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1 Introduction

This note is a review of some of the most salient points of electric network theory. In it we do not
prove any of the assertions that are made. We deal only with passive, linear network elements.

2 Network Primitives

Electric network theory deals with two primitive quantities, which we will refer to as:

1. Potential (or voltage), and

2. Current.

Current is the actual flow of charged carriers, while difference in potential is the force that
causes that flow. As we will see, potential is a single- valued function that may be uniquely defined
over the nodes of a network. Current, on the other hand, flows through the branches of the network.
Figure 1 shows the basic notion of a branch, in which a voltage is defined across the branch and a
current is defined to flow through the branch. A network is a collection of such elements, connected
together by wires.

Figure 1: Basic Circuit Element

Network topology is the interconnection of its elements. That, plus the constraints on voltage
and current imposed by the elements themselves, determines the performance of the network,
described by the distribution of voltages and currents throughout the network.

Two important concepts must be described initially. These are of “loop” and “node”.
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1. A loop in the network is any closed path through two or more elements of the network. Any
non-trivial network will have at least one such loop.

. + -
is 2
—_— .
llg
I
+
\V;
1 Vg
+
I
i

Figure 2: This is a loop

2. a node is a point at which two or more elements are interconnected.

Figure 3: This is a node

The two fundamental laws of network theory are known as Kirchoff’s Voltage Law (KVL), and
Kirchoff’s Current Law (KCL). These laws describe the topology of the network, and arise directly
from the fundmantal laws of electromagnetics. They are simply stated as:

e Kirchoff’s Voltage Law states that, around any loop of a network, the sum of all voltages,
taken in the same direction, is zero:
Z Vi — 0 (1)

loop

e Kirchoff’s Current Law states that, at any node of a network, the sum of all currents entering

the node is zero:
> ir=0 (2)
node
1Note that KVL is a discrete version of Faraday’s Law, valid to the extent that no time-varying

flux links the loop. KCL is just conservation of current, allowing for no accumulation of charge at
the node.



Network elements affect voltages and currents in one of three ways:

1. Voltage sources constrain the potential difference across their terminals to be of some fixed
value (the value of the source).

2. Current sources constrain the current through the branch to be of some fixed value.

3. All other elements impose some sort of relationship, either linear or nonlinear, between voltage
across and current through the branch.
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Figure 4: Notation for voltage and current sources

Voltage and current sources can be either independent or dependent. Independent sources have
values which are, as the name implies, independent of other variables in a circuit. Dependent
sources have values which depend on some other variable in a circuit. A common example of a
dependent source is the equivalent current source used for modeling the collector junction in a
transistor. Typically, this is modeled as a current dependent current source, in which collector
current is taken to be directly dependent on emitter current. Such dependent sources must be
handled with some care, for certain tricks we will be discussing below do not work with them.

For the present time, we will consider, in addition to voltage and current sources, only impedance
elements, which impose a linear relationship between voltage and current. The most common of
these is the resistance, which imposes the relationship which is often referred to as Ohm’s law:

vy = Ri, (3)

Figure 5: Resistance Circuit Element

A bit later on in this note, we will extend this notion of impedance to other elements, but for
the moment the resistance will serve our purposes.



3 Examples: Voltage and Current Dividers

Figure 6 may be used as an example to show how we use all of this. See that it has one loop and
three nodes. Around the loop, KVL is:

Vs—v1 —v2=0
At the upper right- hand node, we have, by KCL:
i1—i2=0
The constitutive relations imposed by the resistances are:
v = Riiq
V9 = Roig

Combining these, we find that:
Vs = (R1 + R2)is

We may solve for the voltage across, say, Ra, to obtain the so-called voltage divider relationship:

1 (4)
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Figure 6: Voltage Divider

A second example is illustrated by Figure 7. Here, KCL at the top node yields:
Is—i1—i3=0
And KVL, written around the loop that has the two resistances, is:
Ryi1 — Raia =0
Combining these together, we have the current divider relationship:

Once we have derived the voltage and current divider relationships, we can use them as part of
our “intellectual toolkit”, because they will always be true.
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Figure 7: Current Divider

4 Node Voltages and Reference

One of the consequences of KVL is that every node in a network will have a potential which is
uniquely specified with respect to some other node. Thus, if we take one of the nodes in the network
to be a reference, or datum, each of the other nodes will have a unique potential. The voltage across
any network branch is then the difference between the potentials at the nodes to which the element
is connected. The potential of a node is the sum of voltages encountered when traversing some
path between that node and the datum node. Note that any path will do. If KVL is satisfied, all
paths between each pair of nodes will yield the same potential.

A commonly used electric circuit is the Wheatstone Bridge, shown in its simplest form in
Figure 8. The output voltage is found simply from the input voltage as just the difference between
two voltage dividers:

_ Ry Ry
o= s (Rl +Ry Rs +R4)

This circuit is used in situations in which one or more resistors varies with, say temperature or
mechanical strain. The bridge can be balanced so that the output voltage is zero by adjusting one
of the other resistors. Then relatively small variations in the sensing element can result in relatively
big differences in the output voltage. If, for example Ry is the sensing element, R4 can be adjusted
to balance the bridge.

5 Serial and Parallel Combinations

There are a number of techniques for handling network problems, and we will not be able to
investigate each of them in depth. We will, however, look into a few techniques for analysis which
involve progressive simplification of the network. To start, we consider how one might handle series
and parallel combinations of elements. A pair of elements is in series if the same current flows
through both of them. If these elements are resistors and if the detail of voltage division between
them is not required, it is possible to lump the two together as a single resistance. This is illustrated
in Figure 9. The voltage across the current source is:

Vg =1 + V9 = 1R + iRy = ’is(Rl + Rg)
The equivalent resistance for the series combination is then:

Rseries = Rl + RQ (6)



Figure 8: Wheatstone Bridge
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Figure 9: Series Resistance Combination

Similarly, resistance elements connected in parallel can be lumped if it is not necessary to know
the details of division of current between them. Figure 10 shows this combination.
Here, current i is simply:

The equivalent resistance for the parallel combination is then:

1 R1 Ry
Rpar = = (7)
tw Bt R

Because of the importance of parallel connection of resistances (and of other impedances), a special
symbolic form is used for parallel construction. This is:

R Ry

As an example, consider the circuit shown in Figure 11, part (a). Here, we have four, resistors
arranged in an odd way to form a two- terminal network. To find the equivalent resistance of this
thing, we can do a series of series-parallel combinations.

The two resistors on the right can be combined as a series combination to form a single, two
ohm resistor as shown in part (b). Then the equivalent resistor, which is in parallel with one of the



Figure 10: Parallel Resistance Combination
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Figure 11: Series-Parallel Reduction

two ohm resistors can be combined to form a single combination part(c). That is in series with the
remaining resistor, leaving us with an equivalent input resistance of R = 3().

6 Loop and Node Equations

There are two well- developed formal ways of solving for the potentials and currents in networks,
often referred to as loop and node equation methods. They are closely related, using KCL and
KVL together with element constraints to build sets of equations which may then be solved for
potentials and currents.

e In the node equation method, KCL is written at each node of the network, with currents
expressed in terms of the node potentials. KVL is satisfied because the node potentials are
unique.

e In the loop equation method, KVL is written about a collection of closed paths in the network.
“Loop currents” are defined, and made to satisfy KCL, and the branch voltages are expressed
in terms of them.

The two methods are equivalent and a choice between them is usually a matter of personal prefer-
ence. The node equation method is probably more widely used, and lends itself well to computer
analysis.

To illustrate how these methods work, consider the network of Figure 12.

This network has three nodes. We are going to write KCL for each of the nodes, but note that
only two explicit equations are required. If KCL is satisfied at two of the nodes, it is automatically
satisfied at the third. Usually the datum node is the one for which we do not write the expression.



Figure 12: Sample Network

KCL written for the two upper nodes of the network is:

. V V—’UQ
_ - = 0 9
21+R1+ 7S (9)
v —V V9
= =9 10
R | Ry (10)

These two expressions are easily solved for the two unknowns, i1 and wvs:
_ R3 N RoR3

Ry + R3 Ry + R3

i1:R1+R2+R3 ~ Rs 7
Rl(RQ + R3) Ry + R3

—I+

I

V2

Ry
WWA

rQE(, OF )3

- b

Figure 13: Sample Network Showing Loops

The loop equation method is similar. We need the same number of independent expressions
(two), so we need to take two independent loops. For this, take as the loops as is shown in
Figure 13:

1. The loop that includes the voltage source and R;.
2. The loop that includes R;, Rs, and Rs.

It is also necessary to define loop currents, which we will denote as i, and 7;. These are the currents

circulating around the two loops. Note that where the loops intersect, the actual branch current

will be the sum of or difference between loop currents. For this example, assume the loop currents
are defined to be circulating counter-clockwise in the two loops. The two loop equations are:

V4 Ri(ig—1i) = 0 (11)

Rl(ib—ia) +R2ib+R3(ib —I) = 0 (12)

These are equally easily solved for the two unknowns, in this case the two loop currents i, and ;.



7 Linearity and Superposition

An extraordinarily powerful notion of network theory is linearity. This property has two essential
elements, stated as follows:

1. For any single input x yielding output y, the response to an input kx is ky for any value of k.

2. If, in a multi-input network the input x; by itself yields output y; and a second input xo by
itself yields g9, then the combination of inputs 1 and z9 yields the output y = y1 + yo.

This is important to us at the present moment for two reasons:

1. It tells us that the solution to certain problems involving networks with multiple inputs is
actually easier than we might expect: if a network is linear, we may solve for the output with
each separate input, then add the outputs. This is called superposition.

2. It also tells us that, for networks that are linear, it is not necessary to actually consider the
value of the inputs in calculating response. What is important is a system function, or a ratio
of output to input.

Superposition is an important principle when dealing with linear networks, and can be used
to make analysis easier. If a network has multiple independent sources, it is possible to find the
response to each source separately, then add up all of the responses to find total response. Note
that this can only be done with independent sources!

Consider, for example, the example circuit shown in Figure 12. If we are only interested in the
output voltage vo, we may find the response to the voltage source first, then the response to the
current source, then the total response is the sum of the two. To find the response to the voltage
source, we must “turn off” the current source. This is done by assuming that it is not there. (After
all, a current source with zero current is just an open circuit!). The resulting network is as in
Figure 14.
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Figure 14: Superposition Fragment: Voltage Source

Note that the resistance R; does not appear here. This is because a resistance in parallel with
a voltage source is just a voltage source, unless one is interested in current in the resistance. The

output voltage is just:
Rs

Ry + R3

Next, we “turn off” the voltage source and “turn on” the current source. Note that a voltage source
that has been turned off is a short circuit, because that implies zero voltage. The network is as
shown in Figure 15

’Ugv:V



Figure 15: Superposition Fragment: Current Source

The response to this is:
va; = I Ra|| R3

The total response is then just:
R3 RyRs3

V2=V v =V o e e R,

8 Thevenin and Norton Equivalent Circuits

A particularly important ramification of the property of linearity is expressed in the notion of
equivalent circuits. To wit: if we are considering the response of a network at any given terminal
pair, that is a pair of nodes that have been brought out to the outside world, it follows from the
properties of linearity that, if the network is linear, the output at a single terminal pair (either
voltage or current) is the sum of two components:

1. The response that would exist if the excitation at the terminal pair were zero and
2. The response forced at the terminal pair by the exciting voltage or current.

This notion may be expressed with either wvoltage or current as the response. These yield the
Thevenin and Norton equivalent networks, which are exactly equivalent. At any terminal pair, the
properties of a linear network may be expressed in terms of either Thevenin or Norton equivalents.
The Thevenin equivalent circuit is shown in Figure 16, while the Norton equivalent circuit is shown

in Figure 17.

Figure 16: Thevenin Equivalent Network
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Figure 17: Norton Equivalent Network

The Thevenin and Norton equivalent networks have the same impedance. Further, the equiva-
lent sources are related by the simple relationship:

Vrn = RegIn (13)

The Thevenin Equivalent Voltage, the source internal to the Thevenin equivalent network, is
the same as the open circuit voltage, which is the voltage that would appear at the terminals of
the equivalent circuit were it to be open circuited. Similarly, the Norton Equivalent Current is the
same as minus the short circuit current.

To consider how we might use these equivalent networks, consider what would happen if the
Wheatstone bridge were connected by some resistance across its output, as shown in Figure 18
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Figure 18: Wheatstone Bridge With Output Resistance

The analysis of this situation is simplified substantially if one recognizes that each side of the
bridge can be expressed as either a Thevenin or Norton equivalent network. We may proceed to
solve the problem by finding the equivalent networks for each side, then paste them together to
form the whole solution. So: consider the equivalent network for the left-hand side of the network,
formed by the elements V', Ry and Rg. This is shown in Figure 19.

