

a[...] = b[:, :] + f(c[:, :], x, 2)

where a, b and c are two-dimensional arrays and x and 2 are scalars, and f and element-
wise function. Here a, b and c are array operands, x is a scalar operand and the constant
2 can be mapped directly at the AST level. minivect generates specializations as
functions to which we pass in the following arguments:

• A pointer to the broadcast shape the length of ndim, the maximum of the number
of dimensions for all operands.

• A pointer to the data and strides for each respective operand. Stride pointers are
omitted when all operands are contiguous and there is no broadcasting involved.
Note that a stride in a certain dimension is set to 0 when the operand is broad-
casting in that dimension. This way, the data pointer is never advanced through
a stride in this dimension. Note also how the dimensionality is fixed at compile
time, so there is no need to pass this in as runtime information.

• Optionally, pointers to exception information, for instance for division or opera-
tions on objects. See section 3.3.1.

• All scalar non-constant operands. When the function f is called in the example
above, the first argument varies with the data from array c, but x remains the same
for every invocation in the expression.

3.2.2 AST Specialization

After the AST mapping process has completed, the minivect AST is specialized by a
transforming specializer, which rewrites the AST in a form that matches efficient code
for the given properties. All properties are assumed to be fixed at this point. The
specializer rewrites the AST in terms of its own internal nodes. This process uses an
AST builder, which is subclassable by a user of minivect, allowing the user to return
different AST nodes depending on their needs.

The specializing process operates on a copy of the original expression tree, to allow sub-
sequent specializers to reuse the expression tree and generate a different rewrite of the

18



AST. The specializing process operates on a minimal representation of the expression
(such as shown before in figures 1 and 2), and expands it to a more complex mixture of
the statements and expression that very closely match the actual generated code.

We only allow AST nodes that correspond to very elementary, low-level operations, and
any high-level nodes are written in terms of these low level operations. This allows a
code generator to only implement code generation for low-level nodes, which means
the effort needed to support a new code generation backend is near-minimal.

We say near-minimal, since we still allow conditional nodes and for loop nodes, which
we could rewrite in terms of jumps and labels. However, we refrain from doing so,
since code generated in a high-level language may not support such operations, and if
it does the generated code will be harder to read and harder for a compiler to analyse.
Furthermore, it would not allow us to generate loop annotations in our C backend, such
as the OpenMP parallel do directive. However, depending on the backend selected, we
can optionally choose to rewrite these constructs to a low-level equivalent, which is
currently useful for the LLVM backend, and may be useful in the future if we want to
add other low-level backends.

This means our intermediate rewrite to a lower-level form of the AST is not fully agnos-
tic of the selected back-end. For instance, for our C code generation backend we rewrite
modulo operations on variables of floating point types to a call to the fmod function.
However, modulo operations are supported natively in LLVM for floating point types
through the frem instruction, which means such a transformation is unnecessary. We
note that these kind of transformations are really part of the low-level code generation
process, and should hence be factored out in low-level transforms that operate just be-
fore, or during, the actual code generation process. If the transformation is really only
needed for a single low-level back-end, it may be equally effortless to special-case the
transformation directly in the code generator itself.

3.3 Code Generation

The code generation process is very straightforward, since we have only very sim-
ple AST nodes, so we can directly translate a node to its equivalent target code. We
generate C with optionally explicitly vectorized equivalents where this is determined
beneficial, using compiler intrinsics for SSE2 as well as AVX. In our C backend this
is realized through compiler intrinsics provided in the headers xmmintrin.h and
smmintrin.h. We have also considered the VectorClass library [41], which uses
C++ classes and inline methods to support SIMD programming. A desirable feature
is support for libraries such as Intel® MKL, which can be enabled or disabled through
preprocessor macros. However, GPL licensing as well as the need for users to ship
header files in source distributions has thus far precluded its use. Explicitly vectorized
versions are not yet implemented in our LLVM backend, although we believe this may
be especially beneficial to allow optimal code for when data order is fixed at runtime
and the specializations are too complicated for auto-vectorization (see section 4.1).
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The code generation on the Cython side is somewhat more complicated, since minivect
does not itself check for overlapping memory, and it does not allocate temporary arrays
to avoid re-computation in the face of broadcasting (see also 5.1). Consider the example
a[:, :] = a[:, :] + f(b[:]), where we broadcast the element-wise function call on vector
b along the rows of matrix a (recall that lesser-dimensional operands get one-sized
dimensions prepended). The problem here is that the computation is repeated for every
row, whereas the result is only needed once. However, since the indices in vector b
occur in the innermost loop, the index set is not an admissible prefix of the index set of
a [32].

We say an ordered set B is an admissible prefix of ordered set A if the k elements of B
form some permutation of the first k elements of A with k ≤ |A|. This means we have
to hoist out the entire computation on the vector and assign the result to a temporary
array, in order to avoid this kind of re-computation.

The steps below are taken to generate code which allows overlapping memory and
broadcasting. Let ndim be the highest dimensionality of all array operands involved.

1. Ensure all scalar operands are simple (i.e., that they resolve to cheap C expres-
sions or are stored in temporaries).

2. Allocate a shape vector of size ndim.

3. Broadcast all operands in this shape vector, raising an exception in case of a shape
mismatch.

4. In case of array assignment, check for overlapping memory for all array operands
on the right hand side of the assignment with the operand on the left hand of the
assignment.

5. In the case of overlapping memory, check whether a read after write is possible.
This is discussed in section 5.2.

6. If a read-after-write is possible, allocate a temporary to hold the result of the
evaluation of the right-hand side. See section 5.2 for a discussion of possible
optimizations.

7. Evaluate the expression. This is where we need to establish the runtime properties
of our array operands (see section 3.1). We check the striding patterns for all
operands, determine the data order and whether all operands agree on this order.
We return flags according to the runtime properties in a generic function, which
we branch on when selecting the specialization. The specialization which is most
beneficial is selected and called through this mechanism.

8. If the right-hand side is a broadcasting assignment with regard to the left-hand
side, or if we allocated a temporary to store the result in, copy the contents into
the left-hand side.

9. Finally, generate any code to deallocate allocated resources.
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We note that it would be beneficial to permute the axes of the operands in an agree-
able element-wise order at runtime, for instance always in C or always in Fortran order.
This way only one loop permutation is needed per specialization to support efficient
element-wise traversal, whereas we now only support C and Fortran ordered loops.
This can furthermore enhance performance when our axes are arbitrary permuted. This
is the approach taken by NumPy’s nditer [17]. Cython does however not have a hard de-
pendency on NumPy, and we have not ported the implementation at this point, although
this is planned in the future.

An overview of the code generated to select a specialization for the expression a[:, :
] = b[:, :] + c[:, :] may be found in Appendix A, Figure 31. The final copy operation
of a potential array temporary is ommited for brevity, and mangled variables names are
normalized.

3.3.1 Error Handling

Each node in minivect carries positional information from the exact appearance in the
source code. Whenever an exception occurs during the execution of an array expres-
sion, this positional information can be set to indicate to the caller where the error
occurred. Note that the exception and exception messages themselves are not always
set by minivect itself, but for instance by a method called on an object as an over-
load of some arithmetic operator, or by an element-wise function. Exceptions are then
propagated outwards while allowing exception to be processed before propagating them
further. For instance, if we add the expression (a+ b) + c we first evaluate a+ b, store
this in a temporary and then evaluate temp + c. If the second addition goes wrong, we
will still need to clean up our temp, which holds a reference to the result of the addition.
So we generate code along the following lines:

Listing 10: Generated code to handle exceptions

PyObject *temp1, temp2;
int error_var;

...

temp1 = PyNumber_Add(a, b);
if (!temp1) goto error;
temp2 = PyNumber_Add(temp1, c);
if (!temp2) goto error;

use temp2

error_var = 0;
goto cleanup;

error:
error_var = 1;

cleanup:
dispose of temp1 and temp2
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if (error_var)
goto outer_error_label;

The PyNumber_Add function is a function in the Python C API which invokes the
__add__ method of objects and returns the result, or NULL in case of an error. At
the outermost level, instead of jumping outwards we generate a return with an error
indicator, which tells the caller an exception occurred.

3.4 Lazy Evaluation and Runtime Compilation

Our lazy evaluation front-end for runtime compilation is somewhat similar to Theano
(but much less featureful). However, a key difference is that types and symbolic vari-
ables are not declared, but instead we wrap NumPy arrays in lazy objects. Subsequent
operations on the lazy objects then build an expression graph. The expression graph
is then compiled when we perform slice assignment to another array (when we assign
directly to another array’s memory):

Listing 11: Lazy Evaluation

1 a, b, c = lazy_array(x), lazy_array(y), lazy_array(z)
2 expr = sqrt(a**2 + b**2 + c**2)
3 a[...] = expr

Here line 2 is a lazy operation, and only on line 3 do we compile and evaluate the
expression.

Note that our implementation is extremely minimal, lazy evaluation could be taken
much further, and turn slice assignment into a lazy operation as well, while taking care
to preserve original program correctness. This is however not relevant for the scope
of this dissertation, since we use lazy evaluation to demonstrate the effectiveness of
runtime compilation, especially in the face of missing type information such as broad-
casting information, for which we cannot statically specialize. For a demonstration of
the effectiveness in the case of broadcasting, we refer the reader to section 5.1.

3.5 Auto Tuning

We provide runtime auto-tuning to obtain parameters for square tiling and a parameter
to cancel the overhead of parallel OpenMP sections, to reduce overhead for expressions
with small data sizes. The overhead is measured in terms of the minimum number of
floating point operations needed in order to break even. We do this through simple
benchmarking and caching the results process wide. The auto-tuning process is trig-
gered on the execution of the first array expression. We recognize that an increase in
array operands means an increase in cache utilization, and apply a transformation to
the tile size based on the number of operands. Currently, we divide the auto-tuned size
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for a single operand by the number of new operands multiplied by the itemsize (Python
jargon for sizeof(element_type)) of the new operands over the itemsize of the auto-
tuned version. This is a rough metric, since we really want to account for the actual
strides of the operands, which only equals itemsize when they are contiguous.

As section 2.6 mentions, static tiling bounds (even when auto-tuned at runtime!) cannot
provide stable performance across different data sizes. So we explore an alternative to
square tiling for k-way set associative caches tailored to element-wise expressions.

3.6 Testing

We have tested the Cython front-end using system tests, i.e. by writing the expressions,
compiling them with Cython and a C compiler, by then executing them and match-
ing against the expected output. We have tested our lazy evaluating front-end and the
LLVM code generator back-end in a similar manner. We have also written unit tests,
although to a limited extent. These were written using XPath by first converting the
AST to an XML document. Finally, in the benchmark suite (see section 6) we test our
implementations in the benchmark before executing and timing them, ensuring that they
are performing the same operations.
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4 Specializations

We support several specializations which we deem appropriate based on the given
compile-time properties. A specialization is selected based on the runtime properties by
an ahead-of-time compiler (in our case, Cython), or a specialization is instantiated and
called directly by a runtime compiler (since all properties are fixed at compile time). In
the following sections we will describe the specializations we generate, and as an exam-
ple we show the generated code for the expression a[:, :] = b[:, :]+c[:, :]. Our compiler is
parametric, which means we can switch on or off optimizations like strength reduction
5, or choose between tiling in 2 or n dimensions.

4.1 Contiguous

In the simplest case, all operands are contiguous and have the same data order. In this
case we generate a single for loop that loops over the product of the shape, and which
directly indexes the data pointers. This specialization is auto-vectorized by the compil-
ers we used (GCC, ICC). We can also generate an explicitly vectorized specialization
for SSE2 and AVX, with a fixup loop to account for extents that are not multiples of the
vector size. Below we show the unvectorized (but auto-vectorized by the compilers we
tried) specialized code:

Listing 12: Contiguous Unvectorized Specialization

static int
array_expression0contig(

Py_ssize_t const *const CYTHON_RESTRICT shape,
double *const CYTHON_RESTRICT op1_data,
double const *const CYTHON_RESTRICT op2_data,
double const *const CYTHON_RESTRICT op3_data,
Py_ssize_t const omp_size)

{
Py_ssize_t const temp0 = ((shape[0]) * (shape[1]));
Py_ssize_t temp1;
#ifdef _OPENMP
#pragma omp parallel for if((temp0 > omp_size)) \

lastprivate(temp1)
#endif
for (temp1 = 0; temp1 < temp0; temp1++) {

(op1_data[temp1]) = ((op2_data[temp1]) +
(op3_data[temp1]));

}
return 0;

}

5Strength reduction turns potentially more costly operations into cheaper operations, e.g. it may turn
multiplication of an induction variable by a loop-invariant variable into repeated addition.
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For readability purposes we disable name mangling. The CYTHON_RESTRICT macro
resolves to the C99 restrict equivalent when supported by the compiler, and Py_ssize_t
is simply an integral type large enough to support indexing of in the entire memory ad-
dress space [42].

The function takes a pointer to the shape, which is the same for all operands (if it is not
the same, but we are broadcasting, the contiguous specialization may not be selected).
The second, third and fourth parameter are simply the data pointers of the arrays, and
the last paramter is for the OpenMP if clause. This parameter is auto-tuned, to avoid
parallel loop overhead for smaller data arrays. On our system, using GNU GCC 4.7, we
need between 214 and 215 iterations to cancel this overhead for 4 threads.

The lastprivate declaration for the iteration variable is not necessary in this specializa-
tion, but it is needed for the vectorized equivalent.

Functions always return an integer, which indicates whether an error occurred. This
is significant when dealing for instance with arrays of objects, or for operations like
division which may raise exceptions.

The code below is the explicitly vectorized SSE equivalent of the above:

Listing 13: Contiguous Vectorized SSE Specialization

static int
array_expression0contig(

Py_ssize_t const *const CYTHON_RESTRICT shape,
double *const CYTHON_RESTRICT op1_data,
double const *const CYTHON_RESTRICT op2_data,
double const *const CYTHON_RESTRICT op3_data,
Py_ssize_t const omp_size)

{
Py_ssize_t const temp0 = ((shape[0]) * (shape[1]));
Py_ssize_t temp1;
#ifdef _OPENMP
#pragma omp parallel for if((temp0 > omp_size)) \

lastprivate(temp1)
#endif
for (temp1 = 0; temp1 < (temp0 - 1); temp1 += 2) {

__m128d xmm2 = _mm_loadu_pd((op2_data + temp1));
__m128d xmm3 = _mm_loadu_pd((op3_data + temp1));
_mm_storeu_pd((op1_data + temp1), _mm_add_pd(xmm2, xmm3));

}
if ((temp1 < temp0)) {

(op1_data[temp1]) = ((op2_data[temp1]) +
(op3_data[temp1]));

}
return 0;

}

It has the same loop, except it now takes a step of 2, since each operation now operates
on two doubles at the same time. In the loop we simply load the data in two SSE
registers, add them together and store the result. The final if statement handles the case
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when we have an odd number of data elements, to add the final elements. If we had
used floats instead of doubles, our compiler would have generated a loop to account for
any remaining items instead of the branch. Our motivation for explicit vectorization is
summarized below.

1. Auto-vectorization passes may be expensive for JIT compilers [43].

2. Auto-vectorizing compilers may not perform CPU dispatching properly [44].

3. We can generate a manual dispatching function, allowing users of our compiler
to ship binaries that can take advantage of the latest SIMD instructions their pro-
cessor supports [44] [10].

4. The auto-vectorizing compilers we tried did not auto-vectorize all of our special-
izations, such as the specialization with mixed strided and contiguous loads or
our tiled specialization with contiguous operands.

5. As we shall see in section 6.1, even when a loop is auto-vectorized, the runtime
may still decide to choose the unvectorized version.

4.2 Inner Dimension Contiguous

This specialization targets the case when the first or last dimension is contiguous for
all operands. Without strength reduction enabled, this means we perform stride mul-
tiplication for the dimension preceding the contiguous dimension, and we generate a
direct index for the innermost dimension. With strength reduction enabled, the default,
we generate pointer additions in outer dimensions. This is discussed in detail in section
4.3.

This specialization is auto-vectorized by the compilers we tried, and we can additionally
generate explicitly vectorized equivalents. The unvectorized generated code is shown
below, when the arrays in the expression a[:, :] = b[:, :] + c[:, :] are all contiguous in the
first dimension.

In this code, we also need to pass in the stride pointers, since outer dimensions are
strided. Strides are given in bytes, which means we need to cast our data pointer to a
char * and add the index multiplied by the stride.

Listing 14: Inner Dimension Contiguous Specialization without Strength Reduction

static int
array_expression4inner_contig_fortran(

Py_ssize_t const *const CYTHON_RESTRICT shape,
double *const CYTHON_RESTRICT op1_data,
Py_ssize_t const *const CYTHON_RESTRICT op1_strides,
double const *const CYTHON_RESTRICT op2_data,
Py_ssize_t const *const CYTHON_RESTRICT op2_strides,
double const *const CYTHON_RESTRICT op3_data,
Py_ssize_t const *const CYTHON_RESTRICT op3_strides,
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Py_ssize_t const omp_size)
{

Py_ssize_t const temp0 = ((shape[0]) * (shape[1]));
Py_ssize_t temp1;
#ifdef _OPENMP
#pragma omp parallel for if((temp0 > omp_size)) \

lastprivate(temp1)
#endif
for (temp1 = 0; temp1 < (shape[1]); temp1++) {

double *CYTHON_RESTRICT temp2 = (
(double *) (((char *) op1_data) +

(temp1 * (op1_strides[1]))));
double const *CYTHON_RESTRICT temp3 = (

(double *) (((char *) op2_data) +
(temp1 * (op2_strides[1]))));

double const *CYTHON_RESTRICT temp4 = (
(double *) (((char *) op3_data) +

(temp1 * (op3_strides[1]))));
Py_ssize_t temp5;
#ifdef __INTEL_COMPILER
#pragma simd
#endif
for (temp5 = 0; temp5 < (shape[0]); temp5++) {

(temp2[temp5]) = ((temp3[temp5]) + (temp4[temp5]));
}

}
return 0;

}

4.3 Strided

The strided specialization is the least specialized version we generate, since it is fully
generic. It multiplies each index with the stride and performs a lookup. We only spe-
cialize on approximate data order, that is if more operands are approximately row-major
ordered than column-major ordered, we favour row-major over column-major. That is,
in the column-major specialization we simply reverse the loops. Note again how a fu-
ture nditer-like [17] sorting component will obviate this specialization. Generated
code for this specialization can be found in Appendix A, Listing 32.

Our compiler generates code with explicit strength reduction of index calculation at a
given loop level, and loop-invariant code motion of index calculation. This makes these
optimizations independent of the target translator, in our case the C compiler or LLVM
translator. This optimization can have a significant effect on performance, depending
on the specialization and the target translator in question. We measure speedups up
from 20% for up to 90%, depending on data sizes, specialization and compiler.

A conventional way to calculate indices is shown below.
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Listing 15: No Hoisting or Strength Reduction

for (i = 0; i < (shape[0]); i++) {
for (j = 0; j < (shape[1]); j++) {

use *(double *) (((char *) p) + i * strides[0] +
j * strides[1])

}
}

If we assume a square N ∗N matrix, this means we have 2N2 multiplications and 2N2

additions. Our compiler rewrites the above code to the following:

Listing 16: Hoisting and Strength Reduction

stride0 = strides[0] / sizeof(double)
stride1 = strides[1] / sizeof(double)
p = data_pointer
for (i = 0; i < (shape[0]); i++) {

temp_pointer = p
for (j = 0; j < (shape[1]); j++) {

use *temp_pointer
temp_pointer += stride1

}
p += stride0

}

This means that we now have only N +N2 additions. We implement this optimization
for all specializations, and this pass is the final compiler pass, since it needs to run after
optimizations like hoisting in the face of broadcasting (section 5.1).

Note that our strength reduction is now incompatible with the parallel for loops we
generate, since our variable p is initialized to the data pointer, i.e. the first element.
This no longer corresponds to the right position according to the index. To remedy the
situation, we simply generate two versions, which are conditional at C preprocessing
time:

Listing 17: Fix Strength Reduction for Parallelism

stride0 = strides[0] / sizeof(double)
stride1 = strides[1] / sizeof(double)

#ifdef _OPENMP
p = data_pointer
#endif

#ifdef _OPENMP
#pragma omp parallel for private(p)
#endif
for (i = 0; i < (shape[0]); i++) {

#ifdef _OPENMP
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p = data_pointer + i * stride0
#endif

temp_pointer = p
for (j = 0; j < (shape[1]); j++) {

use *temp_pointer
temp_pointer += stride1

}

#ifndef _OPENMP
p += stride0
#endif

}

Note that our LLVM code generation does not yet support parallel loops, and simply
ignores children of an OpenMP conditional AST node.

4.4 Tiled

The tiled specialization is again specialized on row-major or column-major favouring,
which means for column-major favouring we reverse the controlling loops, and we re-
verse the tiled loops. We can tile in 2 or in all dimensions. If we tile in two dimensions,
any leading loops for row-major ordering, or any trailing loops for column-major order-
ing precede the controlling loops, with the outer loop order reversed for column-major
ordering. We favour column-major over row-major when we have more column-major
ordered operands than row-major ordered operands. The idea is that in the case of
self-interference, we maximize spatial locality by minimizing the average stride in the
innermost loop dimension. A tiled version of the generated code can be found in Ap-
pendix A, Figure 33, which is too verbose to display here.

4.4.1 Tiled with Mixed Contiguous Operands

If all operands are contiguous, but have differing data order, we select a tiled special-
ization. However, this specialization is not auto-vectorized by the compilers we tried
(GCC 4.7 and ICC v12). We can vectorize this case manually by using SIMD loads and
stores, and by transposing vector-sized squares in SIMD registers.

Vectorizing tiled code will mean we select a vector-sized square inside the tile to oper-
ate on. This square is strided in the first dimension for row-major operands, and the last
for column-major operands. To match up items from to operands of differing data order
would hence mean that for one operand the elements would be consecutive in mem-
ory, whereas for another the elements at those same index vectors would mean strided
accesses in memory. Two SIMD loads hence correspond to different index vectors, so
we match them up using a transpose. For the simple expression a[:, :] = a[:, :] + b[:, :]
we measure a 50% speedup using single precision and SSE (4 floats). We have not
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integrated this optimization into our compiler yet, but have adapted a generated tiled
version to its SSE equivalent.

This vectorization approach is even more beneficial for multiple operands, e.g. consider
a and b to be row-major ordered and c and d column-major ordered in the expression
a + b + c + d. We can now evaluate a + b and c + d in SIMD registers, and transpose
either of the temporary results for a final addition. We will follow the rule of transposing
according to the data layout of the left-hand side of the expression, so that the result can
be stored back into memory with a single SIMD store instruction. Depending on the
expression and the respective data layouts of the operands, it may be fruitful to reorder
the operands - if legal - in the expression, to minimize the number of transposes needed.
For instance with our commutative operator + we can arbitrarily reorder our operands,
so we can group all row-majored and all column-majored operands together, evaluate
them separately, and transpose only the final result of one of the sub-expressions.