11
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Figure 19: Construction of Equivalent Circuit

Where, here, the components of the equivalent circuit are:

Ry

S VLN

VTh Ri 4+ Ry
Ry = Ry || Ro

Similarly, the right side of the network is found to have an equivalent source and resistance:

Ry
V4
Rs + Ry
Reqr — R3| ’R4

UThyr

And the whole thing behaves as the equivalent circuit shown in Figure 20

RTh Rs Rhr
WWA WIW WWA

VThi VThr

Figure 20: Equivalent Circuit

This is, of course, easily solved for the current through, and hence the voltage across, the
resistance Rs, which was desired in the first place:

R; v( Ry
Rs + Teql + Teqr Ri+ Ry

Rs
Rs + R1||R2 + Rs||Ra

vs = (VThl — UThr) — fracR4Rs + R4>

9 Two Port Networks

So far, we have dealt with a number of networks which may be said to be one port or single-terminal-
pair circuits. That is, the important action occurs at a single terminal pair, and is characterized
by an impedance and by either a open circuit voltage or a short circuit current, thus forming either
a Thevenin or Norton equivalent circuit. A second, and for us very important, class of electrical
network has two (or sometimes more) terminal pairs. We will consider formally here the two port
network, illustrated schematically in Figure 21.

There are a number of ways of characterizing this type of network. For the time being, consider
that it is passive, so that there is no output without some input and there are no dependent sources.

12
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Figure 21: Two-Port Network

Then we may characterize the network in terms of the currents at its terminals in terms of the
voltages, or, conversely, we may describe the wvoltages in terms of the currents at the terminals.
These two ways of describing the network are said to be the admittance or impedance parameters.
These may be written in the following way:

The impedance parameter point of view would yield, for a resistive network, the following
relationship between voltages and currents:

HEEwHIH o)
Similarly, the admittance parameter point of view would yield a similar relationship:
BRI <15>
These two relationships are, of course, the inverses of each other. That is:
[ Gi1 Gz ] _ | B Rip ]_1 (16)
Ga1 Goo Ro1 R

If the networks are linear and passive (i.e. there are no dependent sources inside), they also
exhibit the property of reciprocity. In a reciprocal network, the transfer impedance or transfer
admittance is the same in both directions. That is:

Ri2
G2 =

Roy

G (17)

It is often useful to express two- port networks in terms of T or II networks, shown in Figures 22
and 23.

Sometimes it is useful to cascade two-port networks, as is shown in Figure 24. The resulting
combination is itself a two-port. Suppose we have a pair of networks characterized by impedance
parameters:

Ri1 R

)]

Ris
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Figure 22: T- Equivalent Network
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Figure 23: II-Equivalent Network

v3 | _ | Rsz Ray 13
V4 R3s Ry 14

By noting that ve = vs and i3 = —i9, it is possible to show, with a little manipulation, that:
V1 _ Rlll R14 11
V4 R14 Rilzl i4
where )
R
R =Ry — —312
1 "7 Ryy + Rag
R2
R/ — R _ 34
i “ 7 Ryy + Ras
Ris R34
Ry=—5—-—
Roo + Rss

10 Inductive and Capacitive Circuit Elements

So far, we have dealt with circuit elements which have no memory and which, therefore, are
characterized by instantaneous behavior. The expressions which are used to calculate what these
elements are doing are algebraic (and for most elements are linear too). As it turns out, much of
the circuitry we will be studying can be so characterized, with complex parameters.

However, we take a quick diversion to discuss briefly the transient behavior of circuits containing
capacitors and inductors.

14
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Figure 25: Capacitance and Inductance

Symbols for capacitive and inductive circuit elements are shown in Figure 25. They are char-
acterized by the relationships between voltage and current:

dve di
v v =L (18)

e=Cg di

Note that, while these elements are linear, since time derivatives are involved in their char-
acterization, expressions describing their behavior in networks will become ordinary differential

equations.

10.1 Simple Case: R-C

IC + |r

Figure 26: Simple Case: R-C

Figure 26 shows a simple connection of a resistance and a capacitance. This circuit has only
two nodes, so there is a single voltage v across both elements. The two elements produce the

constraints:

i =

SRR

15



and, since 7, = —i,
dv n 1 0
Ty =
dt  RC

Now, we know that this sort of first-order, linear equation is solved by:
_t
Vv ~e RC

(To confirm this, just substitute the exponential into the differential equation.) Then, if we have
some initial condition, say v(t = 0) = Vp, then

__t
v = Vpe RC

This was a trivial case, since we don’t describe how that initial condition might have taken
place. But consider a closely related problem, illustrated in Figure 27.

10.2 Simple Case with Drive

Figure 27: RC Circuit with Drive

The analysis of this circuit is accomplished by noting that it contains a single loop, and adding
up the voltages around the loop we find:

Now, assume that the voltage source is a step:
vs = Viu_1(t)

We should define the step function with some care, since it is of quite a lot of use. The step is
one of a hierarchy of singularity functions. It is defined as:

o= 15

Now, remembering that differential equations have particular and homogeneous solutions, and
that for £ > 0 a particular solution which solves the differential equation is:

Vep =V

16



Of course this does not satisfy the initial condition which is that the capacitance be uncharged:
ve(t = 04) = 0. Again, remember that the whole solution is the sum of the particular and a
homogeneous solution, and that the homogeneous solution is the un-driven case. To satisfy the
initial condition, the homogeneous solution must be:

Ceh, = —Ve_%
So that the total solution is simply:
Vo=V (1 — 6_%)

Next, suppose vs = u_1(t)V coswt. We know the homogeneous solution must be of the same
form, but the particular solution is a bit more complicated. In later chapters we will learn how to
make the process of extracting the particular solution easier, but for the time being, let’s assume
that with a sinusoidal drive we will get a sinusoidal response of the same frequency. Thus we will
guess

Vep = Vep cos (wt — ¢)
The time derivative is
dvep
dt
so that we can find an algebraic equation for the particular solution:

V coswt = Vg, (cos (wt — ¢) + wRC' sin (wt — ¢))

Note the trigonometric identities:

= wVgp sin (wt — @)

cos (wt — @) = cos¢pcoswt + sin ¢psinwt
sin (wt —¢) = —sin¢coswt + cos ¢ sinwt
Since the sine and cosine terms are orthogonal, we can equate coefficients of sine and cosine to
get:
V. = Vglcos¢+ wRC sin ¢
0 = Vg lsing + wRC cos @]
The second of these can be solved for the phase angle:
¢ = tan ' wRC
and squaring both equations and adding;:
V2= V2 (1+ WRC))
so that the particular solution is:

Vep = v cos (wt — ¢)

1+ (wRC)?
Finally, if the capacitor is initially uncharged (v.(t = 04) = 0), we can add in the homogeneous
solution (we already know the form of this), and find the total solution to be:

Uep = v [COS (wt — @) — cos qﬁe*%}
1+ (wRC)?

This is shown in Figure 28

17
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Figure 28: Output Voltage for RC Example

10.3 Second-Order System Example

R1 R2
AW AW

+

L1 L \b
VS<> 1 |

Figure 29: Two-Inductor Circuit

Figure 29 shows a network with two inductances and two resistances. Assume that this is
driven by a voltage step: vs = Vsu_1(t). Note that, with two inductances, we will require two
initial conditions to complete the solution.

The steady state (particular) solution is v, = 0. There will, of course, be current flowing in
each of the inductances, but if excitation is constant there will be no time derivative of current so
that voltage across each of the inductances will eventually fall to zero.

The initial conditions may be found by inspection. Right after t = 0 (note we use t = 0+ for
this), output voltage must be:

vo(t = 04) = Vj

This must be so since current cannot be made to flow instantaneously in either inductance, so that
there is no current in either resistance.

18



The second initial condition is the rate of change of voltage right after the instant of the voltage
step. To find this, note that output voltage is equal to the source voltage minus the voltage drops
across each of the two resistances.

Vo = Vs — Roig — Rl(il + ig)

If we differentiate this with respect to time and note that the time derivative of a constant (after
the step the input voltage is constant) is zero:
dv, di diy

t =04)=—(Ry + Ry)— — Ry—
g 0= 04) = —(Ru+ Re) 50 = Ray

Now, since right after the instant of the step both inductances have the source voltage V; across
them: ) )
diy diz Vs

@ =0t T g = =
the rate of change of voltage at t = 0+ is:

dvg _ 2Rit Ry
dt t=0+ — i3 s

Now, we can find the homogeneous solution using the loop method. Setting the source to zero,
assume a current i, in the left-hand loop and 4, in the right-hand loop. KVL around these two
loops yields:

d
Ryig, + L— (ia — ib) =0

dt
. diy, dig
2L— —L— =
Rotp + at I 0

With a little manipulation, these become:

ﬁ%+mm+&%:0
i
L£+Rm+Rm -0

Assume that solutions are of the form Ie®!, and this set of simultaneous equations becomes:

(SL + 2R1) Ry 1, . 0
R, (SL + RQ) I )

We need to solve this for s (to find values of s for which this set is true, and that is simply the
solution of the “characteristic equation”

(sL+2Ry)(sL+ Ry) — RiRy =0
which is the same as:

oy 2R Ry
L L L

19



Now, for the sake of “nice numbers”, assume that Ry = 2R, Ry = 3R. The characteristic
equation is:
R R\?
2 —_ —_ =
sT 47 75 +6 ( L) 0

which factors nicely into (s + %)(s + 6%) =0, or the two values of s are s = —% and s = —6

Since the particular solution to this one is zero, we have a total solution which is:

B
I

_R _qR
vy = Ae" Lt + Be 01!
The initial conditions are:

Uo|t:0+ =A+B =V,
dv,
dt

R R
o+ =——(A B) = —7-V,
lt=0-+ L( +6B) 7LV

The solution to that pair of expressions is:

A= 5=
) )

and this is shown in Figure 30.

Two Inductor Example
T T T

Vo

Figure 30: Output Voltage for Two Inductor Example
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1 Introduction

Electric power systems usually involve sinusoidally varying (or nearly so) voltages and currents.
That is, voltage and current are functions of time that are nearly pure sine waves at fixed frequency.
In North America, most ships at sea and eastern Japan that frequency is 60 Hz. In most of the
rest of the world it is 50 Hz. Normal power system operation is at this fixed frequency, which is
why we study how systems operate in this mode. We will deal with transients later.

This note deals with alternating voltages and currents and with associated energy flows. The
focus is on sinusoidal steady state conditions, in which virtually all quantities of interest may be
represented by single, complex numbers.

Accordingly, this section opens with a review of complex numbers and with representation of
voltage and current as complex amplitudes with complex exponential time dependence. The dis-
cussion proceeds, through impedance, to describe a pictorial representation of complex amplitudes,
called phasors. Power is then defined and, in sinusoidal steady state, reduced to complex form.
Finally, flow of power through impedances and a conservation law are discussed.

Secondarily, this section of the notes deals with transmission lines that have interesting behavior,
both in the time and frequency domails.

2 Complex Exponential Notation

Start by recognizing a geometric interpretation for a complex number. If we plot the real part on
the horizontal (x) axis and the imaginary part on the vertical (y) axis, then the complex number
z = x+jy (where j = v/—1) represents a vector as shown in Figure 1. Note that this vector may be
represented not only by its real and imaginary components, but also by a magnitude and a phase

*(©2007 James L. Kirtley Jr.
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Figure 1: Representation of the complex number z = x + jy
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The basis for complex exponential notation is the celebrated Euler Relation:

7 = cos(¢) + jsin(¢)

which has a representation as shown in Figure 2.
Now, a comparison of Figures 1 and 2 makes it clear that, with definitions (1) and (2),

z=x+jy =zl

It is straightforward, using (3) to show that:

e]¢ + e_j(z)
cos(¢) = 9
sin(¢) = T
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Figure 3: Representation Of A Complex Number And Its Conjugate

The complex exponential is a tremendously useful type of function. Note that the product of
two numbers expressed as exponenentials is the same as the exponential of the sums of the two
exponents:

a_ b a+b (8)
Note that it is also true that the reciprocal of a number in exponential notation is just the exponential
of the negative of the exponent:

L= (9)

Then, if we have two numbers z; = |z;|e/?! and 2y = |2,]€7?2, then the product of the two numbers
is:

2129 = |§1H§2‘€j(¢1+¢2) (10)
and the ratio of the two numbers is:
21 _ @ej(qﬁl—@) (11)
29 |z

The complex conjugate of a number z = x + jy is given by:

S = jy (12)
The sum of a complex number and its conjugate is real:
z+ 2" =2Re(z) =2z (13)
while the difference is imaginary:
z—z" =2jIm(z) = 2jy (14)

where we have used the two symbols Re(-) and Im(-) to represent the operators which extract the
real and imaginary parts of the complex number.
The complex conjugate of a complex number z = |z|e/® may also be written as:

2" = |zle™I? (15)
so that the product of a complex number and its conjugate is real:
22" = |2]e?|z]e™? = |2f? (16)



3 Sinusoidal Time Functions
A sinusoidal function of time might be written in at least two ways:

f(t) = Acos(wt+ @) (17)
f(t) = Bcos(wt)+ Csin(wt) (18)

A third way of writing this time function is as the sum of two complex exponentials:
flt) = X&' + X*e 7! (19)

Note that the form of equation 19, in which complex conjugates are added together, guarantees
that the resulting function is real.

Now, to relate equation 19 with the other forms of the sinusoidal function, equations 17 and 18,
see that X may be expressed as:

X = |X|el? (20)
Then equation 19 becomes:
ft) = X[V [ X[ Te I (21)
= | X/t | X|remI(WHwD) (22)
= 2|X]|cos(wt + 1) (23)

Then, the coefficients in equation 17 are related to those of equation 19 by:

A
x| = 5 (24)
Y o= ¢ (25)
Alternatively, we could write
X =x+jy (26)
in which the real and imaginary parts of X are:
z = |X[cos(y) (27)
= |X]|sin(y) (28)
Then the time function is written:
ft) = w( e 4 gy(elt — eI (29)
= 2z cos(wt) — 2y sin(wt) (30)
Thus:
A = 2z (31)
B = -2 (32)
A B
= 5 —Js (33)



It is also possible to write equation 19 in the form:
f(t) = Re(2X &™) (34)

While both expressions (19 and 34) are equivalent, it is advantageous to use one or the other of
them, according to circumstances. The first notation (equation 19) is the full representation of that
sinusoidal signal and may be used under any circumstances. It is, however, cumbersome, so that
the somewhat more compact version(equation 34) is usually used. Chiefly when nonlinear products
such as power are involved, it is necessary to be somewhat cautions in its use, however, as we will
see later on.

4 Impedance

Because it is so easy to differentiate a complex exponential time signal, such a way of representing
time signals has real advantages in electric circuits with all kinds of linear elements. In Section 1 of
these notes, we introduced the linear resistance element, in which voltage and current are linearly
related. We must now consider two other elements, inductances and capacitances. The inductance

J‘C
-

Figure 4: Inductance and Capacitance Elements

produces a relationship between voltage and current which is:

di
v = Ld—tL (35)

If voltage and current are sinusoidal functions of time:
v o= Kejwt +K*e—jwt
F— lejwt +l*e—jwt
Then the relationship between voltage and current is given simply by:
V =jwLl (36)

This is a particularly simple form, and as can be seen is directly analogous to resistance. We can
generalize our view of resistance to complex impedance (or simply impedance), in which inductances
have impedance which is:

Z, = jwl (37)
The capacitance element is similarly defined. A capacitance has a voltage-current relationship:

. dve



Thus the impedance of a capacitance is:

1

T= — 39
Zo =~z (39)

The extension to resistive network behavior is now obvious. For problems in sinusoidal steady
state, in which all excitations are sinusoidal, we may use all of the tricks of linear, resistive network
analysis. However, we use complex impedance in place of resistance.

The inverse of impedance is admittance:

Y =

IN| —

Series and parallel combinations of admittances and impedances are, of course, just like those
of conductances and resistances. For two elements in series or in parallel:

Series:
Z = Zi+ 4y (40)
Yy,
Y = _—1=—= 41
- Y, +Y, (41)
Parallel:
VAV
7 = === 42
_ Z1+ 2, (42)
Y = Y, +Y, (43)

4.1 Example

Suppose we are to find the voltage v(t) in the network of Figure 5, in which i(¢) = I cos(wt). The

=+

i(t) <R L v(t)

Figure 5: Complex Impedance Network

excitation may be written as:
I . I . .
. _ T jwt T —jwt — Jwt
i(t) = 5¢ + 5¢ Re (Ie )
Now, the complex impedance of the parallel combination of R and L is:

RjwL
Rl|jwl = ————
17 R+ jwl

So that, if v(t) is represented by:



V. Vo
— =Wt | —pgwt
v(t) 5 € + 5 ¢
= Re (Kej”t)
Then Riwl
jw
V=—"—"-—
— R+ jwL

Now: the impedance Z may be represented by a magnitude and phase angle:

Z = |z]e?
iz = wLR
= (wL)? + R?
s wlL
¢ = 5~ arctan )

Then, using relations developed here, v(t) may be written as:

v(t) = o Wbl cos(wt + ¢)

()

Note that this expression represents only the sinusoidal steady state solution, and therefore does
not represent any starting transients.

5 System Functions and Frequency Response

If we are interested in the behavior of a linear system such as the circuits we have been discussing,
we often speak of the system function. This is the (usually complex) ratio between output and input
of the system. System functions can express driving point behavior (impedance or its reciprocal,
admittance) or transfer behavior. We speak of voltage or current transfer ratios and of transfer
impedance (output voltage related to input current) and transfer admittance (output current related
to input voltage).

The system function may be expressed in a number of ways, often as a Laplace Transform. Such
is beyond the scope of this subject. However, it is important to understand one way of expressing
linear system behavior, in the form of frequency response. The frequency response of a system is
the complex number that relates output of the system to input as a function of frequency. Usually
it is expressed as a pair of numbers, magnitude and phase angle. Thus

H(jw) = [H(jw)|e?)

Subjects in Signals and Systems or Network Theory often spend some time on how to obtain
and plot the frequency response of a network in ways which are both useful and easy. For our
purposes, a straightforward, perhaps even “brute force” approach will do. Consider, for example,
the circuit shown in Figure 6.
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Figure 6: Example Circuit for Frequency Response

This is just a voltage divider between an inductance and a resistance. We seek to find, and
then plot, the transfer ratio V. /Viy of this network. A wery little analysis yields an expression for
the transfer function, which is:

Vout(jw) B R . 1
Vin(jw) — R+jwl 1+ jwk

The magnitude and angle of this function can be extracted in a number of ways. For the pur-
pose of these notes, we have done the mathematics using MATLAB. The specific instructions for
producing the frequency response plot are shown in Figure 7. Funamentally what is done is to
compute the system function for a number of frequencies (note that we use a way of computing
specific frequencies which produces a uniform spacing on a logarithmic scale, and then plotting the
magnitude (also on a logarithmic scale) and angle of that system function against frequency.

6 Phasors

Phasors are not weapons. They are a handy geometric trick which help us understand the nature
of sinusoidal steady state signals and systems. To start, consider the basis for complex exponential
time notation, the function e/“!. At any instant of time, this is a complex number: at time ¢ = 0
it is equal to 1, at time wt = § it is equal to j, and so forth. We may describe this function
as a wector, of length unity, rotating about the origin of the complex number plane, with angular
velocity w. It has, of course, both real and imaginary parts, which are just the projections of the
vector onto the real and imaginary axes.
Now consider a sinusoidally varying signal z(t), which may be represented by:
_ 1 Jwt X* —jwt
x(t) = 5 ¢ + €

This is the sum of two numbers, complex conjugates, which are, as functions of time, rotating in
opposite directions in the complex plane. The sum of the two is, of course, real. This is the same
time function as:

2(t) = Re (X&) (44)

where the real part operator Re(-) simply takes the projection of the function on the real axis.
It might be helpful at this point to remember one of the features of complex arithmetic. Mul-
tiplication of two complex numbers results in a third complex number which has:



L=1e-3; % Set Parameter Values

R=1000;

e=3:.05:7; % This is a way of producing evenly
£=10 . e; % spaced points on a logarithmic chart
om=2%pi .* f; % Frequency in radians per second
H=1 ./ (1 + j*L/R .* om); % This is the frequency response
subplot (211);

loglog(f, abs(H)) % Plot of magnitude

xlabel (’Frequency, Hz’);

ylabel(’Magnitude’);

grid

subplot (212);

semilogx (f, angle(H)) % Plot of angle
xlabel (’Frequency, Hz’)

ylabel(’Angle’)

grid

title(’Frequency Response of L-R’)
print(’freq.ps’)

Figure 7: MATLAB Program freq.m

1. a magnitude which is the product of the magnitudes of the two numbers begin multiplied and,
2. an angle which is the sum of the angles of the two numbers being multiplied.

Thus, multiplying a number by e/“!, which has a magnitude of unity and an angle which is increasing
with time at the rate w, simply has the effect of setting that number spinning around the origin of
the complex plane.

It is therefore relatively easy to represent sinusoidally varying signals with just their complex
amplitudes, understanding that they also include e/“*, which provides time variation. The complex
amplitude includes not only the magnitude of the signal, but also a phase angle. Usually the phase
angle by itself is of little use, and must be related to some time reference. That is, as we will see,
it is the difference between phase angles that is important in most cases.

Impedances and admittances are also complex numbers, so that phasors can be used to visualize
the relationship between voltages and currents in a network. The key here is that multiplication and
division of complex numbers is the same as multiplication or division of magnitudes and addition
or subtraction of angles.

6.1 Example

Consider the simple network shown in Figure 9, and suppose that the current source is sinusoidal:
1= Re (l ej“t)

The impedance of the R-L combination is a complex number:
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Figure 8: Frequency Response

Z =R+ jwL=1+j2

Now: the impedance may be represented in the complex plane as shown in Figure 10.

Voltage v is given by:
v = Re (Kej“’t)

where:

V=21

Then the relationship between voltage and current is as shown in Figure 11. Note that the phase
angle between voltage and current is the same as the phase angle of the impedance.
Note that KVL may be represented graphically in the fashion of Figure 12.

7 Energy and Power

For any terminal pair with voltage and current defined as shown in Figure 13, power flow into the

element is:
p = vi (45)

10
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IN

Re(Z)
1

Figure 10: Complex Impedance

Power is expressed in Watts (W), and one Watt is the product of one Volt and one Ampere
Energy transferred over an interval of time ¢g to ¢1 is the integral of power:

w = /totl w(B)i(t)dt (46)

Energy is expressed in Joules, and one Joule is one Watt- Second. A Joule is also a Newton-Meter
(force times distance), and therefore a Watt is a Newton-Meter per Second.

Consider the behavior of the three types of linear, passive elements we have encountered:

e Resistance: v = Ri, Instantaneous power is:

U2
¥ (47)

Im(-)

<

Re(-)

Figure 11: Voltage and Current
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Figure 12: Components of Voltage

element

e

Figure 13: Definition for Power

e Inductance: v = L%, Instantaneous power is:

di 1 _di®
=iL— ==-L— 48
P="0 =~ 2™ ar (48)
The quantity wy = %Lz’2 may be interpreted as energy stored in the inductance, so that
p = ds’—tL. We will need to refine this definition later, when we consider electromechanical

interactions or nonlinear elements, but it will do for now.

dv

e Capacitance: i = C'%, Instantaneous power is:
dv 1 _dv?
=vC— ==-C— 49
P=%a ~ 2 @ (49)

The quantity wo = %C’U2 may similarly be interpreted as energy stored in the capacitance.

Next, consider the power input to each of these three elements under sinusoidal steady state
conditions:

e Resistance: if i = I cos(wt + ), then

p = RI*cos®(wt+0)

= RTIQ [1+ cos2(wt + 6)] (50)

12



Thus, average power into the resistance is:

1
P= §RI2 (51)
e Inductance: if i = I cos(wt + 6), then voltage is v = —wLI sin(wt + 6), and power is:
p = —wLI?cos(wt+ 6)sin(wt + 6)
LI?
= Y 5 sin2(wt +6) (52)

Awverage power into the inductance is zero. Instantaneous energy stored in the inductance is
1
wr, = §LI2 cos®(wt + 0)

and that has an average value:
1
<wp >= ZLI2 (53)

e Capacitance: if v = V cos(wt + ¢), then i = —wCV sin(wt + ¢), and power is:

2

p=— sin 2(wt + ¢) (54)

which has zero time average. Energy stored in the capacitance is:
1 2 9
we = §C’V cos®(wt + @)

which has time average:
1
< we >= ZOv2 (55)

Now, consider power flow into a set of terminals in a situation in which both voltage and current
are sinusoidal and have the same frequency, but possibly different phase angles:

v(t) = Vcos(wt+ @)
i(t) = Isin(wt+6)

It is necessary to revert to the original form of complex notation, as in equation 19, to compute

power.
1 Jwt * —jwt
v(t) = 3 {Ke + Ve } (56)
1 . .
Z(t) = 5 |:l€]0o)t + l*e_]wt:| (57)

Instantaneous power is the product of voltage and current:

1 . .
p= VI + VL4 VIS v e (58)
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This is directly equivalent to:
1 .
p=Re VI + VI (59)

This is, in turn, expressible as:

p = SV cos(6 = 0) + cos(2et + 6+ 0) (60)

From this, we extract “real power”, or time- average power:
1 N 1
P = Re[VI] = SIVI|I] cos(6 — ) (61)

The ratio between real power and apparent power P, = %|Z|\l | is called the power factor, and
is simply:
power factor = cos v = cos(¢ — 0) (62)

The power factor angle v = ¢ — 0 is the relative phase shift between voltage and current.
This expression for time- average power suggests a definition for something we might call complex
power:

1
P+jQ = Eﬂ* (63)

in which average power P is the real part. The magnitude of this complex quantity is the apparent
power. The imaginary part is called reactive power. It has importance which will be discussed later.

Different units are used for real, reactive and apparent power, in order to gain some distinction
between quantities. Usually we will express real power in watts (W) (or kW, MW....). Apparent
power is expressed in volt-amperes (VA), and reactive power is expressed in volt-amperes-reactive
(VAR’s).

To obtain some more feeling for reactive power, expand the time- varying part of the expression
for instantaneous power:

1
Puarying = §|K| |l| COS(2wt + ¢+ 9)

Now, using the trig identity cos(x 4+ y) = cosx cosy — sinx siny, and assigning x = 2wt + 2¢ and
y=—19 =0— ¢, we have:

1 . .
Duvarying = §|K\ |I| [cos 2(wt + ¢) + sin ¢ sin 2(wt + @)]
Thus, total instantaneous power is:

|VI|L| cos ) [1 + cos2(wt + ¢)] + %\KHQ sin ¢ sin 2(wt + ¢) (64)

DO =

Now, if we note expressions for P and @), we can re-write this as:
p=P[1+cos2(wt + ¢)] + @sin2(wt + @) (65)

Thus, real power P represents not only time average power but also the pulsations that go with
time average power. Reactive power Q represents energy exchange with zero average value.