The transpose operation can be described in three operations on each vector-sized row or
column. Let N be the vector size and v0..N−1 the ith row in the matrix at any given time,
and let stride be the stride in the non-contiguous tiled dimension, and j the innermost
tiled index for the contiguous dimension:

1. Load N rows of size N ∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Listing 18: Lower and Upper Unpacking

__m128 l0 = _mm_load_ps(p + j * stride);
__m128 l1 = _mm_load_ps(p + (j+1) * stride);
__m128 l2 = _mm_load_ps(p + (j+2) * stride);
__m128 l3 = _mm_load_ps(p + (j+3) * stride);

2. Unpack the lower and upper N/2 items of (v0, v1) and (v1, v2) into 4 new vectors
of size N : ∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
a0 b0 a1 b1
c0 d0 c1 d1
a2 b2 a3 b3
c2 d2 c3 d3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Listing 19: Lower and Upper Unpacking

__m128 u1 = _mm_unpacklo_ps(l0, l1);
__m128 u2 = _mm_unpacklo_ps(l2, l3);
__m128 u3 = _mm_unpackhi_ps(l0, l1);
__m128 u4 = _mm_unpackhi_ps(l2, l3);
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3. Perform the permutations to combine (v0, v1) and (v2, v3) into the final transposed
rows: ∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
a0 b0 c0 d0
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Listing 20: Final Shuffle

__m128 r1 = _mm_shuffle_ps(u0, u1, _MM_SHUFFLE(1, 0, 1, 0));
__m128 r2 = _mm_shuffle_ps(u0, u1, _MM_SHUFFLE(3, 2, 3, 2));
__m128 r3 = _mm_shuffle_ps(u2, u3, _MM_SHUFFLE(1, 0, 1, 0));
__m128 r4 = _mm_shuffle_ps(u2, u3, _MM_SHUFFLE(3, 2, 3, 2));
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5 Optimizations

5.1 Broadcasting (SPREAD)

Like [32] we seek to optimize Fortran SPREAD operations, which we refer to as broad-
casting. This operation is implicit in the user’s code, unless some operands have lesser
dimensionality, in which case leading broadcasting dimensions are prepended to match
the dimensionality. Broadcasting information is optional in minivect, and it used
only by the lazy evaluation front-end.

As mentioned in section 3.3 and described in [32], broadcasting operations are good
candidates for optimizations, to avoid repeated computation of the same data. We keep
track of a tuple that indicates for each dimension whether it will broadcast or not. These
tuples are created directly from the given array data and contain the values (shapei ==
1) for 0 < i < dimensionality.

Depending on the admissibility of the indices used (see [32]), we either hoist out the
expression to an outer loop and assign to a scalar, or we hoist out the sub-expression
entirely. Consider the example where we have three operands, each of which broad-
casts in a different dimension. We can conveniently construct these three vectors using
numpy.ogrid [6]:

Listing 21: Three Broadcasting Vectors

i, j, k = np.ogrid[:N, :N, :N]
result[...] = i * j * k

In this example, i, j and k have data in dimensions 0, 1 and 2 respectively, and are
broadcasting in the remaining dimensions. A static compiler, such as Cython, would
in the absence of broadcasting information generate loops containing 4N3 index cal-
culations 6 for 4 operands, 3N3 data load instructions, N3 store instructions and 2N3

multiply instructions.
We can optimize this situation by hoisting out partial computations on the same data
to outer loops. We can further hoist loop-invariant array variables to outer loops and
store data in scalar variables. This optimization is implemented in our compiler in the
presence of broadcasting information, fed in by our lazy evaluating component.

Appendix A, Figure 34 shows the optimized C code for the expression above and Ap-
pendix A, Figure 35 shows the LLVM IR (Intermediate Representation) generated by
our compiler. The C code is generated by artificially feeding broadcasting informa-
tion to our compiler, since broadcasting information is not part of the type system in
Cython. The generated code now has only N+N2+N3 load instructions and N2+N3

multiply instructions, and index calculation overhead is down to 4N+3N2+2N3 oper-
ations (pointer additions). Note that we can lose even more pointer additions, since our
code generator generates pointer additions for leading broadcasting dimensions, which

6Technically, 4(N +N2 +N3), see also section 4.3 on strength reduction
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means it is adding zero to the strides pointer. We have not yet optimized this (this would
bring the total number of additions to 2N + 2N2 + 2N3, since we have one additions
per operand that has data in that dimension, plus an addition for the strides pointer for
the array on the left-hand side of the expression).

The performance results are shown in table 1, showing good speedups for lazy evalu-
ation combined with just-in-time specialization. Trivially, the use of a more expensive
operation, for instance the application of expensive binary element-wise functions (e.g.
f(g(i, j), k)), would result in only a greater speedup, since the additional cost would
weigh heavier.

Compared to NumPy we register a speedup of around 3x (discounting overhead for
copying the result to a destination array). Note however that NumPy uses temporary
array results, which means it will evaluate the same number of computations as our lazy
evaluator (N2 for t = i ∗ j and N3 for t ∗ k). The overhead comes from the temporary
and the additional load and stores needed, as well as presumably from repeated index
calculation.

We can write the Fortran equivalent to our expression in two ways, assuming variable
a, b and c correspond to the vectors i, j and k, except in one-dimensional space:

1. Turn each vector into a cube and perform element-wise multiplication:

Listing 22: Spreading Cubes

result(:, :, :) = spread(spread(a, 1, N), 2, N) * &
spread(spread(b, 1, N), 3, N) * &
spread(spread(c, 2, N), 3, N)

2. Turn a and b into planes and multiply. Turn the result and c into cubes and multi-
ply again:

Listing 23: Spreading Planes and Cubes

result(:, :, :) = spread(spread(a, 1, N) * &
spread(b, 2, N), 1, N) * &

spread(spread(c, 2, N), 3, N)

Note that both expressions have constant parameters for the repeating dimension, which
means broadcasting information is known at compile time. The performance results are
shown in the Table 1.

Note that we exclude runtime compilation overhead from our runtime compiler. Note
furthermore that the SPREAD parameters are constants. If we insert runtime bounds,
performance for Fortran compilers we tried is similar to GFortran’s performance (Intel®

Fortran did not seem to handle runtime bounds correctly, and Cray Fortran showed
performance similar to GFortran).

On our system (see section 6), the runtime overhead is approximately 0.09s, which
includes building the lazy expression, building and optimizing an AST and finally gen-
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Table 1: Performance Results 3D Broadcasting

Lazy Evaluation + Hoisting + JIT Compilation 1600 MFlops
Cython Expression Evaluation 841 MFlops
NumPy 536 MFlops
GFortran Spreaded Cubes 172 MFLops
GFortran Spreaded Plane and Cube 294 MFlops
Intel® Fortran Spreaded Cubes 1182 MFLops
Intel® Fortran Spreaded Plane and Cube 1558 MFlops

erating and optimizing the LLVM IR and generated instructions. This overhead may be
reduced in many ways, such as though caching generated implementations. For smaller
data sets JIT compilation may not be worthwhile, and native evaluation (e.g. through
NumPy) may be more feasible.

We have not yet implemented hoisting and array temporaries when index sets are not
admissible prefixes (see section 3.3), and we are dealing with repeated computation.
Consider again the expression mentioned in [6], reusing our i, j and k vectors: result[:
, :, :] = sqrt(i∗∗2+j∗∗2+k∗∗2). It only needs to perform 3N squaring operations, but
our code generator will currently generate code with N +N2+N3 squaring operations
(squaring data in the first, second and third loop level respectively). Instead, we would
like to generate the following:

Listing 24: Use Array Temporaries to avoid Re-computation

temp_vector_j = j ** 2
temp_vector_k = k ** 2
do t1 = 1, N

temp_scalar_i = i(t1, 1, 1) ** 2
do t2 = 1, N

temp_scalar_ij = temp_scalar_i + temp_vector_j(1, t2, 1)
do t3 = 1, N

result(i, j, k) = temp_scalar_ij + &
temp_vector_k(1, 1, t3)

end do
end do

end do

5.2 Eliminating Array Temporaries

Array expression semantics dictate that the right-hand side of the expression be evalu-
ated independently of the left-hand side. This semantic is consistent with semantics of
statements operating on scalars. For array expressions, these semantics prevent us from
generating code which recklessly assigns to the memory of the left-hand side in two
situations:
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1. The right-hand side may have overlapping memory with the left-hand side, in
which case we may write to locations before we read from them. Consider for
instance the expression a[1 : n] = a[0 : n− 1] with inclusive start and exclusive
stop bounds. [45] discusses how the generated code (referred to as scalarization)

Scalarization of a[1 : n] = a[0 : n− 1]

for (i = 1; i < n; i++)
a[i] = a[i - 1]

has a loop-carried dependence. In this code, we write to a location a[i] in iteration
i, before reading it in iteration i + 1. This is incorrect, since we have to evaluate
the right-hand side independently.

2. The operations on the individual data items have the potential to throw exceptions.
In this case we cannot do anything but use an array temporary, since we cannot
write partial results to the left-hand side, since the user-code is free to handle the
exception and expect the program state to be consistent.

So we can only optimize for the first case. To provide correct semantics, we generate
a runtime check between the left-hand side and each operand on the right hand side.
The check itself is linear in the number of dimensions, and simply checks if there is
a possible overlap between the start and end pointers of the two arrays. The pointers
refer to the lowest and highest memory address that will be referenced, respectively.
This means they have to account for negative strides in the start pointer and positive
strides in the end pointer.

Based on the result of the check for overlapping memory, we perform a check for a
read-after-write situation, which may violate the program semantics (the check has false
positives). We then allocate a runtime array temporary for the left-hand side, and not
the right-hand side, since we want to avoid multiple temporary arrays on the right-
hand side. This means that in our static compiler we always have to generate a copy
function which copies this temporary array to its final destination (the left-hand side)
after executing the array expression, since we will not typically know at compile time
whether this situation will be encountered 7.

Temporary arrays are clearly undesirable, since not only may dynamic memory alloca-
tion be expensive, it means an extra load and store for each data item. If the array is
large enough, it may even mean the temporary cannot remain in the cache and has to
be streamed in from memory twice, or worse, has to be swapped in and out from disk.
In the worst case, the host may not be able to allocate enough memory at all, in which
case we raise an exception.

To avoid array temporaries, we implement the aforementioned read-after-write check-
ing function. This function has to test for the potential existence of a data dependence,

7Compile-time aliasing analysis could produce certain positives, but it cannot disprove overlaps be-
tween arbitrary operands which are not compile-time aliases.
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and if present, determine its nature and implications. This is described in the following
section (section 5.2.1).

5.2.1 Testing for Data Dependence

To test for data dependence between two arrays operands, we need to find out if there
is a memory address that is referenced in both arrays. Consider for instance the ar-
ray sub-slices A[:: 2] and A[1 :: 2], constituting respectively the even and odd ele-
ments of A. These elements obviously never overlap. To provide exact runtime proofs
for data dependence or independence, we need to develop a generic way of verifying
overlaps. Remember that our data elements are located at locations data_pointer +∑ndim

i=0 stridei ∗ loop_indexi. The data pointer really constitutes an integer offset, so
we need to check, for array operands A and B and shape bounds 0 ≤ Ii < shapeAi

and
0 ≤ Ji < shapeBi

, whether

oA + I0 ∗ sA0 + I1 ∗ sA1 + ... = oB + J0 ∗ sB0 + J1 ∗ sB1 + ...

where oA and oB are the data pointer offsets in memory, and sAi
and sBi

are the strides
of the operands. This means we need to check whether there is an integer solution
within the given shape shape bounds. This is a linear Diophantine equation [46] [47],
and testing for integer solutions is unfortunately an NP-complete problem [45].

In order to provide quick dependence tests, many inexact tests have been developed,
including the GCD test [45] [48] [49], the BanerJee test [50], the ZIV, SIV and MIV
tests [51], the omega test [52] [49], the I test [53] or the Delta test [45] [51], as well as
exact tests for several common special cases. Most tests are inexact in that they only
provide tentative dependence, but certain independence. [54], [45] and [51] evaluate the
effectiveness of dependence analysis for certain benchmark suites. Note that we have to
be conservative, in case we cannot prove independence, we must assume dependence,
even though that may or may not actually be the case.

The GCD test is the simplest test, and it states that any linear Diophantine equation has
a solution if and only if the greatest common divisor of the coefficients (the strides)
divides the difference between the constant offsets. However, this test is not generally
accurate, since it does not tell us whether solutions exist in our overlapping region, just
that there is a solution in general. Often the greatest common divisor is 1, which means
it divides any number, reducing its effectiveness. The test is useful however, since it
is relatively cheap and simple, and proves independence when the greatest common
divisor does not divide the difference.