14



7.1 RMS Amplitude

Note that, in all of the expressions for power used so far, a factor of % appears. This is, of course,
because the average value of the product of two sinusoids of the same frequency has a value of half
of the products of their peak amplitudes multiplied by the cosine of the relative phase angle. It has
become common to use a different measure of voltage amplitude, which is called root-mean-square
or simply RMS. The proper definition for the RMS value of a waveform is somewhat complex,
but boils down to that value which, if it were DC, would dissipate the same power in a resistor.
It is possible to define RMS for any periodic waveform. However, since we will be dealing with
sinusoids, the definition is even easier. Clearly, since power dissipated in a resistor is, in terms of
peak amplitudes:

1|V
P=-—
2 R
then the RMS amplitude must be:
Vv
Veyms = |—_2| (66)
Then,
P = VI%MS
R

As we will see, RMS amplitudes are the default for most situations: when a circuit is described as
“120 Volts AC”, the designation virtually always means 120 Volts, RMS. The peak amplitude of
this is |[V| = v/2 - 120 = 170 volts. Often you will see sinusoidal waveforms expressed in the form:

v =V2Vaus cos(wt)

in which Vgrg is obviously the RMS amplitude.

7.2 Example

Consider the simple network of Figure 14. We will calculate the instantaneous power flow into that
network in terms we have been discussing. Assume that the voltage source has RMS amplitude

Figure 14: Example Circuit
of 120 volts and R and X are both 100 2. Then:

v(t) = 170 cos wt

The admittance of this network is: ) ]
J

~ 100 100
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Figure 15: Power Flow For Example Circuit

so that the complex amplitude of current is:
I1=17-417
And then complex power is:
1
P+jQ = 5170(1.7 +71.7)

Real and reactive power are, respectively: P = 144 W, (Q = 144 VAR. This gives a power factor
angle of ¢ = arctan(1) = 45°. Then, instantaneous power is:

p = 144 [1 + cos 2(wt — 45°)] 4+ 144 sin 2(wt — 45°)

This is illustrated in Figure 15.

8 A Conservation Law

It is possible to show that complex power is conserved in the same way as we expect time average
power to be conserved. Consider a network with a collection of terminals and with a collection of
internal branches. Instantaneous power flow into the network is:

Din = Z vi

terminals

Note that this expression holds for voltage and current expressed over any complete set of terminals.
That is, if it is possible to delineate the terminals of the network into a set of pairs, the voltages
might correspond to voltages across the pair, while currents would flow between the terminals of
each pair. Alternatively, the voltages might correspond to single node-to-datum voltage, while

16



currents would then be single input node currents. Since power can go only into network elements,
it follows that the sum of internal branch powers must be equal to the sum of terminal powers:

Z vl = Zm’

terminals branches

If this is true for instantaneous power, it is also true for compler power:

Y ovi- Y v

terminals branches

Now, if the network is made up of resistances, capacitances and inductances,

Y vi= Y VI+ Y VI+ Y VI

terminals reststances inductances capacitances
For these individual elements:
e Resistances: VI* = R|I?
e Inductances: VI* = jwL|I?
e Capacitances: VI* = —jwC|V|?

Then equation 69 becomes:

> Vi= X RIP+j 3 wLIP-j Y wCP

terminals resistances inductances capacitances

Then, identifying individual terms:

Z VI = 2(P+jQ) Total Complex Power into Network

terminals

Z RII?= 23 <p,> Power Dissipated in Resistors

resistances

j Z wL|I|*= 4wy <wr > Energy Stored in Inductances

inductances

j Z WwC|V|> = 4wy <we > Energy Stored in Capacitances

capacitances

So, for any RLC network:

P+jQ= Y <p>+2w| > <wr>- Y <we>

resistors inductors capacitors

9 Power Flow Through An Impedance

(67)

(69)

(71)

Consider the situation shown in Figure 16. This actually represents a number of important situ-
ations in power systems, where the impedance Z might represent a transmission line, transformer
or motor winding. Of interest to us is the flow of power through the impedance. Current is given

17



Figure 16: Power Flow Example

by:
. V-V,
—=1 =2 2
i Z (72)
Then, complex power flow out of the left- hand voltage source is:
1 Vi-V3
P y — _ —17—2
+iQ =¥ (FL2) (73)
Now, the complex amplitudes may be expressed as:
Vo= |1yle (74)
Vy, = [V,le™* (75)

where ¢ is the relative phase angle between the two voltage sources. Complex power at the terminals
of the voltage source V; is now given by:

VAP [V [[Vle
27" 27"
This is describable as a circle in the complex plane, with its origin at

V2
27"

P+jQ= (76)

and its radius equal to:
V4[|V

2|Z|
Now suppose the impedance through which we are passing power is describable as a simple
inductance as shown in Figure 17. This is perhaps the simplest of transmission line models which
represents only the inductive impedance of the line. Line inductance arises because currents in the
line produce magnetic fields, and this is a fair model for most lines which are fairly ’short’. More
on that in the next section. This line has the impedance

7 = jwL = jX|

Now, switching to RMS amplitudes, so that V, = \/511 and V, = \/512, Then real and
reactive power flow are:

|7 I Vi Vi
PtjQ = v =l Ll
X
. . V- viv
P+jQr = -V,I :.7| d X_S_T
l

18



Figure 17: Simplest Transmission Line Model

Now if we assume that the voltages are of the form:

vV, = Vsej‘b
V, = Ve
and that the relative phase angle between them is ¢ — 0 = ¢ and doing a little trig:
P - ViV, sin 6
X1
VS2 — ViV, cosd
Qs = X
L
ViV, sind
P, = ——
XL
V2 —V,V,cosd
Qr = X
L

A picture of this locus is referred to as a power circle diagram, because of its shape. Figure 18
shows the construction of a sending end power circle diagram for equal sending-end and receiving-
end voltages and a purely reactive impedance.

Q

Figure 18: Power Circle, Equal Voltages

As a check, consider the reactive power consumed by the line itself: we expect that Qs + Q, =
Qr,, and so:

V2+V2—2V,V,cosé
X

Qs“‘Qr:
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Note that the voltage across the line element itself is found using the law of cosines (see Figure 19:

\Y
r

Figure 19: Illustration of the Law of Cosines

VE=VZ24 V2 -2V, V,cosé

and, indeed,

10 Compensated Line

WO ETTD

Figure 20: Transmission Line Model

Perhaps a more commonly used model for a transmission line is as shown in Figure 20. This
represents not only the fact that most transmission lines have, in addition to series inductance,
parallel capacitance but also the fact that many transmission lines are shunt compensated. This
may be represented as a two-port network with the admittance parameters, using X, = jwL and

Xo=2&:
1 1
Y .
— JXr  Jj X
1
Xsr = er = ,YTL
1 1
Y .
- JXL  JXe2

It is fairly clear that, for voltage sources at both ends, real and reactive power flow are:

ViV, sind

P, =
X
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1 1 ViV, cosd
L= ng(__ )_ sV
@ X, X X
ViV, sin 6
P =
X1
1 1 ViV, cosd
L= VSQ(__ )_ sV
@ X, Xeo Xy,
Q
2L _
HEa
Io)
P

Figure 21: Power Circle, Equal Voltages, Compensation Offset

The power circle for this sort of line is similar to that of the simpler model, but the center is
offset to smaller reactive component, as shown in Figure 21.

An interesting feature of transmission lines is illustrated by what might happen were the re-
ceiving line to be open: in that case:

1

v, =L, 1—w?LC

Depending on the values of frequency, inductance and capacitance this could be arbitrarily
large, and this is a potential problem, particularly for longer lines, as we will discuss in the next
section.

11 Transmission Lines

A transmission line is really a long, continuous thing. It has inductance which is really inductance
per unit length multiplied by the line length, but it also has a continuous capacitance. We might
attempt to represent a long transmission line as a series of relatively ’short’ sections each represented
by an inductance and a capacitance. These 'lumped parameter’ models for lines are actually
used in many system studies, particularly in physical analog models called "Transmission System
Simulators’. (We built one of these at MIT in the 1970’s). After the next section you might
contemplate the definition of ’short’ for our purposes here, but generally each lumped parameter
capacitance and resistance pair would represent a few to a few tens of miles.

11.1 Telegrapher’s Equations

Peering at the model presented in Figure 22, one might divine that a proper representation of
voltage and current, both of which are functions of time and distance along the line, might be:
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These are known as the “Telegrapher’s Equations” and represent the fact that inductance
presents voltage drop along the line in proportion to rate of change of current and that capacitance
presents a change in current along the line in proportion to rate of change of voltage.

It is not difficult to eliminate either voltage or current from these to produce a wave equation.

For example, take the cross-derivatives and substitute the second of these equations into the first
to get:

0%v 0%v
a2~ MCge

Now: this equation is solved by arbitrary functions which are of the form:

v(z,t) = v(r £ ut)

where the wave velocity is:
1

U= ——
VLiC
So now we can see that the voltage on the line is the sum of some waveform going in the
'positive’ direction and something else going in the 'negative’ direction:

v(z,t) = vy (x —ut) + v_(x + ut)

The same will be true of current, and substituting back into either of the telegrapher’s equations
yields:

(2, 1) = ﬁ (s (z — ut) —v_(z + ut))

the product of inductance times wave velocity has the units of impedance:

[L,
Lu= 2=z
u Cl 0

This is often referred to as the ’characteristic impedance’ of the transmission line. This is also a
commonly used term: transmission cables are often referred to by their characteristic impedances.

For coaxial wires 50 to 72 ohms are common values. For high tension transmission lines somewhat
higher values are to be expected.

22



11.2 Surges on Transmission Lines

Consider the situation shown in Figure 23. Here the left-hand end of the line is driven by a current
source with a pulse (illustrated is a square pulse). This is actually not too far from the situation
that transmission lines experience with lightning, which is usually representable as a current source,
typically of magnitude between 20 and 100 kA and duration of about 1uS. (Actually, it is not a
square pulse but that is not important here).

What will happen, if the pulse is short enough, is that it will launch a traveling wave in which
vy = Zpis and ¢4 is the current that was imposed. When this pulse reaches the far, or load end of
the line, we have the situation in which at that point:

v(t) = vyt
i = V=
i(t) = 70 7o

and, of coures, v = Ri.
The 'reflected’, or negative going wave will have magnitude:

R
v_ =" Z_O_l
7 +1

In the extreme case of an open circuit, the magnitude of the voltage pulse at the end of the
transmission line is exactly twice that of the propagating pulse. In the case of a short circuit, of
course, the magnitude of the voltage is zero, the current in the short is double the current of the
pulse itself, and the pulse is reflected, but going in the reverse direction with a polarity the opposite
of the forward-going pulse. This is illustrated in cartoon form in Figure 23.

LT
v L v I

R>Z,

i L
- R<Z,
v LT

Figure 23: Pulse Propagation on a Transmission Line

11.3 Sinusoidal Steady State

Now, consider a transmission line operating in the sinusoidal steady state. As suggested by Fig-
ure 24, it is driven by a voltage source at one end and is loaded by a resistive load at the other.
Consistent with the voltage and currents that we know can exist on such a line, we know they will
be of this form:
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Figure 24: Transmission Line in Simple Configuration

v(z,t) = Re {K+ej(wt—kz) X K_ej(wt-i-kz)}
. o K—‘r j(wt—kr) K— j(wt—i—kx)}
Z(:L‘vt) - Re{ ZO e ZO e

Where the phase velocity is u = £ = leC’z’

At the termination end of the line, at z = ¢

T 0 V. ek Y _eikt

R=

This may be solved for the ratio of 'reverse’ to ’forward’ amplitude:
R
V_ — V+e—2]k£ Zo
r-=x R
7o +1
Since at the ’sending’ end:

VSZK++K_

With a little manipulation it can be determined that

) (1)

Further manipulation yields:

R

Zo
Vo= Vo i s om e
7, COs + jsink

This might be made a bit more comprehensible when turned into a magnitude:
R
Vi Z
= p > : -
(Z_o cos k:ﬁ) + (sin kf)

If the line is loaded with a resistance equivalent to the ’surge impedance’ (so-called ’surge
impedance loading’, the receiving end voltage is the same as the sending end voltage. If it is more
heavily loaded, the receiving end voltage is less than the sending end and if it is less heavily loaded
the receiving end voltage is greater.
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1 Introduction

Most electric power applications employ three phases. That is, three separate power carrying
circuite, with voltages and currents staggered symmetrically in time are used. Two major reasons
for the use of three phase power are economical use of conductors and nearly constant power flow.

Systems with more than one phase are generally termed polyphase. Three phase systems are
the most common, but there are situations in which a different number of phases may be used.
Two phase systems have a simplicity that makes them useful for teaching vehicles and for certain
servomechanisms. This is why two phase machines show up in laboratories and textbooks. Sys-
tems with a relatively large number of phases are used for certain specialized applications such as
controlled rectifiers for aluminum smelters. Six phase systems have been proposed for very high
power transmission applications.

Polyphase systems are qualitatively different from single phase systems. In some sense, polyphase
systems are more complex, but often much easier to analyze. This little paradox will become ob-
vious during the discussion of electric machines. It is interesting to note that physical conversion
between polyphase systems of different phase number is always possible.

This chapter starts with an elementary discussion of polyphase networks and demonstrates
some of their basic features. It ends with a short discussion of per-unit systems and power system
representation.

2 Two Phases

The two-phase system is the simplest of all polyphase systems to describe. Consider a pair of
voltage sources sitting side by side with:
v1 = V coswt (1)
vg = Vsinwt (2)

*(©2003 James L. Kirtley Jr.



Suppose this system of sources is connected to al “balanced load”, as shown in Figure 1. To
compute the power flows in the system, it is convenient to re-write the voltages in complex form:

il Z.2
+ +
C—D’Ul Z U1 (DUQ A U2
Figure 1: Two-Phase System
v1 = Re {Zejm} (3)
vs = Re {—jzej“’t} (4)
= Re[Vel=5)] (5)

- Vi

Y

Va

Figure 2: Phasor Diagram for Two-Phase Source
If each source is connected to a load with impedance:
Z=|Z|e"

then the complex amplitudes of currents are:

V .
I, = —e 0¥
Tz

Vo .
I, = —e Weis
2T g

Each of the two phase networks has the same value for real and reactive power:

b P



or:

B\

P = 217 cos 1 (7)
4

Q = Wi sin 1) (8)

The relationship between “complex power” and instantaneous power flow was worked out in
Chapter 2 of these notes. For a system with voltage of the form:

v = Re [Vej‘z’ej“’t}
instantaneous power is given by:

p= P[l+ cos2(wt+ ¢)] + Qsin2(wt + ¢)

For the case under consideration here, ¢ = 0 for phase 1 and ¢ = —7 for phase 2. Thus:
Vv 2 |4 2
P = ‘2]Z’] cos ) [1 + cos 2wt] + ’2|Z| sin v sin 2wt
V" cos ) [1 + cos(2wt — )] + VP sin ¢ sin(2wt — )
= — wt—m ——ginyYsin(2wt —
TV 2[Z]

Note that the time-varying parts of these two expressions have opposite signs. Added together,

they give instantaneous power:
2

+ 14 (0
p=p1+p2=-—rcos
Z]

At least one of the advantages of polyphase power networks is now apparent. The use of a
balanced polyphase system avoids the power flow pulsations due to ac voltage and current, and
even the pulsations due to reactive energy flow. This has obvious benefits when dealing with
motors and generators or, in fact, any type of source or load which would like to see constant
power.

3 Three Phase Systems

Now consider the arrangement of three voltage sources illustrated in Figure 3.
The three phase voltages are:

Vg = V coswt = Re {Vej“’t} (9)
vy =V cos(wt — 2{) = Re [Vej(Wt_%ﬁ } (10)
ve= Vcos(wt+ %) =Re {Vej(Wt'F%ﬁ)} (11)

These three phase voltages are illustrated in the time domain in Figure 4 and as complex
phasors in Figure 5. Note the symmetrical spacing in time of the voltages. As in earlier examples,
the instantaneous voltages may be visualized by imagining Figure 5 spinning counterclockwise with



Ve

-2 -2
Vels Ve s VY

Figure 3: Three- Phase Voltage Source

AL

Va, Vb, Vc
o
T
| |

15

Figure 4: Three Phase Voltages

angular velocity w. The instantaneous voltages are just projections of the vectors of this “pinwheel”
onto the horizontal axis.

Consider connecting these three voltage sources to three identical loads, each with complex
impedance Z, as shown in Figure 6.

If voltages are as given by (9 - 11), then currents in the three phases are:

ia = Re ;} (12)
i = Re ‘;eﬂwt?)] (13)
i. = Re %ej(“’““%ﬂ) (14)
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Figure 5: Phasor Diagram: Three Phase Voltages

i la
+ +
Vq C)Ub < A Up Z (%

Figure 6: Three- Phase Source Connected To Balanced Load

Complex power in each of the three phases is:
P+ jQ = — (cos) + jsinv)) (15)

Then, remembering the time phase of the three sources, it is possible to write the values of instan-
taneous power in the three phases:

V]

Pe = 317 {cos ) [1 + cos 2wt] + sin 1) sin 2wt } (16)
V72 2 2

= ’2|Z|| {cos P {1 + cos(2wt — ;)} + sin ¢ sin(2wt — ;)} (17)
2 2 2

pe = |2‘|/Z|| {cos P {1 + cos(2wt + ;)} + sin ¢ sin(2wt + ;)} (18)

The sum of these three expressions is total instantaneous power, which is constant:
3V|?

5@ COS¢ (19)

P=DPatPp+Pc=



It is useful, in dealing with three phase systems, to remember that

2 2
cosx + cos(z — g) + cos(z + %) =0

regardless of the value of z.
Now consider the current in the neutral wire, i, in Figure 6. This current is given by:

in =i +1p + 1. = Re [‘Z/ (ej“’t + I @t=5) + ej(m#;))} =0 (20)

This shows the most important advantage of three-phase systems over two-phase systems: a
wire with no current in it does not have to be very large. In fact, the neutral connection may
be eliminated completely in many cases. The network shown in Figure 7 will work as well as the
network in Figure 6 in most cases in which the voltages and load impedances are balanced.

o)

: i+ Va —
Z

(%

:b i+ Up —
A

Ve

C e T Ue —
Z

Figure 7: Ungrounded Three-Phase Source and Load

There is a fundamental difference between grounded and undgrounded systems if perfectly
balanced conditions are not maintained. In effect, the ground wire provides isolation between the
phases by fixing the neutral voltage a the star point to be zero. If the load impedances are not
equal the load is said to be unbalanced. If the system is grounded there will be current in the
neutral. If an unbalanced load is not grounded, the star point voltage will not be zero, and the
voltages will be different in the three phases at the load, even if the voltage sources all have the
same magnitude.

4 Line-Line Voltages

A balanced three-phase set of voltages has a well defined set of line-line voltages. If the line-to-
neutral voltages are given by (9 - 11), then line-line voltages are:

Vah = Vg —Up = Re {K (1 — e_j%ﬂ) ej“’t} (21)
Vpe = Up — Ve = Re {Z ((3_342'77r — ej%ﬂ) ej“’t} (22)
Vea = Ve — Vg = Re {K (ej%r — 1) ej“’t} (23)



and these reduce to:

vy = Re [ﬂzej %ej“’t} (24)
we = Re {ﬁle_jgejm} (25)
Vea = Re {\/gzej %ﬂej”t} (26)

The phasor relationship of line-to-neutral and line-to-line voltages is shown in Figure 8. Two things
should be noted about this relationship:

e The line-to-line voltage set has a magnitude that is larger than the line-ground voltage by a
factor of v/3.

e Line-to-line voltages are phase shifted by 30° ahead of line-to-neutral voltages.

Clearly, line-to-line voltages themselves form a three-phase set just as do line-to-neutral voltages.
Power system components (sources, transformer windings, loads, etc.) may be connected either
between lines and neutral or between lines. The former connection of often called wye, the latter

is called delta, for obvious reasons.
VC

bc

Figure 8: Line-Neutral and Line-Line Voltages

It should be noted that the wye connection is at least potentially a four-terminal connection,
while the delta connection is inherently three-terminal. The difference is the availability of a neutral
point. Under balanced operating conditions this is unimportant, but the difference is apparent and
important under unbalanced conditions.

4.1 Example: Wye and Delta Connected Loads

Loads may be connected in either line-to-neutral or line-to-line configuration. An example of the
use of this flexibility is in a fairly commonly used distribution system with a line-to-neutral voltage
of 120 V, RMS. In this system the line-to-line voltage is 208 V, RMS. Single phase loads may be
connected either line-to-line or line-to-neutral.
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Figure 9: Wye And Delta Connected Voltage Sources

a a
Za
an Zab
% S
c Ze b C z bc b

Figure 10: Wye And Delta Connected Impedances

Suppose it is necessary to build a resistive heater to deliver 6 kW, to be made of three elements
which may be connected in either wye or delta. Each of the three elements must dissipate 2000 W.
. 2 .
Thus, since P = ‘%, the wye connected resistors would be:

1202
= = 7.2Q)
Ry 2000 7
while the delta connected resistors would be:
2082
= = 21.6Q2
272000 0

As is suggested by this example, wye and delta connected impedances are often directly equiv-
alent. In fact, ungrounded connections are three-terminal networks which may be represented in
two ways. The two networks shown in Figure 10, combinations of three passive impedances, are
directly equivalent and identical in their terminal behavior if the relationships between elements
are as given in (27 - 32).

Z.Z yAYA Z.7
Zab _ —a—b+—%—c+—C—a (27)

Le




2,2y + ZyZ, + 2.2,

Z, - L (28)
Zy
YRVA
Za _ Lab&ca (30)
Zab + Zbc + an
Zab + Zbc + an
Zc _ Zbczca (32)

Zab + Zbc + an
A special case of the wye-delta equivalence is that of balanced loads, in which:
Za = Zb = Zc = Zy

and
Zab :Zbc:an :ZA

in which case:
Za =32,
4.2 Example: Use of Wye-Delta for Unbalanced Loads

The unbalanced load shown in Figure 11 is connected to a balanced voltage source. The problem
is to determine the line currents. Note that his load is ungrounded (if it were grounded, this would
be a trivial problem). The voltages are given by:

v, = Vcoswt
2
v = Vcos(wt— g)
2
ve = Vcos(wt+ g)

To solve this problem, convert both the source and load to delta equivalent connections, as
shown in Figure 12. The values of the three resistors are:

2+4+2
=

4

Tab = Tca =

24442
=T

Tbe 8

The complex amplitudes of the equivalent voltage sources are:
V= V,-V,=V(1-c7F)= V33
Ve = Kb—KCZZ(e_j%W —ej?) — V3e i3
Ve = L;W@:yj&%_4): V3l E



Figure 11: Unbalanced Load

Figure 12: Delta Equivalent

10



Currents in each of the equivalent resistors are:

L:Q [:& I, &

Tab Tbe Tca

The line curents are then just the difference between current in the legs of the delta:

Q

s L
Io=1—1I3= \/§V(f{f—]4ﬁ>: Sy
e’ v
ﬁv( 8§ 1
%4 _iT 3 ‘1
Ie=I3—-1,= \/gv(ej46 _652): _(8_‘74>V

These are shown in Figure 13.

Iy=01—-1 =

N
a
<.
ol
N~~~
|
|
7 N
ool w
+
.
=
'
<<

Im()
*%z
-3y iy
T gl Re()
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Figure 13: Line Currents

5 Transformers

Transformers are essential parts of most power systems. Their role is to convert electrical energy
at one voltage to some other voltage. We will deal with transformers as electromagnetic elements
later on in this subject, but for now it will be sufficient to use a simplified model for the transformer
which we will call the ideal transformer. This is a two-port circuit element, shown in Figure 14.

11

- N1 :N2 ‘Zz
+ +
U1 V2

Figure 14: Ideal Transformer

The ideal transformer as a network element constrains its terminal variables in the following
way:

11



U b2
Ny Ny
Nlil = —Ng’ig (34)

As it turns out, this is not a terribly bad model for the behavior of a real transformer under
most circumstances. Of course, we will be interested in fine points of transformer behavior and
behavior under pathological operating conditions, and so will eventually want a better model. For
now, it is sufficient to note just a few things about how the transformer works.

1. In normal operation, we select a transformer turns ratio % so that the desired voltages

appear at the proper terminals. For example, to convert 13.8 kV distribution voltage to the
120/240 volt level suitable for residential or commercial single phase service, we would use a
transformer with turns ratio of 1;’280 = 57.5. To split the low voltage in half, a center tap on

the low voltage winding would be used.

2. The transformer, at least in its ¢deal form, does not consume, produce nor store energy. Note
that, according to (33) and (34), the sum of power flows into a transformer is identically zero:

p1+p2 = vit1 + vata =0 (35)

3. The transformer also tends to transform impedances. To show how this is, look at Figure 15.
Here, some impedance is connected to one side of an ideal transformer. See that it is possible
to find an equivalent impedance viewed from the other side of the transformer.

I I
:1’ N1 :N2 :2’
F

Vi Z

Figure 15: Impedance Transformation

Noting that

N
Iy =—+1
2 Nyt
and that
Vo=—-21,

12



6 Three-Phase Transformers

A three-phase transformer is simply three single phase transformers. The complication in these
things is that there are a number of ways of winding them, and a number of ways of interconnecting
them. We will have more to say about windings later. For now, consider interconnections. On
either “side” of a transformer connection (i.e. the high voltage and low voltage sides), it is possible
to connect transformer windings either line to neutral (wye), or line to line (delta). Thus we may
speak of transformer connections being wye-wye, delta-delta, wye-delta, or delta-wye.

Ignoring certain complications that we will have more to say about shortly, connection of trans-
formers in either wye-wye or delta-delta is reasonably easy to understand. Each of the line-to-neutral
(in the case of wye-wye), or line-to-line (in the case of delta-delta) voltages is transformed by one
of the three transformers. On the other hand, the interconnections of a wye-delta or delta-wye
transformer are a little more complex. Figure 16 shows a delta-wye connection, in what might be
called “wiring diagram” form. A more schematic (and more common) form of the same picture is
shown in Figure 17. In that picture, winding elements that appear parallel are wound on the same
core segment, and so constitute a single phase transformer.