In order to understand the problem and how to analyse data dependences beyond the
capabilities of the GCD test, we need to understand data dependences. We paraphrase
common definitions relating to data dependence below [45] [51]:

1. A data dependence from statement S1 to S2 occurs when there is a path from
statement S1 to statement S2 at runtime where both statements use the same mem-
ory location and at least one statement writes to that memory location [45].
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2. A true dependence or flow dependence is a data dependence where S1 stores to
and S2 reads from the same memory location [45].

3. An anti-dependence is a data dependence where S1 reads from and S2 stores to
the same memory location [45].

All our data dependences occur in iterations of generated loops. The distance between
these iterations where the same memory location is read and written is called the de-
pendence distance. The distance for each dimension then constitutes a distance vector.
The sign of each respective distance determines the nature of the dependence. If the
distance is zero, the sign is ’=’, if the distance is negative the sign is ’>’ and if posi-
tive ’<’ [55] [51]. Distance and direction vectors correspond to iteration instances, and
multiple distinct vectors may be associated with a given number of nested loops.

Consider the following example A(1 : N, 2 : N) = A(1 : N, 1 : N − 1). If we generate
a loop nest where the first dimension is the outer loop, we obtain the distance vector
(1 − 1, 2 − 1) = (0, 1), which corresponds to direction vector (=, <). In this case, we
have a true dependence in the inner loop (the second dimension), since we would read
a value in location j which we write to location j+1. When we read iteration j+1, we
then read a value that was written in iteration j − 1. Hence, the generated code would
be incorrect. If the situation would be reversed, we would have an anti-dependence, and
the code would be correct, since we read from locations before writing to them.

To apply any of the dependence tests, we need to define our problem in terms of refer-
ences to a single array, since that is what traditional dependence tests were developed
to tackle. These tests allow a compiler to check dependences between compile-time
aliases, and this is valid since the compiler knows in a language like Fortran that two
different array variables have different regions of contiguous memory 8. However, we
have a situation where we must cater to ahead-of-time compilers performing static de-
pendence analysis as well as runtime systems, which receive arrays as objects, and
aliasing information is entirely unknown in this environment. So our problem is differ-
ent from the traditional problem, and we are not guaranteed that different sets of indices
resolve different elements in the different arrays, considering the memory may overlap
in an arbitrary way. So to match the traditional problem and hence benefit from the so-
lutions, we need to describe how the memory overlaps in terms of references to a single
arrays using only linear transformations on the loop indices. This is covered in the next
section.

5.2.2 Re-defining the Problem

In order to apply dependence tests in multiple dimensions, we re-define our problem
in terms of references to a single array to match the problem and hence the solutions
of traditional dependence testing mechanisms. Given two arbitrary arrays with over-
lapping rectangular memory regions 9, we have to define an N-dimensional loop-nest

8A compiler is however free to choose other approaches, as long as they provide the same semantics.
9Rectangular in N-dimensional space, we do not restrict ourselves to 2 dimensions.
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with linear transformations on the loop index subscripts that define our data accesses
in a single base array. We will address the situation where the user starts with a sin-
gle array which is then sliced (repeatedly) to obtain a sub-slice of the array, containing
an N-dimensional subset of the elements, since this is the most natural way leading
to overlapping memory between two arrays (the left-hand side and an operand on the
right-hand side).

To determine this single, mutually agreed upon, base array, we have several choices.
We could for instance choose a rectangular region encompassing the regions of the two
arrays, or we could choose the exact region of overlap. However, choosing the former
will ensure that each sub-array will have an equal number of data references within the
region (since they have equal shape), whereas this may not be true for the latter. If the
number of data references is different, we cannot represent loop bounds and loop index
transformations for both arrays. This is why we choose the former approach.

We have to solve two problems, namely to find a common array, and to find linear
subscript transformations that preserves data dependences introduced by the loop order
of the generated code.

For simplicity, we will assume the user is using NumPy arrays, and we follow the base
attribute until the find the root. The base attribute provides a link to the array that was
sliced to obtain the given sub-slice, i.e. a[1:].base is a. We only consider cases
where the two roots of the two given sub-slices are equivalent. Since it is likely that
arrays with overlap are sub-slices of some base array, we deem this adequate for our
purposes.

We could alternatively compute this encompassing region, which is more general, but
this is not trivial, since we have linearized values and not coordinates in N-dimensional
space. We would need to compute the relative offsets in each dimension based on the
strides, and construct and verify a solution.

The base array, whether actual or computed, needs to be verified in order to ensure
that dependences resulting from the computed subscripts in our base array match the
dependences between our original sub-slices and original subscripts, since that is what
we generate our code for. Failure to do so may treat dependences as independent, which
can lead to incorrect semantics.

Specifically, given array slices B and C with runtime strides and single integer data off-
sets, and a loop nest Li of depth 0 ≤ i < ndim with shape bounds 0 ≤ Ii < shapei, we
attempt to find linear subscript transformations for references B and C for all sub-
script dimensions on base array A, given the same loop nest. For example, given
B = A(:: 2, :: 2) and C = A(1 :: 2, 1 :: 2), we want to find values for all vari-
ables in the subscripts in the loop nest shown below:
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Listing 25: Example Loop Nest

do i = 1, shape0
do j in 1, shape1

A(offset0 + i * step0, offset1 + j * step1) = &
A(offset2 + i * step2, offset3 + j * step3)

end do
end do

In this case, the offsets correspond simply to the start slicing bounds, and the step
variables to the stepping bounds. This is trivial to realise, but notice how, given the
strides of A to be (N, 1), we would receive runtime parameters 0 and N + 1 as data
offsets.

Although it is easy to see that the new loop preserves the dependences, we have to
consider that users may craft new slices from data manually, or based on for instance
reshapes (which returns a view on the same data if possible). This means that our arrays
B and C may have, as an example, individual rows which actually span multiple rows
in A. In this case it is no longer possible to provide index transformations given the
equivalent loop bounds, without out-of-bounds indexing, which violates the constraints
for dependence testing. In this case, we will be conservative and assume dependence
(and accept that we have to create a temporary array).

To verify a given base array A, we add the constaint that the elements of the sub-
slice must be a subset of the elements of the base array. Furthermore, to preserve
dependence, the dimensionality constaints must be preserved, i.e. distinct index sets
must reference distinct data elements, and independent dimensions in the sub-slice must
be independent in the base array, and vice versa. For instance, a single row in B must
map to a single row in A, and not multiple (it is easy to craft situations which violate
these constraints).

To verify our constraints, we perform the following checks:

1. The memory region of the sub-slices is contained fully within the memory region
of the base array. This is a simple pointer check between the normalized (to
account for positive and negative strides) start and end pointers of a sub-slice and
the base array.

2. We must be able to find integer offsets in each dimension within the bounds of
A that correctly reference the start of the sub-slice. Thus, we have again a lin-
ear Diophantine equation, and we have to prove that a solution exists within the
bounds of A. We know that there is a solution if and only if the greatest com-
mon divisor of the coefficients divides the offset. However, we don’t know if this
satisfies the equation within our region.

To solve the problem efficiently, we will only consider cases where we have only
positive strides, or only negative strides for A (the sign of the strides of the sub-
slices is immaterial). To ensure this we can negate the strides (and adjust the
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data pointer accordingly) in the dimensions in A for all non-matching dimen-
sions. This means we also have to negate the same strides in the dimension in B
and C and adjust the respective data pointers. This operation may reverse depen-
dences in those dimensions, i.e. turn anti-dependences into true dependences and
vice versa, but this transformation is valid since it matches the proposed reversed
looping order in those dimensions.

We further mandate that the strides of A, B and C must define an unambiguous
order, and that they specify exclusive partitions of data elements. With this we
mean that in each dimension different constant indices will result in references
to different data elements, e.g. A[i, 0] and A[i, 1] always refer to different ele-
ments (this must be satisfied for all dimensions). This can be verified by simply
checking, in order of ascending strides, whether |stridei ∗ shapei| ≤ |stridei+1|.

Then, in order of descending strides, we verify the following:

offsetBi
= bdistance/strideAi

c , with 0 ≤ offsetBi < shapeAi

distance = distance mod strideAi

and similarly for C. This procedure verifies that the data offset of sub-slices
B and C can be expressed as a linear combination of the strides of A within
the shape bounds of A, i.e. that the offsets for each subscript are integers. It
also computes the offsets which we seek for all dimensions. If the distance after
computation is non-zero, it is not a linear combination and it means we cannot
apply our transformation.

This computation is valid because of the constraints imposed on the strides. That
is, an absolute offset O must have index bO/stridesAi

c in dimension i since
stridesAi

∗ (bO/stridesAi
c + 1) > O, and any remaining strides are positive,

which means we always get an answer bigger than the offset we are looking for
(if instead all strides are negative, it means the inequality symbol is flipped and
the computed offset will always be smaller than the offset we are looking for).

Our model does not currently handle broadcasting (strides of zero), since the
division is undefined and strides of zero in the sub-slices would also violate the
rule that different index sets must refer to different data items. However, our
constaint is too strict, since steps of zero are allowed, so we can trivially adapt
our procedure to generate zero step values for broadcasting dimensions in the
sub-slices. We will not further consider broadcasting in our model.

3. Each stride in base array A for dimension i much divide the corresponding stride
i in sub-slice B. This constaint ensures that the step is always an integer. Given
that we also know that the offset is a linear combination of the strides of A, any
multiplication of loop indices with integer steps will result in a subset selection
of data elements from A.

4. All that is left at this point is to prove that the dimensions in the sub-slices have
the same meaning as in the base array. For this, we only need to check whether
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0 ≤ offsetBi
+ strideBi

∗ shapeBi
< strideAi

∗ shapeAi
(analogously for

C). This is equivalent to checking whether the final solution would constitute
valid in-bound array accesses. This constraint now ensures that independence in
a dimension in A implies independence in sub-slices B and C, and equivalently
so for dependence.

The constaints above ensure that dependences are preserved, and that we operate within
the constaints of the base array. We can now trivially compute the integer steps by
dividing the strides of the sub-slices B and C by the strides in the base array A. We
have now computed the offsets and steps, and are ready to start dependence testing.

5.2.3 Proving Data Independence

Building on the previous sections, we are ready to start dependence testing using tradi-
tional dependence testing techniques. To prove data independence, all we have to do is
prove independence in any single dimension [51] [45]. This is easy to realise through
a simple example. Consider a two-dimensional dependence test, where either the rows
or the columns are independent. Now consider a true dependence for the rows. The
order in which the rows are written is irrelevant, since the columns don’t overlap (they
are independent). Analogously, the true dependence for columns can be ignored if the
rows are independent, since we are reading from and writing to different rows.

In a single dimension i, we now have the equation:

offsetBi
+ x ∗ stepBi

= offsetCi
+ y ∗ stepCi

where the steps and offsets are computed as in the previous section.

To test for independence, we can try several tests (besides the GCD test in the dimension
selected). The Single Index Variable (SIV) test may be applicable [51] [45], since each
dimension contains a different loop index variable. The exact version may be used,
which solves the linear Diophantine equation in the two variables [50] [45]. Depending
on the coefficients (the steps we computed), special cases developed in [51] [45] allow
one to apply an easy and quick test. For instance, if the coefficients are equal, we can
calculate

distance =
offsetCi

− offsetBi

stepi

which only implies dependence if it is an integer and |distance| ≤ U − L [45] [51],
where L is the lower bound and U is the upper bound on the index. In our case, we have
to check whether |distance| ≤ shapei.

Several other tests can be applied in other cases, and they can compute the direction of
the dependence in the dimension. For instance, consider the expression A(1 :: 2) =
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A(2 : N/2 + 1). The direction in this dimension starts of as ’>’, changes to ’=’ in the
second iteration and to ’<’ in the third iteration. Fortunately, the BanerJee test can cope
with these forms of dependence vectors [50]. We will not further describe well-known
dependence tests, since they are better described in many of the aforementioned texts
([45] [51] [50] [52] [49] [53] [54] [48]).