Xc Hc Xb Hb X(z Ha

Figure 16: Delta- Wye Transformer Connection

Now: assume that Na and Ny are numbers of turns. If the individual transformers are consid-
ered to be ideal, the following voltage and current constraints exist:

Ny

Vay = 3o (Var — vpa) (37)
vy = ]]:],: (VbA — Ve ) (38)
vy = ]]:Z (vea — Van) (39)
fan = ]]Y,Z (lay —icy) (40)
ibn = ]]:Z (iby — day) (41)
feh = ]]:Z (iey — iby) (42)



Figure 17: Schematic of Delta- Wye Transformer Connection

where each of the wvoltages are line-neutral and the currents are in the lines at the transformer

terminals.
Now, consider what happens if a A — Y transformer is connected to a balanced three- phase

voltage source, so that:
van = Re(Vel')
va = Re(Ve/@=5))
vea = Re(Ve/T))

~ N o

Vo = %—XV (1 — 6_72?) = ﬁNfZKeJE
Viy = 3£V (e_]%ﬂ - ej%ﬂ) = \/§N—ZK€_J%
x Ny r

Voy=  REV(4T-1) = VEgvew

Two observations should be made here:

e The ratio of voltages (that is, the ratio of either line-line or line-neutral) is different from the
turns ratio by a factor of /3.

e All wye side voltages are shifted in phase by 30° with respect to the delta side voltages.

6.1 Example

Suppose we have the following problem to solve:

14



A balanced three- phase wye-connected resistor is connected to the A side of a Y — A

transformer with a nominal voltage ratio of
vA
vy

N

What is the impedance looking into the wye side of the transformer, assuming drive
with a balanced source?

The situation is shown in Figure 18.

Figure 18: Example

It is important to remember the relationship between the woltage ratio and the turns ratio,
which is:

va _ o Na
vy V3Ny
so that:
Ny _ N

Ny V3
Next, the Y — A equivalent transform for the load makes the picture look like figure 19
In this situation, each transformer secondary winding is conected directly across one of the three
resistors. Currents in the resistors are given by:

VabA
3R
VbeA

3R

VcaA

3R

11 =

19 =

i3 =
Line currents are:
) . . e A —1 ) )
TgA = 11 — 13 = abASRcaA = 11A — 13A
) ) ) A — ) )
ipa = G — ] = AR =ign —i1a

v —v . .
caA3R beA = 13A — 12A

iCA = i3 — 19

15



Figure 19: Equivalent Situation

Solving for currents in the legs of the transformer A, subtract, for example, the second expression

from the first:
2UgbA — UbeA — VeaA

3R
Now, taking advantage of the fact that the system is balanced:

201A — l2A — i3A =

1A +i2a +i3a = 0
UgbA + VpeA + Vean = 0
to find:
Z.IA _ VabA
3R
N UbcA
2 3R
jan = UcaA
s 3R

Finally, the ideal transformer relations give:

Na 4 Na .
(% = 77 Uay lay = 77 UIA
abA NY a a NY
) NAU ) NA@' A
A — 7 Uy bY = 77 12
be NY b NY
Na Na
VeaA = NirUCY ey = Nili’)A
Y Y

so that:

. (NA)2 1 y
la = T 5 Ya
Y Ny ) 3R ™

16



. Na\? 1
ey = (]Vy) ﬁvby
. Na\? 1
ey = (Ny) @UCY

The apparent resistance (that is, apparent were it to be connected in wye) at the wye terminals

of the transformer is:
Reg = 3R (NY)Q
€eq — NA

Expressed in terms of voltage ratio, this is:

N2 vy \ 2
Req = 3R <) —R <Y>
V3 VA
It is important to note that this solution took the long way around. Taken consistently (uni-

formly on a line-neutral or uniformly on a line-line basis), impedances transform across transformers
by the square of the wvoltage ratio, no matter what connection is used.

7 Polyphase Lines and Single-Phase Equivalents

By now, one might suspect that a balanced polyphase system may be regarded simply as three
single-phase systems, even though the three phases are physically interconnected. This feeling is
reinforced by the equivalence between wye and delta connected sources and impedances. One more
step is required to show that single phase equivalence is indeed useful, and this concerns situations
in which the phases have mutual coupling.

In speaking of lines, we mean such system elements as transmission or distribution lines: over-
head wires, cables or even in-plant buswork. Such elements have impedance, so that there is some
voltage drop between the sending and receiving ends of the line. This impedance is more than just
conductor resistance: the conductors have both self and mutual inductance, because currents in
the conductors make magnetic flux which, in turn, is linked by all conductors of the line.

A schematic view of a line is shown in Figure 20. Actually, only the inductance components of
line impedance are shown, since they are the most interesting parts of line impedance. Working in
complex amplitudes, it is possible to write the voltage drops for the three phases by:

Vi =V = jwLl,+jwM (L, + L) (43)
Vi =V = jwLl,+jwM (L, + L) (44)
Va =V = jwLl.+joM (I, + 1) (45)

If the currents form a balanced set:
I,+I,+1.=0 (46)

Then the voltage drops are simply:

ViV = jw(l-M)I,
Vi =V = jw(L-M)I,
Va-Ve = jW(L—M)lc



Voltage Source Primary Secondary Transmission Line Load
Transformer

Figure 21: Example

In this case, an apparent inductance, suitable for the balanced case, has been defined:
Li=L-M (47)

which describes the behavior of one phase in terms of its own current. It is most important to note
that this inductance is a valid description of the line only if (46) holds, which it does, of course, in
the balanced case.

7.1 Example

To show how the analytical techniques which come from the network simplification resulting from
single phase equivalents and wye-delta transformations, consider the following problem:

A three-phase resistive load is connected to a balanced three-phase source through a
transformer connected in delta-wye and a polyphase line, as shown in Figure 21. The
problem is to calculate power dissipated in the load resistors. The three- phase voltage
source has:

v, = Re {ﬂVRMgej”t}
v = Re {\/iVRMgej(w_%ﬁ)]
Ve = Re {ﬂVRMSej(thr%’T)}

18




This problem is worked by a succession of simple transformations. First, the delta connected
resistive load is converted to its equivalent wye with Ry = %.

Next, since the problem is balanced, the self- and mutual inductances of the line are directly
equivalent to self inductances in each phase of L1 = L — M.

Now, the transformer secondary is facing an impedance in each phase of:

The delta-wye transformer has a voltage ratio of:

(N Na

Vs B \/§NY

so that, on the primary side of the transformer, the line and load impedance is:

Zp = jWLeq + Req

where the equivalent elements are:

2
Ly = 3(3) €=
2
- )
Magnitude of current flowing in each phase of the source is:
) = V2Vius
(w Leq)2 + qu
Dissipation in one phase is:
A= SlIPR,

Vitnss Req
(wLel])Q + qu

And, of course, total power dissipated is just three times the single phase dissipation.

8 Introduction To Per-Unit Systems

Strictly speaking, per-unit systems are nothing more than normalizations of voltage, current,
impedance and power. These normalizations of system parameters because they provide sim-
plifications in many network calculations. As we will discover, while certain ordinary parameters
have very wide ranges of value, the equivalent per-unit parameters fall in a much narrower range.
This helps in understanding how certain types of system behave.
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Figure 22: Example

8.1 Normalization Of Voltage And Current

The basis for the per-unit system of notation is the expression of voltage and current as fractions
of base levels. Thus the first step in setting up a per-unit normalization is to pick base voltage and
current.

Consider the simple situation shown in Figure 22. For this network, the complex amplitudes
of voltage and current are:

V=12 (48)

We start by defining two base quantities, Vp for voltage and Ip for current. In many cases, these
will be chosen to be nominal or rated values. For generating plants, for example, it is common to
use the rated voltage and rated current of the generator as base quantities. In other situations,
such as system stability studies, it is common to use a standard, system wide base system.

The per-unit voltage and current are then simply:

v
= = 49
v s (49)
I
. = — 50
i . (50)
Applying (49) and (50) to (48), we find:
v=iz (51)
where the per-unit impedance is:
Ip
=Z— 52
z=2y (52)
This leads to a definition for a base impedance for the system:
Zy = VB (53)
Ip
Of course there is also a base power, which for a single phase system is:
Pp =VpIp (54)

as long as Vp and Ip are expressed in RMS. It is interesting to note that, as long as normalization is
carried out in a consistent way, there is no ambiguity in per-unit notation. That is, peak quantities
normalized to peak base quantities will be the same, in per-unit, as RMS quantities normalized to
RMS bases. This advantage is even more striking in polyphase systems, as we are about to see.

20



8.2 Three Phase Systems

When describing polyphase systems, we have the choice of using either line-line or line-neutral
voltage and line current or current in delta equivalent loads. In order to keep straight analysis in
ordinary variable, it is necessary to carry along information about which of these quantities is being
used. There is no such problem with per-unit notation.

We may use as base quantities either line to neutral voltage Vp;_, or line to line voltage Vg;_;.
Taking the base current to be line current Ip;, we may express base power as:

Pp =3Vp_4Ip (55)

Because line-line voltage is, under normal operation, v/3 times line-neutral voltage, an equivalent

statement is:
P = V3V (56)

If base impedance is expressed by line-neutral voltage and line current (This is the common
convention, but is not required),
Vii—
Zp =28 (57)
Ip
Then, base impedance is, written in terms of base power:
2
Pp Vg Vai

=3 = (58)

/n =
Y Py Py

Note that a single per-unit voltage applied equally well to line-line, line-neutral, peak and RMS
quantities. For a given situation, each of these quantities will have a different ordinary value, but
there is only one per-unit value.

8.3 Networks With Transformers

One of the most important advantages of the use of per-unit systems arises in the analysis of
networks with transformers. Properly applied, a per-unit normalization will cause nearly all ideal
transformers to dissapear from the per-unit network, thus greatly simplifying analysis.

To show how this comes about, consider the ideal transformer as shown in Figure 23. The

I I,

1: N -
¥ T
Vi Vy

Figure 23: Ideal Transformer With Voltage And Current Conventions Noted

ideal transformer imposes the constraints that:

Vo, = NV
1

I, = —I
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Normalized to base quantities on the two sides of the transformer, the per-unit voltage and
current are:

_ N
Ql_VBl
I
11:i;1
v
I
Zzzﬁ;

Now: note that if the base quantities are related to each other as if they had been processed by the
transformer:

Vs = NVg (59)
I
Iy = % (60)

then v; = vy and i; = iy, as if the ideal transformer were not there (that is, consisted of an ideal
wire).

Expressions (59) and (60) reflect a general rule in setting up per-unit normalizations for systems
with transformers. Each segment of the system should have the same base power. Base voltages
transform according to transformer wvoltage ratios. For three-phase systems, of course, the voltage
ratios may differ from the physical turns ratios by a factor of /3 if delta-wye or wye-delta connections
are used. It is, however, the voltage ratio that must be used in setting base voltages.

8.4 Transforming From One Base To Another

Very often data such as transformer leakage inductance is given in per-unit terms, on some base

(perhaps the units rating), while in order to do a system study it is necessary to express the same

data in per-unit in some other base (perhaps a unified system base). It is always possible to do this

by the two step process of converting the per-unit data to its ordinary form, then re-normalizing it

in the new base. However, it is easier to just convert it to the new base in the following way.
Note that impedance in Ohms (ordinary units) is given by:

Z=21Zp1 = 29482 (61)
Here, of course, z; and z, are the same per-unit impedance expressed in different bases. This could

be written as:
Vi Vs

2= = 62
2p, T 2P, (62)
This yields a convenient rule for converting from one base system to another:
Ppy < Vi > 2
Z1=—|—) z 63
= Py \ V) 7 (63)
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Figure 24: One-Line Diagram Of Faulted System

8.5 Example: Fault Study

To illustrate some of the concepts with which we have been dealing, we will do a short circuit analysis
of a simple power system. This system is illustrated, in one-line diagram form, in Figure 24.

A one-line diagram is a way of conveying a lot of information about a power system without
becoming cluttered with repetitive pieces of data. Drawing all three phases of a system would
involve quite a lot of repetition that is not needed for most studies. Further, the three phases can
be re-constructed from the one-line diagram if necessary. It is usual to use special symbols for
different components of the network. For our network, we have the following pieces of data:

Symbol Component Base P Base V. Impedance

(MVA)  (kV) (per-unit)
G Generator 200 13.8 j.18
11 Transformer 200 13.8/138 j.12
Ly Trans. Line 100 138 .02+ 7.05
T Transformer 50 138/34.5 j.08

A three-phase fault is assumed to occur on the 34.5 kV side of the transformer T5. This is
a symmetrical situation, so that only one phase must be represented. The per-unit impedance
diagram is shown in Figure 25. It is necessary to proceed now to determine the value of the
components in this circuit.

Lg rT1 ] 7] T2

Figure 25: Impedance Diagram For Fault Example

First, it is necessary to establish a uniform base an per-unit value for each of the system
components. Somewhat arbitrarily, we choose as the base segment the transmission line. Thus all
of the parameters must be put into a base power of 100 MVA and voltage bases of 138 kV on the
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line, 13.8 kV at the generator, and 34.5 kV at the fault. Using (62):

Ty = % X .18 = .09per-unit
T = % x .12 = .06per-unit
T = % x .08 = .16per-unit

T = = .02per-unit

T = = .05per-unit

Total impedance is:

z J(xg+xrm +a+a72) + 19
= .36 4 .02per-unit
|z| = .361lper-unit

Now, if e, is equal to one per-unit (generator internal voltage equal to base voltage), then the
per-unit current is:

1
li| = 361 = .27Tper-unit

This may be translated back into ordinary units by getting base current levels. These are:

e On the base at the generator:

o= (MOOMVA o
V3 x 13.8kV
e On the line base: 100MVA
Bp=————=418A
V3 x 138kV
e On the base at the fault: 100MVA
= =1.67kA
B /3 x 345KV

Then the actual fault currents are:
o At the generator |I;| = 11,595A
e On the transmission line |I| = 1159A

o At the fault [1;] = 4633A
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Introduction To Symmetrical Components *

J.L. Kirtley Jr.

1 Introduction

Installment 3 of these notes dealt primarily with networks that are balanced, in which the three
voltages (and three currents) are identical but for exact 120° phase shifts. Unbalanced conditions
may arise from unequal voltage sources or loads. It ¢s possible to analyze some simple types
of unbalanced networks using straightforward solution techniques and wye-delta transformations.
However, power networks can be come quite complex and many situations would be very difficult
to handle using ordinary network analysis. For this reason, a technique which has come to be called
symmetrical components has been developed.

Symmetrical components, in addition to being a powerful analytical tool, is also conceptually
useful. The symmetrical components themselves, which are obtained from a transformation of the
ordinary line voltages and currents, are useful in their own right. Symmetrical components have
become accepted as one way of describing the properties of many types of network elements such
as transmission lines, motors and generators.

2 The Symmetrical Component Transformation

The basis for this analytical technique is a transformation of the three voltages and three currents
into a second set of voltages and currents. This second set is known as the symmetrical components.
Working in complex amplitudes:

v = Re (Kaej“’t) (1)
v = Re (Kbej(“’t_%ﬂ)) (2)
ve = Re (Kcej(“’““%ﬂ)) (3)

*(©2003 James L. Kirtley Jr.



The transformation is defined as:

=2 I
=R I

a =el3 :—*4‘]7 (5)
2 _ i _ i :_1_ @ 6
a /s =e % 515 (6)
a’ =1 (7)

This transformation may be used for both voltage and current, and works for variables in
ordinary form as well as variables that have been normalized and are in per-unit form. The inverse
of this transformation is:

v, 11 1] [y,
Vy |=]a a 1|V, (8)
V. a o 1 Vy

The three component variables V1, V5, V, are called, respectively, positive sequence, negative
sequence and zero sequence. They are called symmetrical components because, taken separately,
they transform into symmetrical sets of voltages. The properties of these components can be
demonstrated by tranforming each one back into phase variables.

Consider first the positive sequence component taken by itself:

vV, =V (9)
Vo, = 0 (10)
Vo = 0 (11)
yields:
V.=V or v,=Vcoswt (12)
2

V,=d®V  or  u,=V cos(wt— %) (13)

27
V.,=aV  or v.=Vcos(wt+ E) (14)

This is the familiar balanced set of voltages: Phase b lags phase a by 120°, phase ¢ lags phase
b and phase a lags phase c.
The same transformation carried out on a negative sequence voltage:

Vi =0 (15)
Vy = V (16)
Vo = 0 (17)



yields:

V,= or v =Vcoswt (18)
2

Vy=aV  or v, =Vcos(wt+ g) (19)
2

V.,=d’V  or  w.=Vcos(wt— g) (20)

This is called negative sequence because the sequence of voltages is reversed: phase b now leads
phase a rather than lagging. Note that the negative sequence set is still balanced in the sense
that the phase components still have the same magnitude and are separated by 120°. The only
difference between positive and negative sequence is the phase rotation. This is shown in Figure 1.

Ve Vb
Vo Va
Vo Ve
Positive Sequence Negative Sequence

Figure 1: Phasor Diagram: Three Phase Voltages

The third symmetrical component is zero sequence. If:

Vi, =0 (21)
Vo =0 (22)
Vo = V (23)
Then:
V,=V or wv,=Vcoswt (24)
Vo=V or v, =Vcoswt (25)
V.=V o v.=Vcoswt (26)

That is, all three phases are varying together.

Positive and negative sequence sets contain those parts of the three-phase excitation that rep-
resent balanced normal and reverse phase sequence. Zero sequence is required to make up the
difference between the total phase variables and the two rotating components.

The great utility of symmetrical components is that, for most types of network elements, the
symmetrical components are independent of each other. In particular, balanced impedances and ro-
tating machines will draw only positive sequence currents in response to positive sequence voltages.
It is thus possible to describe a network in terms of sub-networks, one for each of the symmetrical



components. These are called sequence networks. A completely balanced network will have three
entirely separate sequence networks. If a network is unbalanced at a particular spot, the sequence
networks will be interconnected at that spot. The key to use of symmetrical components in handling
unbalanced situations is in learning how to formulate those interconnections.

3 Sequence Impedances

Many different types of network elements exhibit different behavior to the different symmetrical
components. For example, as we will see shortly, transmission lines have one impedance for positive
and negative sequence, but an entirely different impedance to zero sequence. Rotating machines
have different impedances to all three

Positive Sequence Negative Sequence

Figure 2: Sequence Connections For A Line-To-Line Fault

sequences.

To illustrate the independence of symmetrical components in balanced networks, consider the
transmission line illustrated back in Figure 20 of Installment 3 of these notes. The expressions for
voltage drop in the lines may be written as a single vector expression:

Vipri = Vippe = jwL , Iy (27)

where

Ly= I (29)
I

C

L M M
M L M (30)
M M L

éph =

Note that the symmetrical component transformation (4) may be written in compact form:

Ks = le (31)



where

111 a a
I=3|1 a a (32)
1 1 1
and V, is the vector of sequence voltages:
Vi
V=11, (33)
Vo
Rewriting (27) using the inverse of (31):
gilzsl - zilKSQ = jwéphgills (34)
Then transforming to get sequence voltages:
Ksl - Ks? = ngphz_lls (35)
The sequence inductance matrix is defined by carrying out the operation indicated:
_ -1
which is:
L—-M 0 0
L = 0 L-M 0 (37)
0 0 L+2M

Thus the coupled set of expressions which described the transmission line in phase variables becomes
an uncoupled set of expressions in the symmetrical components:

Vii-Vi = jwl—-M)IL (38)
Vo=V = jw(l—M)I, (39)
Voo =Voo = jw(L+2M)I, (40)
The positive, negative and zero sequence impedances of the balanced transmission line are then:
Z, =2y =jw(l—M) (41)
Zy = jw(L +2M) (42)

So, in analysis of networks with transmission lines, it is now possible to replace the lines with three
independent, single- phase networks.

Consider next a balanced three-phase load with its neutral connected to ground through an
impedance as shown in Figure 3.

The symmetrical component voltage-current relationship for this network is found simply, by
assuming positive, negative and zero sequence currents and finding the corresponding voltages. If
this is done, it is found that the symmetrical components are independent, and that the voltage-
current relationships are:

vy = zI (43)
Vy = ZlI (44)
Z() = (Z+3Zg)lo (45)
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Figure 3: Balanced Load With Neutral Impedance

4 Unbalanced Sources

Consider the network shown in Figure 4. A balanced three-phase resistor is fed by a balanced
line (with mutual coupling between phases). Assume that only one phase of the voltage source is
working, so that:

V, (46)
V, = 0 (47)
V. = (48)

The objective of this example is to find currents in the three phases.

Figure 4: Balanced Load, Balanced Line, Unbalanced Source

To start, note that the unbalanced voltage source has the following set of symmetrical compo-
nents:

\%4
VvV, = — 49
v, = < (49)
\%4
V, = — 50
Vo = < (50)
\%4
Vo = — 51
Vo = < (51)



Next, the network facing the source consists of the line, with impedances:

Zy = ju(l—M) (52)
Zy = jw(lL—M) (53)
Zy = jw(L+2M) (54)

and the three- phase resistor has impedances:

Zy = R (55)
Z, = R (56)
Zy = o0 (57)

Note that the impedance to zero sequence is infinite because the neutral is not connected back
to the neutral of the voltage source. Thus the sum of line currents must always be zero and this
in turn precludes any zero sequence current. The problem is thus described by the networks which
appear in Figure 5.

Jjw(L — M) Jjw(L — M) jw(L+2M) R
v
O v (% 2
Positive Negative Zero

Figure 5: Sequence Networks

Currents are:

;o 1%

17 3(jw(L— M) +R)
o 1%

=2 7 3(w(L—M)+R)
lo =0

Phase currents may now be re-assembled:

Ll = l1+l2+l0
I, = oI, +aly,+1,

I. = al, +d’I,+ I,
or:
o 2V
= 3(jw(L — M)+ R)
(a® +a)V

L 3(jw(L — M) + R)



3(jw(L — M) + R)

;o (a+a*)V
= 3wl - M)+ R)
-V

3(jw(L — M) + R)
(Note that we have used a® +a = —1).

5 Rotating Machines

Some network elements are more readily represented by sequence networks than by ordinary phase
networks. This is the case, for example, for synchronous machines. synchronous motors and
generators produce a positive sequence internal voltage and have terminal impedance. For reasons
which are beyond the scope of these notes, the impedance to positive sequence currents is not the
same as the impedance to negative or to zero sequence currents. A phase-by-phase representation
will not, in many situations, be adequate, but a sequence network representation will. Such a
representation is three Thevenin equivalent circuits, as shown in Figure 6

iXi & iXs I iXo Lo
Vs Vo
Positive Negative Zero

Figure 6: Sequence Networks For A Synchronous Machine

6 Transformers

Transformers provide some interesting features in setting up sequence networks. The first of these
arises from the fact that wye-delta or delta-wye transformer connections produce phase shifts from
primary to secondary. Depending on connection, this phase shift may be either plus or minus 30°
from primary to secondary for positive sequence voltages and currents. It is straightforward to
show that negative sequence shifts in the opposite direction from positive. Thus if the connection
advances positive sequence across the transformer, it retards negative sequence. This does not
turn out to affect the setting up of sequence networks, but does affect the re-construction of phase
currents and voltages.

A second important feature of transformers arises because delta and ungrounded wye connec-
tions are open circuits to zero sequence at their terminals. A delta connected winding, on the
other hand, will provide a short circuit to zero sequence currents induced from a wye connected
winding. Thus the zero sequence network of a transformer may take one of several forms. Figures 7
through 9 show the zero sequence networks for various transformer connections.



Figure 7: Zero Sequence Network: Wye-Wye Connection, Both Sides Grounded

Figure 8: Zero Sequence Network: Wye-Delta Connection, Wye Side (Left) Grounded

7 Unbalanced Faults

A very common application of symmetrical components is in calculating currents arising from
unblanced short circuits. For three-phase systems, the possible unbalanced faults are:

1. Single line-ground,
2. Double line-ground,
3. Line-line.

These are considered separately.

7.1 Single Line-To-Ground Fault

The situation is as shown in Figure 10
The system in this case consists of networks connected to the line on which the fault occurs.
The point of fault itself consists of a set of terminals (which we might call “a,b,c”). The fault sets,

Figure 9: Zero Sequence Network: Wye-Delta Connection, Ungrounded or Delta-Delta



Point Of Fault

/

Network Network

Figure 10: Schematic Picture Of A Single Line-To-Ground Fault

at this point on the system:
V., =
I, =
I =

Exe

Now: using the inverse of the symmetrical component transformation, we see that:
Kl +KQ+K0:0 (58)
And using the transformation itself:
1
Li=L =1, =3l (59)

Together, these two expressions describe the sequence network connection shown in Figure 11.
This connection has all three sequence networks connected in series.

7.2 Double Line-To-Ground Fault

If the fault involves phases b, ¢, and ground, the “terminal” relationship at the point of the fault
is:

Vy =0
V. =0
I, = 0

a

Then, using the sequence transformation:
1
K1 :KQZK(]: gza
Combining the inverse transformation:
L1:l1+l2+10:0
These describe a situation in which all three sequence networks are connected in parallel, as

shown in Figure 12.
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Negative
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/o
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Sequence| O

Figure 11: Sequence Connection For A Single-Line-To-Ground Fault

I | I
Iy o o

Positive Negative
Sequence

vV Zero vV
Sequence | 2 | Sequence| O

Figure 12: Sequence Connection For A Double-Line-To-Ground Fault

7.3 Line-Line Fault

If phases b and ¢ are shorted together but not grounded,

v, = V.
I, = —-L
I, =0

Expressing these in terms of the symmetrical components:
Vi = ¥
1 2
= 3 (Q +a ) v,
Iy = I, +1,+1,
=0
I+ 1,

I~
|

11



= 0

These expressions describe a parallel connection of the positive and negative sequence networks,
as shown in Figure 13.

1 >
Positive Negative
Sequence Sequence | 2

Figure 13: Sequence Connection For A Line-To-Line Fault

7.4 Example Of Fault Calculations

In this example, the objective is to determine maximum current through the breaker B due to a
fault at the location shown in Figure 14. All three types of unbalanced fault, as well as the balanced
fault are to be considered. This is the sort of calculation that has to be done whenever a line is
installed or modified, so that protective relaying can be set properly.

T Ty
I T PR Yt
g Se & E
N Falt Ay

Figure 14: One-Line Diagram For Example Fault

g _=x

Parameters of the system are:

System Base Voltage 138 kV
System Base Power 100 MVA
Transformer T Leakage Reactance .1 per-unit
Transformer 715 Leakage Reactance .1 per-unit
Line Ly Positive And Negative Sequence Reactance j.05 per-unit
Line Li Zero Sequence Impedance j-1 per-unit
Line Ly Positive And Negative Sequence Reactance j.02 per-unit
Line Ly Zero Sequence Impedance j-1 per-unit

12



The fence-like symbols at either end of the figure represent “infinite buses”, or positive sequence
voltage sources.