If we can not prove independence, but instead know the direction vector (based on the
dimensional offsets and steps), we may be able to circumvent potential read-after-write
situations. We have implemented our method, but have not yet integrated it into the
compiler. It implements only the strong SIV test as in the equation above, the GCD test
for subscript pairs, and the Weak-Crossing SIV test [45] [51]. This way is already much
more effective then the test for overlapping memory combined with the general GCD
test to disprove solutions to the full Diophantine equation. For instance, in row-major
storage, A(:, : N/2) and A(:, N/2 :) with exclusive end bounds results in memory
addresses that indicate overlap, but the two regions are clearly exclusive. Where the
GCD test may only get lucky in disprovig overlap, our test trivially captures all such
situations through the SIV test, in this case in the second dimension, since it considers
the bounds. The implementation of the dependence tester can be found in a public
repository: [56].

[45] describes loop transformations that can eliminate the array temporary for several
situations. This is covered in the next section.

5.2.4 Loop Reversal

The simplest way to avoid an array temporary is loop reversal, which means instead
of writing to a location before reading it, we read from it before we write to it. More
formally, this turns a true dependence into its anti-dependence [45]. As mentioned in
[45], only a loop containing true dependences can be reversed, since reversal turns true
dependences into anti-dependences and vice versa.

If we allow our compiler to eliminate temporaries for arbitrary runtime array slicing
bounds and aliases using loop reversal, we would either need to create an additional
specialization or generate a generic specialization with runtime loop bounds. Since we
like to reduce the amount of generated code, we choose the latter option. We rewrite

Listing 26: Original Loop

for (i = 0; i < n; i++)
...

to
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Listing 27: Loop After Reversal

i = start
n = (stop - start) / step
for (temp = 0; temp < n; temp++)

...
i = i + step

To establish whether loop reversal should be applied, we need to do the following:

1. For each dimension find all arrays on the right-hand side that overlap with the
array on the left-hand side.

2. If we have not proved independence using the techniques of the previous section,
but have been able to establish dependence direction vectors, we need to examine
whether we have a potential inconsistency. Given all dependence directions vec-
tors of length ndim for the operands with dependences, construct a dependence
matrix of N vectors (one for each array with overlap) by ndim direction symbols
[45]. In this matrix the columns list all dependence directions from the different
operands. The symbol ’*’ is used to indicate any direction.

If all dependences in a column dimension are true dependences (if there are no
anti-dependences), we can apply loop reversal in that dimension, turning true de-
pendences into anti-dependences. This means we are left only with rows starting
with the symbol =, since they may still have a dependence in subsequent dimen-
sions. So we remove the first column and any rows not containing the direction
symbol = as the first symbol from the matrix, and move to the next column,
repeating the process until all true dependences are eliminated. For a formal ex-
planation and an algorithm we refer the reader to [45].

This technique works well when we can select some outer loop with either only
true dependences or only anti-dependences. If a loop contains both, we need to
use other techniques such as input prefetching [45] or loop interchange with a
loop that does satisfy these requirements [45]. If none of these optimizations can
eliminate true dependences, we have to use an array temporary.

Note that since our compiler generates strength reduced code to calculate the pointer to
the current element, reversing the loop will not have any effect since only the number of
iterations are important and not the actual iteration values. To remedy this situation we
could instead reverse the dimension for each array operand, i.e. adjust the data pointer
by shape[i] ∗ strides[i] and negate strides[i] in the strides vector for each dimension
i selected for reversal.

The listed optimizations have not yet been implemented in our compiler and are marked
as future work.
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5.3 Effective Cache Utilization

As section 2.6 mentions, spatial locality is the only form of cache reuse we will exploit,
since every data item is referenced only once, unless an operand is being broadcast or
unless some operands have overlapping memory.

Most research focusses on problems with temporal locality, like matrix multiplication
([35], [37] and [39]). Our problem is somewhat different in that we have an arbitrary
number of operands, and we use each data item only once (see also section 2.6). Blindly
fusing all operands together may hamper instead of benefit performance, and a blocked
approach may or may not be beneficial (the first approach described in section 1). For
clarity we re-iterate our meaning of blocked evaluation. With blocked evaluation we
mean that we process the expression in successive chunks, applying each part of the
expression on a small chunk that fits in the cache before moving on to the next chunk.
This is exactly what NumExpr [14] does. This approach is shown in pseudo-code below,
and is copied verbatim from the NumExpr website.

Listing 28: NumExpr’s Blocked Evaluation

for i in xrange(0, len(a), 1024):
r0 = a[i:i+256]
r1 = b[i:i+256]
multiply(r0, 2, r2)
multiply(r1, 3, r3)
add(r2, r3, r2)
c[i:i+256] = r2

We have to provide stable performance in a variety of situations, namely:

1. We need to select an agreeable tile size for our operands that is a trade-off be-
tween minimizing self- and cross-interference and minimizing tiling overhead.
To minimize the former, we may need small tile sizes, but to minimize the latter,
we need larger tile sizes.

2. We have a higher number of array operands. We need to determine if and how to
split up the operands for blocked evaluation to minimize the execution time.

The next two sections shall cover these respective cases.

5.3.1 Tiling

To effectively use spatial locality we use tiling when the arrays in an array expression
have different data orders. Literature shows that self-interference is a great contributor
to performance reduction, due to the regularity of strides and the wrap-around nature of
the cache [38] [35] [37] [33]. There are many choices to avoid self-interference, such
as square tiles as shown in [39], but as proposed in [35], rectangular tiles may use the
cache capacity more effectively while still avoiding self-interference. However, it must
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Figure 3: Address mapping for direct-mapped caches. Figure taken from [57].

also be noted that wide rectangles are subject to TLB (Translation Lookaside Buffer)
thrashing [38] [35].

To understand the interference problem and how to address it, we summarize important
observations from literature below. When we will talk about the effective cache size we
will mean the size of a single cache set, i.e. CSE = cache_size/associativity 10.

1. Two data elements fall in the same cache location 11 (but possibly in different
cache sets) when their addresses are congruent modulo the effective cache size,
i.e. whether &a[i, j] ≡ &a[i′, j′] (mod CSE) [39]. This observation is valid since
caches use the layout shown in Figure 3 [57].

The least significant bits of the memory address indicate the offset into the cache
line, and the bits before that indicate the cache line the word falls in. The most
significant bits are used to compare with the higher bits of memory addresses,
since we have many more memory locations than cache locations. Caches use
the least significant bits for the displacement in the cache, since nearby memory
addresses should map to different cache locations.

Set-associative caches use the same scheme, except that the line now maps to a
set [57], and the number of bits that indicate the displacement of the set depends
on the effective cache size instead of the total cache size.

So we can easily compute where an arbitrary memory address maps in the cache.
The congruence relation above then follows from the cylic properties of lower
bits of the memory addresses. This observation is important since it allows us to
observe that &a[i, j] ≡ &a[i′, j′] (mod CSE) implies &a[i+ a, j + b] ≡ &a[i′ +
a, j′ + b] (mod CSE) where CSE is the effective cache size [39]. In other words,
the amount of self-interference (the interference during the execution of a single
tile of that tile with itself) depends only on the strides and the tile sizes involved.

Since indices a[i, j] resolve to i ∗ stride0 + j, the relation above is again a linear
Diophantine equation, since a ≡ b (mod n) is equivalent to a = b + k ∗ n with
k ∈ Z [58]. This means we now have the equation offsetA + i ∗ strideA0 + j =
offsetB + i′ ∗ strideB0 + j′ + k ∗ cache_size. [59] describes a general frame-
work of accurate cache miss equations, which has many applications, including
computing cache interference in loop nests to help compilers and linkers compute
array offsets and padding sizes. The equations in [59] are more accurate than the

10How these parameters are obtained, such as through a configuration file, the CPUID instruction or
other platform dependent ways is not of interest for the purposes of this dissertation.

11To measure cache interference, we need to know how often cache lines will map to the same location
in a single tile. In our examples we will assume data is aligned on cache-line boundaries.
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equation above, since they account for cache line boundaries (as well as loop
boundaries, of course).

2. We can use the remainders from the Euclidean algorithm, which computes the
greatest common divisor between two numbers, as a good starting point to com-
pute the column tiling size, as demonstrated in [35]. This observation is best
demonstrated in a simple example. We will use the same parameters as in [35].

Example: In this example we disregard the element and cache line sizes for
simplicity. Assume the effective cache size CSE is 1024 and a square contigu-
ous matrix of (M,N) = (200, 200), stored in row major order. We can fit 5
consecutive rows in the cache set, which means our tiling parameters consti-
tute the two-tuple (5, 200). To fit one more row of size 200 will cause self-
interference. If we look at the remainder of CSE mod N = 1024 mod 200 we
obtain 24. This remainder is useful since it tells us we can occupy 24 addi-
tional elements without incurring self-interference. It furthermore tells us we
can keep occupying the cache with rows, since they are offset by -24 (or 200
- 24). After having fit 10 rows, the next 5 rows will be offset by 2 * -24.
Since the gap grows linearly, we can simply divide the stride (200) by the gap
to see how many times we can repeat this process. We obtain the number of
columns by computing ncols = CSE mod N , and the number of rows using
nrows = (CSE/N) ∗ (N/ncols) + r0/ncols. We need the final addition to ac-
count for the occupation in the last cache location (the first remainder, r0), which
is not counted as part of the rows. We need to divide this by the remainder we are
using from the Euclidean algorithm. In our example, this yields the values (41,
24). We cannot simplify the last equation since we need the truncation.

To see the amount of interference with minimal variations to these computed
tiling sizes, we write an accurate simulation by generating the set of occupied
cache locations and comparing with the actual amount of needed data.

Listing 29: Cache Interference Simulation

def occupy_cache(m, n, N, CS):
result = set()
location = 0
for i in range(m):

for j in range(m, m + n):
datum = (i * N + j) % CS
result.add(datum)

return len(result), m * n

Function occupy_cache returns the a two-tuple (cached_items, total_items),
where cached_items is the total number of items that can be in the cache at
any given time during the execution of the tile. The results for
occupy_cache(41, 24, 200, 1024) is (984, 984). However, any addition to a tiling

46



parameter will create interference, for instance using tiling parameters (41, 25)
returns (989, 1025), about 3.6% interference. Bringing the tiling column size (the
number of rows) all the way down to 25 brings the interference down to 3.3%. If
we now slightly adjust our row size N to 202, the square tile (25, 25) results in the
tuple (405, 625), a self-interference of 54%. This shows us that choosing (small)
square tiles without regard to the data size is not enough and cannot provide stable
performance across even slight variations in data size (or more generally, strides).

To find optimal tiling sizes for an arbitrary number of operands we could take sev-
eral approaches, given these findings above. We could construct reuse vectors, which
tell the cache miss equation framework in [59] for a given iteration point which direc-
tions contain spatial or temporal reuse. We could then create equations for self- and
cross-interference, and try to maximize the tiling area while minimizing the number of
solutions. We do not further explore this option in this work.

We could alternatively adapt the algorithm from [35], which considers successive re-
mainders from the Euclidean algorithm (with fall-backs in case the remainders are zero
or otherwise not suitable, e.g. select entire rows), and maximizes the tiling size while
minimizing the expected cross-interference rate. This algorithm always makes sure the
total working size does not exceed the cache capacity. However, our problem is some-
what harder, since we have to deal with an arbitrary number of operands, and with
arbitrary strides in the non-contiguous dimension (if the inner tiling dimension has a
stride for a given array that exceeds the cache line size, there can be no spatial reuse for
that array).

If we assume, for simplicity, a number of operands smaller than the cache associativity,
we can simply aim to maximize the tiling area while avoiding self-interference. If we
generate for each array a tile tuple according to the algorithm presented in [35], we can
simply intersect the areas by taking the minimum value in each dimension. Generating
multiple candidate tile sizes for each array and finding the maximum area may lead to
a better tile size, but trying each combination may be intractable. However, it may be
sufficient to try, for each item in the first candidate set, to find the best candidate in
successive candidate sets. If we then have more operands than cache associativity, we
can simply use a heuristic to weight final candidate tile sizes based on their area and the
expected cross-interference (based for instance on some probability function).

In our implementation, which is not integrated into our compiler, we generate the tile
size (128, 5) for two square matrices for 200 by 200 elements in a 1024 element set-
associative cache from the sets [(5, 200), (41, 24), (128, 8)] and [(200, 5), (24, 41), (8, 128)],
resulting in 62.5% cache occupation. If we give the algorithm arrays with strides
(280, 1) and (282, 1) and the respective transposes, it generates the sets below

Listing 30: Tiling Candidate Sets

[(3, 280), (4, 184), (7, 96), (11, 88), (128, 8)]
[(280, 3), (184, 4), (96, 7), (88, 11), (8, 128)]
[(3, 282), (4, 178), (7, 104), (11, 74), (29, 30),
(69, 14), (512, 2)]
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[(282, 3), (178, 4), (104, 7), (74, 11), (30, 29),
(14, 69), (2, 512)]

from which it intersects the areas to find (69, 8) as the final tile size, which has a cache
utilization of approximately 54%. Our algorithm is depicted in Appendix A, Figure 36.

5.3.2 Blocking

In this section we evaluate the effectiveness of blocking as discussed in section 5.3.
It must be noted that since we provide a compiler, and not an interpreter like Num-
Expr [14], blocked evaluation means we need to generate different code for each sub-
expression selected for blocked evaluation (except for contrived cases). Consider the
expression a[:, :] = b[:, :] + c[:, :] + d[:, :] + e[:, :] + f [:, :]. If we want to block up this
execution, we could decide do evaluate - in chunks - a[:, :] = b[:, :] + c[:, :] + d[:, :]
followed by a[:, :] = a[:, :] + e[:, :] + f [:, :]. In this case we can generate a generic spe-
cialization that takes a as the left hand side and 3 other operands on the right hand side.
In fact, it can reorder the operands in the expression, considering that the operator used
is commutative.

Blocking may be useful when we have a high number of array operands, and they may
have pathological alignment properties. For instance, if all arrays are aligned on the the
effective cache size, all references will fall in the same set location. In this case it may
be beneficial to perform blocking where a arrays are executed at a time.

This case may seem contrived, but note that a lazy evaluation runtime may create large
expression graphs with many expressions and different operands. In our benchmarks
we align a number of arrays on the cache set-size boundary of our CPU’s cache. We
register a 10% speedup by executing the expression in a blocked fashion with 8 arrays,
and around 20% to 30% with 16 arrays.
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6 Results and Analysis

To evaluate the general performance of our library we have written a benchmark suite
that evaluates certain array expressions using our Cython front-end. In these bench-
marks we will not target special optimizations such as broadcasting as discussed in
section 5.1 or elimination of temporary arrays as discussed in section 5.2, since those
are better discussed in their respective sections. We evaluate our approach with auto-
tuned tiling parameters and threshold parameters to cancel overhead of OpenMP paral-
lel loops for small data sizes. All benchmarks are executed on an Intel® Core™ i5-760
2.8 GHz quad-core processor.

We evaluate each benchmark with NumPy, NumExpr, Theano (with thanks to Frédéric
Bastien) and Fortran. To compare with Fortran we use the GNU Fortran 4.7 compiler
for the Fortran benchmarks, which we compare with our Cython benchmark compiled
with GCC 4.7. We also compare array expressions compiled with Intel® Fortran to
array expressions in Cython compiled with the Intel® C compiler. We shall separate
these results in different graphs for clarity.

Note that although we support any element type and any arithmetic operator as well as
element-wise functions, we will evaluate simple expressions on single precision floating
points, since it is important to evaluate performance with the computationally cheapest
operators possible in order to highlight the inefficiency of the execution strategies.

6.1 Contiguous

Our first benchmark is a simple expression a[...] = a + b with Fortran contiguous
two-dimensional operands. The results are shown in Figure 4 and Figure 6. It would
appear that GFortran’s implementation performs nearly twice as fast for the smaller
data sets as compared to the Cython implementation compiled with GCC. However,
compilation with the Intel® C compiler results in approximately equivalent performance
to the Fortran version.

It seems that GCC generates a test that checks whether our pointers are actually
restrict, i.e. whether they actually constitute exclusive memory regions (we are
uncertain whether this involves a pointer comparison, or whether it takes the actual
loop bounds into account). Since we use a on the left-hand as well as the right-hand
side, the code will execute a generated non-vectorized version of the code. This results
in the performance shown in Figure 4. Fortunately, our compiler can generate manually
vectorized code, for which the performance is shown in Figure 5, which shows our
compiler has roughly the same performance as GFortran for this expression and these
data layouts.

Note how we usually merge equivalent compile-time operands into a single argument.
E.g. a[:, :] + a[:, :] should result in only a single data and strides pointer being passed
in to the function. The code that detects this didn’t however recognize a[...] and a as

49



Figure 4: Benchmark with Fortran-contiguous operands, GCC/GFortran 4.7, unvector-
ized.

the same operand. Fortunately, this is entirely trivial to implement (but we have not yet
done so, since these results are interesting).

Theano performs bad here, since it doesn’t optimize for Fortran order or contiguity.
Instead, it assumes C-ordered operands, since Theano itself always allocates memory
in this order. With user input in Fortran order this means it is traversing the memory in
the worst fashion possible, since the outer loop iterates over the contiguous dimension
and the inner loop over the strided dimension. However, integration of our project as a
backend for Theano has been discussed, and enthusiasm from the community suggests
this will likely happen in the near future.

Note how Intel® Fortran with parallel array expressions, using the OpenMP workshare
directive, is consistently slower than the sequential equivalent, whereas we do see a
good speedup for the parallel Cython and GFortran versions. We can only conclude that
Intel® Fortran does not either support parallel expressions, or has a bad implementation.

6.2 Strided

Our strided benchmark executes a simple expression on strided operands. Instead of
varying the data size we now vary the stride, and grow the data size accordingly (start-
ing with a data size of 400 by 400). The graphs in figures 7 and 8 depict the perfor-
mance using GNU and Intel® compilers respectively. The performance characteristics
are mostly the same for all libraries with larger strides, since the problem becomes
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Figure 5: Benchmark with Fortran-contiguous operands, GCC/GFortran 4.7. This
benchmark was explicitly vectorized by our compiler.

Figure 6: Benchmark with Fortran-contiguous operands, Intel® C/Fortran version
12.1.5.
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Figure 7: Benchmark with strided operands, GCC/GFortran 4.7.

entirely memory bound and there is no spatial reuse of data when the strides exceed
cache-line sizes. For smaller strides we see that NumExpr doesn’t perform well, likely
due to startup overhead.

6.3 Contiguous in Inner Dimension

This benchmark operates on Fortran ordered arrays with a contiguous inner dimension
(the columns). The rows are however strided (we take the even rows). We see again in
Figure 9 how GCC does not take the vectorized path, which results in approximately
half the performance for small data sizes. Comparing the explicitly vectorized version
in Figure 10 however, we see that the performance of the Cython implementation is
roughly equal to the GNU Fortran implementation, although slightly lower for small
data sizes, likely due to constant overhead needed to select the specialization and checks
for read-after-write situations. Fortran does not need to perform such checks, since the
semantics of the language dictate that memory of input arrays to a subroutine do not
overlap.

We note again how Theano performs bad, due to the Fortran ordering. Comparing
Theano in this way is not very enlightening. Indeed, when we use C-ordered arrays, it
shows performance that comes much closer to the performance of Fortran and Cython.

Analyzing the performance with Intel® compilers, shown in Figure 11, leads again to
the same conclusion as in section 6.1, namely that it does take the vectorized path for
the Cython expression, and that it does not properly parallelize array expressions.
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Figure 8: Benchmark with strided operands, Intel® C/Fortran version 12.1.5.

Figure 9: Benchmark with operands contiguous in the first dimension, GCC/GFortran
4.7, unvectorized.
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Figure 10: Benchmark with operands contiguous in the first dimension, GCC/GFortran
4.7. This benchmark was explicitly vectorized by our compiler.

Figure 11: Benchmark with operands contiguous in the first dimension, Intel® C/Fortran
version 12.1.5.
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6.4 Tiled

The tiled benchmarks are perhaps the most interesting in the suite. Even though we
do not use optimal tiling parameters as discussed in section 5.3 but instead auto-tuned
ones, we see great speedups over both GFortran and Intel® Fortran.

This benchmarks mixes C-contiguous operands with Fortran-contiguous ones. In Fig-
ure 12 we see very similar performance between GFortran and Theano. This is very
likely due to both approaches using a single iteration order (either C or Fortran). As
discussed in sections 2.6, 4.4 and 5.3, tiling is an important optimization to utilize spa-
tial locality. We see that we outperform GNU Fortran by almost a factor of three for
larger data sizes, and the threaded Fortran version only marginally outperforms our
single-threaded implementation for larger data sizes.

In Figure 13 we see that Intel® Fortran does a better job than GFortran, but we still
outperform it by a good margin. For instance for an 800x800 matrix we register a
speedup of 1.86, and for 2000x2000 a speedup of 1.43.

We see that in our benchmarks we outperform NumPy and NumExpr by great margins,
and that even a threaded NumExpr implementation does not come close to our single-
threaded tiled implementation, which is because neither library performs tiling. Note
finally how we have not implemented our SIMD transpose approach as discussed in
section 4.4.1, which can bring an additional significant speedup.

The results for a tiled and strided implementation can be found in Appendix A, Figure
14 and Figure 15, since they show great similarity with the results of the contiguous
tiled benchmark.
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Figure 12: Benchmark with contiguous operands, mixed data order, GCC/GFortran 4.7.

Figure 13: Benchmark with contiguous operands, mixed data order, Intel® C/Fortran
version 12.1.5.
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7 Conclusion

We have successfully implemented and evaluated a compiler for array expressions. We
saw that there is much more to array expressions than straightforward scalarization,
and we demonstrated the power of static and runtime compilation techniques. We have
seen our compiler outperform open source and commercial Fortran compilers by a good
margin using these techniques, but we have also seen that static specialization is limited
by the compile-time information. It is not possible to apply optimizations such as loop-
invariant code motion when broadcasting, unless the broadcasting information is part of
the array types, which may not only be awkward, but will result in a loss of generality
in user code. Lazy evaluation combined with runtime just-in-time specialization results
in a speedup of nearly a factor of 2 over what our static specialization technique can
provide in such situations.

We have also considered that runtime compilation will also be particularly useful when
data layouts are fixed at runtime, to enable SIMDization using vector-sized transposes
in the tiling specializations. Although we have not conducted a thorough study into lazy
evaluation, its power and ability to trivially bypass control flow and span subroutines
(and different modules and even projects) are clear.

We also showed how we can use traditional dependence tests to avoid temporary arrays
for overlapping memory between arrays on the right-hand side and the left-hand side.
This technique applies to our runtime as well as our compile-time environment, and is
more general and effective than what compile-time analysis could provide for arrays
represented as views on memory.

Finally, we have seen that it is possible to design stand-alone compiler components that
can be reused among projects. This promotes interoperability between projects and
allows developer resources to be focussed on improving a single project that benefits
everyone, which is in better accordance with open source spirit than an ever increasing
disparity and rivalry between technologies. We have seen how such a component can
be designed, and how we can minimize the efforts needed to develop different code
generation back-ends by defining complex operations in terms of simple ones, a concept
that can be applied recursively.
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8 Future Work

Although our array expression compiler is effective, a lot of work remains. For instance,
we have mostly focussed on the performance aspects of element-wise functionality, and
have not yet implemented reductions. We have demonstrated the effectiveness of var-
ious techniques, but have not implemented all of them in our compiler, including the
SIMD vector transposes, computing optimal tiling parameters, using the blocking tech-
nique, or using the dependence tester to prove independence or suggest techniques such
as the runtime equivalent of loop interchange or loop reversal to avoid the dependence.
We are however happy with the results, since a demonstration of the effectiveness is in
itself a virtue.

We have also implemented an explicit vectorizer, but this is not yet implemented in
the runtime compiler (the LLVM code generator), and additional study is needed to
establish the runtime cost of auto-vectorization. The runtime compiler has also no abil-
ity to generate parallel loops, which should be addressed in the future through calls to
libgomp [60] or our own implementation. Further efforts are needed to implement tech-
niques to reduce runtime compilation overhead, including code caching and improving
the performance of the compiler itself. Although our project supports element-wise
(math) functions, our vectorizer can not handle vector math at the time of writing using
libraries like Intel® MKL [61].

Our project is only partially integrated in Numba [62], which only uses the type system
and not the array expression functionality at the time of writing. Integration into the
Theano project is pending, and we imagine integration into additional projects in the
future.
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A Appendix

Listing 31: Simplified code for Specialization Selection for a[:, :] = b[:, :] + c[:, :]

/* LHS */
if (unlikely(!v_5test2_a.memview)) {

__Pyx_RaiseUnboundLocalError("a"); {filename = f[0]; lineno =
36; clineno = __LINE__; goto L1_error;} }

t_2 = v_5test2_a;
__PYX_INC_MEMVIEW(&t_2, 1);
/* Evaluate operands */
if (unlikely(!v_5test2_b.memview)) {

__Pyx_RaiseUnboundLocalError("b"); {filename = f[0]; lineno =
36; clineno = __LINE__; goto L1_error;} }

t_4 = v_5test2_b;
__PYX_INC_MEMVIEW(&t_4, 1);
if (unlikely(!v_5test2_c.memview)) {

__Pyx_RaiseUnboundLocalError("c"); {filename = f[0]; lineno =
36; clineno = __LINE__; goto L1_error;} }

t_5 = v_5test2_c;
__PYX_INC_MEMVIEW(&t_5, 1);
/* Check overlapping memory */
t_6 = (slices_overlap(t_2, t_4, 2, 2) && read_after_write(t_2,

t_4, 2)) || (slices_overlap(t_2, t_5, 2, 2) &&
read_after_write(t_2, t_5, 2));

/* Broadcast all operands in RHS expression */
t_7 = 0;
t_3.shape[0] = 1;
t_3.shape[1] = 1;
if (unlikely(memoryview_broadcast(&t_3.shape[0], &t_4.shape[0],

&t_4.strides[0], 2, 2, &t_7) < 0)) {filename = f[0]; lineno =
36; clineno = __LINE__; goto L1_error;}

if (unlikely(memoryview_broadcast(&t_3.shape[0], &t_5.shape[0],
&t_5.strides[0], 2, 2, &t_7) < 0)) {filename = f[0]; lineno =
36; clineno = __LINE__; goto L1_error;}

if (unlikely(verify_shapes(t_2, t_3, 2, 2) < 0)) {filename = f
[0]; lineno = 36; clineno = __LINE__; goto L1_error;}

/* Allocate scratch space if needed */
if (unlikely(t_6)) {

t_8 = (double *) malloc(sizeof(double) * t_3.shape[0] * t_3.
shape[1]);

if (!t_8) {
PyErr_NoMemory();
{filename = f[0]; lineno = 36; clineno = __LINE__; goto

L1_error;}
}
t_3.data = (char *) t_8;
fill_contig_strides_array(&t_3.shape[0], &t_3.strides[0],

sizeof(double), 2, get_best_slice_order(t_3, 2));
} else {t_8 = NULL;
t_3.data = t_2.data;
t_3.strides[0] = t_2.strides[0];
t_3.strides[1] = t_2.strides[1];
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}
/* Evaluate expression */
{

const __Pyx_memviewslice *array_ops[3] = { &t_3, &t_4, &t_5
};

int ndims[3] = { 2, 2, 2 };
Py_ssize_t itemsizes[3] = { sizeof(double), sizeof(double),

sizeof(double) };
t_9 = get_arrays_ordering(array_ops, ndims, itemsizes, 3);

}
/* Contiguous specialization */
if (t_9 & __PYX_ARRAYS_ARE_CONTIG && !t_7) {

(void) array_expression_0contig(&t_3.shape[0], (double *) t_3.
data, (double *) t_4.data, (double *) t_5.data,
vector_get_omp_size(2));

}
else if (t_9 & (__PYX_ARRAYS_ARE_MIXED_CONTIG|

__PYX_ARRAYS_ARE_MIXED_STRIDED)) {
/* Tiled specializations */
if (t_9 & __PYX_ARRAY_C_ORDER) {

(void) array_expression_1tiled_c(&t_3.shape[0], (double *)
t_3.data, &t_3.strides[0], (double *) t_4.data, &t_4.
strides[0], (double *) t_5.data, &t_5.strides[0],

vector_get_tile_size(sizeof(double), 2), vector_get_omp_size(2));
} else {

(void) array_expression_2tiled_fortran(&t_3.shape[0], (
double *) t_3.data, &t_3.strides[0], (double *) t_4.data,
&t_4.strides[0], (double *) t_5.data, &t_5.strides[0],

vector_get_tile_size(sizeof(double), 2), vector_get_omp_size(2));
}

}
else if (t_9 & __PYX_ARRAYS_ARE_INNER_CONTIG) {

if (t_9 & __PYX_ARRAY_C_ORDER) {
(void) array_expression_3inner_contig_c(&t_3.shape[0], (

double *) t_3.data, &t_3.strides[0], (double *) t_4.data,
&t_4.strides[0], (double *) t_5.data, &t_5.strides[0],

vector_get_omp_size(2));
} else {

(void) array_expression_4inner_contig_fortran(&t_3.shape[0],
(double *) t_3.data, &t_3.strides[0], (double *) t_4.
data, &t_4.strides[0], (double *) t_5.data,

&t_5.strides[0], vector_get_omp_size(2));
}

}
else {

/* Strided specializations */
if (t_9 & __PYX_ARRAY_C_ORDER) {

(void) array_expression_5strength_reduced_strided(&t_3.shape
[0], (double *) t_3.data, &t_3.strides[0], (double *) t_4
.data, &t_4.strides[0], (double *) t_5.data,

&t_5.strides[0], vector_get_omp_size(2));
} else {

(void) array_expression_6strength_reduced_strided_fortran(&
t_3.shape[0], (double *) t_3.data, &t_3.strides[0], (
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double *) t_4.data, &t_4.strides[0], (double *) t_5.data,
&t_5.strides[0], vector_get_omp_size(2));

}
}
/* Cleanup */
if (unlikely(t_6)) {
free(t_8);
t_8 = NULL;

}
__PYX_XDEC_MEMVIEW(&t_4, 1);
__PYX_XDEC_MEMVIEW(&t_5, 1);
__PYX_XDEC_MEMVIEW(&t_3, 1);
__PYX_XDEC_MEMVIEW(&t_2, 1);
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Listing 32: Strided Implementation for a[:, :] = b[:, :] + c[:, :]

static int array_expression_5strength_reduced_strided(
Py_ssize_t const *const CYTHON_RESTRICT shape,
double *const CYTHON_RESTRICT op1_data,
Py_ssize_t const *const CYTHON_RESTRICT op1_strides,
double const *const CYTHON_RESTRICT op2_data,
Py_ssize_t const *const CYTHON_RESTRICT op2_strides,
double const *const CYTHON_RESTRICT op3_data,
Py_ssize_t const *const CYTHON_RESTRICT op3_strides,
Py_ssize_t const omp_size)

{
Py_ssize_t const op1_stride3 = (op1_strides[0] /

sizeof(double));
Py_ssize_t const op1_stride4 = (op1_strides[1] /

sizeof(double));
double *CYTHON_RESTRICT temp5 = op1_data;
Py_ssize_t const op2_stride7 = (op2_strides[0] /

sizeof(double));
Py_ssize_t const op2_stride8 = (op2_strides[1] /

sizeof(double));
double const *CYTHON_RESTRICT temp9 = op2_data;
Py_ssize_t const op3_stride11 = (op3_strides[0] /

sizeof(double));
Py_ssize_t const op3_stride12 = (op3_strides[1] /

sizeof(double));
double const *CYTHON_RESTRICT temp13 = op3_data;
Py_ssize_t const temp0 = (shape[0] * shape[1]);
Py_ssize_t temp2;
#ifdef _OPENMP
#pragma omp parallel for if((temp0 > omp_size)) \

lastprivate(temp2) \
private(temp5, temp9, temp13) \
default(none)

#endif
for (temp2 = 0; temp2 < shape[0]; temp2++) {

double *CYTHON_RESTRICT temp6;
double const *CYTHON_RESTRICT temp10;
double const *CYTHON_RESTRICT temp14;
Py_ssize_t temp1;
#ifdef _OPENMP
temp5 = (op1_data + (op1_stride3 * temp2));
#endif
temp6 = temp5;
#ifdef _OPENMP
temp9 = (op2_data + (op2_stride7 * temp2));
#endif
temp10 = temp9;
#ifdef _OPENMP
temp13 = (op3_data + (op3_stride11 * temp2));
#endif
temp14 = temp13;
#ifdef __INTEL_COMPILER
#pragma simd
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#endif
for (temp1 = 0; temp1 < shape[1]; temp1++) {

(*temp6) = ((*temp10) + (*temp14));
temp6 += op1_stride4;
temp10 += op2_stride8;
temp14 += op3_stride12;

}
#ifndef _OPENMP
temp5 += op1_stride3;
temp9 += op2_stride7;
temp13 += op3_stride11;
#endif

}
return 0;

}
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Listing 33: Tiled implementation for a[:, :] = b[:, :] + c[:, :]

static int
array_expression1tiled_c(

Py_ssize_t const *const CYTHON_RESTRICT shape,
double *const CYTHON_RESTRICT op1_data,
Py_ssize_t const *const CYTHON_RESTRICT op1_strides,
double const *const CYTHON_RESTRICT op2_data,
Py_ssize_t const *const CYTHON_RESTRICT op2_strides,
double const *const CYTHON_RESTRICT op3_data,
Py_ssize_t const *const CYTHON_RESTRICT op3_strides,
Py_ssize_t const blocksize,
Py_ssize_t const omp_size)

{
Py_ssize_t const op1_stride7 = (op1_strides[0] /

sizeof(double));
Py_ssize_t const op1_stride8 = (op1_strides[1] /

sizeof(double));
double *CYTHON_RESTRICT temp9 = op1_data;
Py_ssize_t const op2_stride13 = (op2_strides[0] /

sizeof(double));
Py_ssize_t const op2_stride14 = (op2_strides[1] /

sizeof(double));
double const *CYTHON_RESTRICT temp15 = op2_data;
Py_ssize_t const op3_stride19 = (op3_strides[0] /

sizeof(double));
Py_ssize_t const op3_stride20 = (op3_strides[1] /

sizeof(double));
double const *CYTHON_RESTRICT temp21 = op3_data;
Py_ssize_t const temp0 = (shape[0] * shape[1]);
Py_ssize_t temp2;
#ifdef _OPENMP
#pragma omp parallel for if((temp0 > omp_size)) \

lastprivate(temp2) \
private(temp9, temp15, temp21) \
default(none)

#endif
for (temp2 = 0; temp2 < shape[0]; temp2 += blocksize) {

double *CYTHON_RESTRICT temp10;
double const *CYTHON_RESTRICT temp16;
double const *CYTHON_RESTRICT temp22;
Py_ssize_t temp1;
#ifdef _OPENMP
temp9 = (op1_data + (op1_stride7 * temp2));
#endif
temp10 = temp9;
#ifdef _OPENMP
temp15 = (op2_data + (op2_stride13 * temp2));
#endif
temp16 = temp15;
#ifdef _OPENMP
temp21 = (op3_data + (op3_stride19 * temp2));
#endif
temp22 = temp21;
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for (temp1 = 0; temp1 < shape[1]; temp1 += blocksize) {
double *CYTHON_RESTRICT temp11;
double const *CYTHON_RESTRICT temp17;
double const *CYTHON_RESTRICT temp23;
Py_ssize_t temp3;
Py_ssize_t temp4;
Py_ssize_t temp6;
temp11 = temp10;
temp17 = temp16;
temp23 = temp22;
temp3 = (((temp2 + blocksize) < shape[0]) ?

(temp2 + blocksize) : shape[0]);
temp4 = (((temp1 + blocksize) < shape[1]) ?

(temp1 + blocksize) : shape[1]);
for (temp6 = temp2; temp6 < temp3; temp6++) {

double *CYTHON_RESTRICT temp12;
double const *CYTHON_RESTRICT temp18;
double const *CYTHON_RESTRICT temp24;
Py_ssize_t temp5;
temp12 = temp11;
temp18 = temp17;
temp24 = temp23;
for (temp5 = temp1; temp5 < temp4; temp5++) {

(*temp12) = ((*temp18) + (*temp24));
temp12 += op1_stride8;
temp18 += op2_stride14;
temp24 += op3_stride20;

}
temp11 += op1_stride7;
temp17 += op2_stride13;
temp23 += op3_stride19;

}
temp10 += (op1_stride8 * blocksize);
temp16 += (op2_stride14 * blocksize);
temp22 += (op3_stride20 * blocksize);

}
#ifndef _OPENMP
temp9 += (op1_stride7 * blocksize);
temp15 += (op2_stride13 * blocksize);
temp21 += (op3_stride19 * blocksize);
#endif

}
return 0;

}
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Listing 34: Generated C Code for Optimized Broadcasting

static int lazy0_0inner_contig_c(npy_intp * shape, double *
op0_data, Py_ssize_t * op0_strides, double * op1_data,
Py_ssize_t * op1_strides, double * op2_data, Py_ssize_t *
op2_strides, double * op3_data, Py_ssize_t * op3_strides) {
Py_ssize_t const op1_stride6 = (op1_strides[0] /

sizeof(double));
Py_ssize_t const op1_stride7 = (op1_strides[1] /

sizeof(double));
Py_ssize_t const op1_stride8 = (op1_strides[2] /

sizeof(double));
double * temp9 = op1_data;
Py_ssize_t const op2_stride10 = (op2_strides[0] /

sizeof(double));
Py_ssize_t const op2_stride11 = (op2_strides[1] /

sizeof(double));
double * temp12 = op2_data;
Py_ssize_t const op0_stride13 = (op0_strides[0] /

sizeof(double));
Py_ssize_t const op0_stride14 = (op0_strides[1] /

sizeof(double));
double * temp15 = op0_data;
Py_ssize_t const op3_stride17 = (op3_strides[0] /

sizeof(double));
Py_ssize_t const op3_stride18 = (op3_strides[1] /

sizeof(double));
double * temp19 = op3_data;
npy_intp temp0 = ((shape[0] * shape[1]) * shape[2]);
npy_intp temp3;
#ifdef _OPENMP
#pragma omp parallel for if((temp0 > 1024)) \

lastprivate(temp3) \
private(temp9, temp12, \

temp15, temp19)\
default(none)

#endif
for (temp3 = 0; temp3 < shape[0]; temp3++) {

double * temp16;
double * temp20;
double hoisted_temp4;
npy_intp temp2;
#ifdef _OPENMP
temp9 = (op1_data + (op1_stride6 * temp3));
temp12 = (op2_data + (op2_stride10 * temp3));
temp15 = (op0_data + (op0_stride13 * temp3));
#endif
temp16 = temp15;
#ifdef _OPENMP
temp19 = (op3_data + (op3_stride17 * temp3));
#endif
temp20 = temp19;
hoisted_temp4 = (*temp9);
for (temp2 = 0; temp2 < shape[1]; temp2++) {
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double hoisted_temp5;
npy_intp temp1;
hoisted_temp5 = (hoisted_temp4 * temp12[temp2]);
#ifdef __INTEL_COMPILER
#pragma simd
#endif
for (temp1 = 0; temp1 < shape[2]; temp1++) {

temp16[temp1] = (hoisted_temp5 * temp20[temp1]);
}
temp16 += op0_stride14;
temp20 += op3_stride18;

}
#ifndef _OPENMP
temp9 += op1_stride6;
temp12 += op2_stride10;
temp15 += op0_stride13;
temp19 += op3_stride17;
#endif

}
return 0;

}
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Listing 35: Generated LLVM IR for Optimized Broadcasting

define i32 @lazy0inner_contig_c(i64* noalias nocapture, double*
noalias nocapture, i64* noalias nocapture, double* noalias
nocapture, i64* noalias nocapture, double* noalias nocapture,
i64* noalias nocapture, double* noalias nocapture, i64* noalias
nocapture) {

entry_0:
%9 = load i64* %4
%10 = udiv i64 %9, 8
%11 = getelementptr i64* %4, i32 1
%12 = load i64* %11
%13 = getelementptr i64* %4, i32 2
%14 = load i64* %13
%15 = load i64* %6
%16 = udiv i64 %15, 8
%17 = getelementptr i64* %6, i32 1
%18 = load i64* %17
%19 = load i64* %2
%20 = getelementptr i64* %2, i32 1
%21 = load i64* %20
%22 = load i64* %8
%23 = getelementptr i64* %8, i32 1
%24 = load i64* %23
%25 = load i64* %0
%26 = getelementptr i64* %0, i32 1
%27 = load i64* %26
%28 = mul i64 %25, %27
%29 = getelementptr i64* %0, i32 2
%30 = load i64* %29
%31 = mul i64 %28, %30
%32 = lshr i64 %22, 3
%33 = mul i64 %32, 8
%34 = lshr i64 %24, 3
%35 = mul i64 %34, 8
%36 = lshr i64 %19, 3
%37 = mul i64 %36, 8
%38 = lshr i64 %21, 3
%39 = mul i64 %38, 8
br label %for.cond_1

for.cond_1: ; preds = %for.
exit_8, %entry_0

%lsr.iv6 = phi double* [ %54, %for.exit_8 ], [ %1, %entry_0 ]
%lsr.iv = phi double* [ %53, %for.exit_8 ], [ %7, %entry_0 ]
%temp3.0 = phi i64 [ 0, %entry_0 ], [ %52, %for.exit_8 ]
%temp12.0 = phi double* [ %5, %entry_0 ], [ %51, %for.exit_8 ]
%temp9.0 = phi double* [ %3, %entry_0 ], [ %50, %for.exit_8 ]
%40 = load i64* %0
%41 = icmp slt i64 %temp3.0, %40
br i1 %41, label %for.body_3, label %for.exit_4

for.body_3: ; preds = %for.
cond_1
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%42 = load double* %temp9.0
br label %for.cond_5

for.exit_4: ; preds = %for.
cond_1

ret i32 0

for.cond_5: ; preds = %for.
exit_12, %for.body_3

%lsr.iv9 = phi double* [ %64, %for.exit_12 ], [ %lsr.iv6, %for.
body_3 ]

%lsr.iv2 = phi double* [ %63, %for.exit_12 ], [ %lsr.iv, %for.
body_3 ]

%temp2.0 = phi i64 [ 0, %for.body_3 ], [ %62, %for.exit_12 ]
%sunkaddr = ptrtoint i64* %0 to i64
%sunkaddr13 = add i64 %sunkaddr, 8
%sunkaddr14 = inttoptr i64 %sunkaddr13 to i64*
%43 = load i64* %sunkaddr14
%44 = icmp slt i64 %temp2.0, %43
br i1 %44, label %for.body_7, label %for.exit_8

for.body_7: ; preds = %for.
cond_5

%45 = getelementptr double* %temp12.0, i64 %temp2.0
%46 = load double* %45
%47 = fmul double %42, %46
br label %for.cond_9

for.exit_8: ; preds = %for.
cond_5

%48 = bitcast double* %lsr.iv to i1*
%49 = bitcast double* %lsr.iv6 to i1*
%50 = getelementptr double* %temp9.0, i64 %10
%51 = getelementptr double* %temp12.0, i64 %16
%52 = add i64 %temp3.0, 1
%scevgep = getelementptr i1* %48, i64 %33
%53 = bitcast i1* %scevgep to double*
%scevgep8 = getelementptr i1* %49, i64 %37
%54 = bitcast i1* %scevgep8 to double*
br label %for.cond_1

for.cond_9: ; preds = %for.
body_11, %for.body_7

%temp1.0 = phi i64 [ 0, %for.body_7 ], [ %59, %for.body_11 ]
%sunkaddr15 = ptrtoint i64* %0 to i64
%sunkaddr16 = add i64 %sunkaddr15, 16
%sunkaddr17 = inttoptr i64 %sunkaddr16 to i64*
%55 = load i64* %sunkaddr17
%56 = icmp slt i64 %temp1.0, %55
br i1 %56, label %for.body_11, label %for.exit_12

for.body_11: ; preds = %for.
cond_9

%scevgep5 = getelementptr double* %lsr.iv2, i64 %temp1.0
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%57 = load double* %scevgep5
%58 = fmul double %47, %57
%scevgep12 = getelementptr double* %lsr.iv9, i64 %temp1.0
store double %58, double* %scevgep12
%59 = add i64 %temp1.0, 1
br label %for.cond_9

for.exit_12: ; preds = %for.
cond_9

%60 = bitcast double* %lsr.iv2 to i1*
%61 = bitcast double* %lsr.iv9 to i1*
%62 = add i64 %temp2.0, 1
%scevgep4 = getelementptr i1* %60, i64 %35
%63 = bitcast i1* %scevgep4 to double*
%scevgep11 = getelementptr i1* %61, i64 %39
%64 = bitcast i1* %scevgep11 to double*
br label %for.cond_5

}
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Listing 36: Compute Tiling Sizes based on [35]

import math

import numpy as np

def computerows(colsize, CS, N):
cols_per_set = q1 = CS / N

r1 = CS % N
setdiff = N - r1
cols_per_n = N / setdiff
gap = N % setdiff

if colsize == N:
return cols_per_set

elif colsize == r1 and colsize > setdiff:
return cols_per_set + 1

else:
cols_per_setdiff = math.floor(setdiff / colsize)
cols_per_gap = math.floor(gap / colsize)
return int(cols_per_setdiff * cols_per_n * cols_per_set +

cols_per_gap * cols_per_set +
cols_per_setdiff * math.floor(r1 / setdiff) +

cols_per_gap)

def find_tile_sizes(arrays, cache_size):
for array in arrays:

colsize = N = max(array.strides) / array.dtype.itemsize
rowsize = cache_size / N
r = cache_size % colsize

candidates = []
if rowsize:

candidates.append((rowsize, colsize))

while colsize > 4 and r != 0:
tmp = colsize
colsize = r
r = tmp % r
rowsize = computerows(colsize, cache_size, N)
candidates.append((rowsize, colsize))

if array.strides[0] < array.strides[1]:
candidates = [c[::-1] for c in candidates]

print array.strides, candidates
yield candidates

def maxarea(arrays, CS):
list_of_candidate_sets = list(find_tile_sizes(arrays, CS))

area = 0
tile = None
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for T1 in list_of_candidate_sets[0]:
x0, y0 = T1
for candidates in list_of_candidate_sets[1:]:

curarea = 0
for T2 in candidates:

x1, y1 = T2
if min(x0, x1) * min(y0, y1) > curarea:

cur_x = min(x0, x1)
cur_y = min(y0, y1)
curarea = cur_x * cur_y

x0, y0 = cur_x, cur_y

if x0 * y0 > area:
tile = x0, y0
area = x0 * y0

return tile
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Figure 14: Benchmark with strided operands, mixed data order, GCC/GFortran 4.7.

Figure 15: Benchmark with strided operands, mixed data order, Intel® C/Fortran version
12.1.5.
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