The first step in this is to find the sequence networks. These are shown in Figure 15. Note that
they are exactly like what we would expect to have drawn for equivalent single phase networks.
Only the positive sequence network has sources, because the infinite bus supplies only positive
sequence voltage. The zero sequence network is open at the right hand side because of the delta-
wye transformer connection there.

j.1 Lipj05 02 4.1

c 1 Fault a 1

l

Positive Sequence
4.1 hipj05 502 41

Fault
|

Negative Sequence
4.1 lop j.1 5.1

Fault
|

Zero Sequence

Figure 15: Sequence Networks

7.4.1 Symmetrical Fault
For a symmetrical (three-phase) fault, only the positive sequence network is involved. The fault
shorts the network at its position, so that the current is:

1
iy = —— = —j6.6Tper — unit
j.

7.4.2 Single Line-Ground Fault

For this situation, the three networks are in series and the situation is as shown in Figure 16
The current ¢ shown in Figure 16 is a total current, and is given by:

1

1= : ; — =
T 2x(4.15]]5.12) + 4.2

—j3.0

13
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ip| 3415 3512

<f>1 irp| 3515 3512

Figure 16: Completed Network For Single Line-Ground Fault

Then the sequence currents at the breaker are:

g = lop
.12
= X ]7
- 51243515
= —51.33
Z()B — Z
= —353.0
The phase currents are re-constructed using:
i = Liptisp+iop
iy = @’iip+airp +igp
io = aiyp+disp+igp
These are:
i, = —jb.66 per-unit
i, = —j1.67 per-unit
i, = —j1.67 per-unit

7.4.3 Double Line-Ground Fault

For the double line-ground fault, the networks are in parallel, as shown in Figure 17.

14



Figure 17: Completed Network For Double Line-Ground Fault

To start, find the source current i:

1
5(.15]].12) + 5 (.15][.12]].2)
= —j8.57
Then the sequence currents at the breaker are:
. . J-12
Up = X —(————
712+ 7.15
= —j3.81
o 3.12|[5.2
—2B =7 2l[j.2 + 415
= 72.86
; _ ix J.12]|5.15
iop =724 412[)5.15
= j2.14
Reconstructed phase currents are:
i, = j1.19
W = LB~ 5(113 +iap) — 7]@13 —isp)
= j2.67—5.87
. . 1. . 3 .. .
e = LB~ 5(113 +iop) + 7]@13 —isp)
= j2.67+5.87
li,] = 1.19 per-unit
liy] = 6.43 per-unit
li.] = 6.43 per-unit

15



7.4.4 Line-Line Fault

The situation is even easier here, as shown in Figure 18

iipt 3415 3512 ippt 3515 3512

Figure 18: Completed Network For Line-Line Fault

The source current ¢ is:

) 1
LT oxj(15][12)
= —37.50
and then:
iip = —lB
. g2
= 1 —
712+ j.15
= —353.33
Phase currents are:
Za = O
) ) ) V3. )
L = —5(113 +iop) — ]7(&13 —isp)
liy] = 5.77 per-unit
li.|] = 5.77 per-unit
7.4.5 Conversion To Amperes
Base current is:
Pp
Ip = ——— =4184A
V3V

Then current amplitudes are, in Amperes, RMS:

16



Phase A Phase B Phase C

Three-Phase Fault 2791 2791 2791
Single Line-Ground, ¢, 2368 699 699

Double Line-Ground, ¢p,¢p. 498 2690 2690
Line-Line, ¢y, ¢ 0 2414 2414

17
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Introduction To Load Flow *

J.L. Kirtley Jr.

1 Introduction

Even though electric power networks are composed of components which are (or can be approxi-
mated to be) linear, electric power flow, real and reactive, is a nonlinear quantity. The calculation
of load flow in a network is the solution to a set of nonlinear equations. The purpose of this note
is to describe how network load flows may be calculated.

This is only an elementary treatment of this problem: there is still quite a bit of activity in the
professional literature concerning load flow algorithms. The reason for this is that electric utility
networks are often quite large, having thousands of buses, so that the amount of computational
effort required for a solution is substantial. A lot of effort goes into doing the calculation efficiently.
This discussion, and the little computer program at the end of this note, uses the crudest possible
algorithm for this purpose. However, for the relatively simple problems we will be doing, it should
work just fine.

2 Power Flow

Power flow in a network is determined by the voltage at each bus of the network and the impedances
of the lines between buses. Power flow into and out of each of the buses that are network terminals
is the sum of power flows of all of the lines connected to that bus. The load flow problem consists
of finding the set of voltages: magnitude and angle, which, together with the network impedances,
produces the load flows that are known to be correct at the system terminals. To start, we view
the power system as being a collection of buses, connected together by lines. At each of the buses,
which we may regard as nodes, we may connect equipment which will supply power to or remove
power from the system. (Note: in speaking of power here, we are really referring to complex power,
with both real and reactive components). If we have made a connection to a given system node
(say with a generator), the complex power flow into the network at node £ is:

Sk = P +jQr = Vi I}, (1)

*(©2003 James L. Kirtley Jr.



3 Bus Admittance

Now, if the network itself is linear, interconnections between buses and between buses and ground
can all be summarized in a multiport bus impedance matrix or its inverse, the bus admittance
matriz. As it turns out, the admittance matrix is easy to formulate.

The network consists of a number IV, of buses and another number N, of lines. Each of the
lines will have some (generally complex) impedance Z. We form the line admittance matriz by
placing the admittance (reciprocal of impedance) of each line on the appropriate spot on the main
diagonal of an Ny x Ny matrix:

z 0 0
0 5 0
0

Y, = (2)

N

1
Z3

Interconnections between buses is described by the bus incidence matriz. This matrix, which
has Ny columns and Ny, rows, has two entries for each line, corresponding to the buses at each end.
A “direction” should be established for each line, and the entry for that line, at location (ng, ny) in
the node incidencd matrix, is a 1 for the “sending” end and a —1 at the “receiving” end. Actually,
it is not important which end is which. The bus incidence matrix for the network described by
Figure 1 below is:

1 0 0 0
0o 0 0 1

NI=|-11 1 o0

o 0 0 -1 -1
0 —-10 0

It is not difficult to show that the bus admittance matrix is given by the easily computed
expression:

Y=NI Y, NI (3)

The elements of the bus admittance matriz, the self- and mutual- admittances, are all of the

following form:

I},
Yip= — 4
jk Vj ( )

with all other voltages equal to zero.
Thus an alternative way to estimate the bus admittance matrix is to:

e Assume that all nodes (buses) are shorted to ground,

e Assume that one node is unshorted and connected to a voltage source,
e Calculate all node currents resulting from that one source.

e Do this for each node.

We may observe:



e Reciprocity holds:
Yk = Yi; ()

e Driving point admittance Yy is just the sum of all admittances of lines connected to bus k,
including any fixed impedances connected from that bus to ground.

e Mutual admittance Y is minus the sum of the admittances of all lines connected directly
between buses j and k. Usually there is only one such line.

Network currents are then given by:

I=

[

v (6)

Where I is the vector of bus currents (that is, those currents entering the network at its buses. V.
represents the bus voltages and Y is the bus admittance matriz. We will have more to say about
estimating the bus admittance matrix in another section. For the moment, note that an individual

bus current is given by:
N

I =) YV, (7)
j=1

where N is the number of buses in the network. Then complex power flow at a node is:

N
Sk=Vi> Y;V; (8)
j=1

Now, the typical load flow problem involves buses with different constraints. It is possible to
specify six quantities at each bus: voltage magnitude and angle, current magnitude and angle, real
and reactive power. These are, of course, inter-related so that any two of these are specified by the
other four, and the network itself provides two more constraints. Thus it is necessary to, in setting
up a load flow problem, specify two of these six quantities. Typical combinations are:

e Generator Bus: Real power and terminal voltage magnitude are specified.
e Load Bus: Real and reactive power are specified.

¢ Fixed Impedance: A fixed, linear impedance connected to a bus constrains the relationship
between voltage and current. Because it constrains both magnitude and angle, such an
impedance constitutes two constraints.

e Infinite Bus: This is a voltage source, of constant magnitude and phase angle.

The load flow problem consists of solving [8] as constrained by the terminal relationships.

One bus in a load flow problem is assigned to be the “slack bus” or “swing bus”. This bus,
which is taken to be an “infinite bus”, since it does not have real nor reactive power constrained,
accommodates real power dissipated and reactive power stored in network lines. This bus is nec-
essary because these losses are not known a priori. Further, one phase angle needs to be specified,
to serve as an origin for all of the others.



4 Gauss—Seidel Iterative Technique

This is one of many techniques for solving the nonlinear load flow problem. It should be pointed out
that this solution technique, while straightforward to use and easy to understand, has a tendency
to use a lot of computation, particularly in working large problems. It is also quite capable of
converging on incorrect solutions (that is a problem with nonlinear systems). As with other iterative
techniques, it is often difficult to tell when the correct solution has been reached. Despite these
shortcomings, Gauss—Seidel can be used to get a good feel for load flow problems without excessive
numerical analysis baggage.

Suppose we have an initial estimate (ok: guess) for network voltages. We may partition [8] as:

Sk=Vi> YiVi+ V.Y, Vi (9)
J#k
Noting that Sy = P + jQ, we can solve for V} and, taking the complex conjugate of that, we
have an expression for Vi in terms of all of the voltages of the network, P, and Q:

1 [ Py —jQk
V. = — Y.V, 10
k Ykk V* j;c JjkVj ( )

Expression [10] is a better estimate of Vi, than we started with. The solution to the set of nonlinear
equations consists of carrying out this expression, repeatedly, for all of the buses of the network.

An iterative procedure in which a correction for each of the voltages of the network is computed
in one step, and the corrections applied all at once is called Gaussian Iteration. If, on the other
hand, the improved variables are used immediately, the procedure is called Gauss—Seidel Iteration.

Note that [10] uses as its constraints P and Q for the bus in question. Thus it is useable directly
for load type buses. For other types of bus constraints, modifications are required. We consider
only two of many possible sets of constraints.

For gemerator buses, usually the real power and terminal voltage magnitude are specified. At
each time step it is necessary to come out with a terminal voltage of specified magnitude: voltage
phase angle and reactive power Q are the unknowns. One way of handling this situation is to:

1. Generate an estimate for reactive power Q, then
2. Use [10] to generate an estimate for terminal voltage, and finally,
3. Holding voltage phase angle constant, adjust magnitude to the constraint.
At any point in the iteration, reactive power is:
N
Qe =ImS V> YiV; (11)
j=1

It should be noted that there are other ways of doing this calculation. Generally they are
more work to set up but often converge more quickly. Newton’s method and variations are good
examples.



For buses loaded by constant impedance, it is sufficient to lump the load impedance into the
network. That is, the load admittance goes directly in parallel with the driving point admittance at
the node in question.

These three bus constraint types, generator, load and constant impedance are sufficient for
handling most problems of practical importance.

5 Example: Simple-Minded Program

Attached to this note is a MATLAB script which will set up carry out the Gauss—Seidel procedure
for networks with the simple constraints described here. The script is self-explanatory and carries
out the load flow described by the simple example below.

Note that, as with many nonlinear equation solvers, success sometimes requires having an initial
guess for the solution which is reasonably close to the final solution.

6 Example

Consider the system shown in Figure 1. This simple system has five buses (numbered 1 through 5)
and four lines. Two of the buses are connected to generators, two to loads and bus 5 is the “swing
bus”, represented as an “infinite bus”, or voltage supply.

For the purpose of this excercise, assume that the line impedances are:

Zo = .05+.1
Z, = .05+ .05
Zo = 15442
Zs = .04+ 312

(12)

We also specify real power and voltage magnitude for the generators and real and reactive power
for the loads:

e Bus 1: Real power is 1, voltage is 1.05 per—unit
e Bus 2: Real power is 1, voltage is 1.00 per—unit
e Bus 3: Real power is -.9 per—unit, reactive power is 0.

e Bus 4: Real power is -1, reactive power is -.2 per—unit.

Note that load power is taken to be negative, for this simple-minded program assumes all power
is measured into the network.
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% Simple-Minded Load Flow Example
% First, impedances
Z1=.05+j*.1;
Z2=.05+j*.05;
Z3=.15+j*.2;
Z4=.04+j*.12;
% This is the node-incidence Matrix
NI=[1 00 0;000 1;-1110;00 -1-1;0 -1 0 0];
% This is the vector of "known" voltage magnitudes
VNM = [1.05 1 0 0 1]7;
% And the vector of known voltage angles
VNA = [0 000 0]’;
% and this is the "key" to which are actually known
KNM = [1 100 1]°;
KNA = [0 0 0 0 1]’
% and which are to be manipulated by the system
KUM = 1 - KNM;
KUA = 1 - KNA;
/» Here are the known loads (positive is INTO network
% Use zeros for unknowns
P=[1 1 -.9 -1 0]’;
Q=[0 0 0 -.2 0]7;
% and here are the corresponding vectors to indicate
% which elements should be checked in error checking
PC [11110]%;
QcC [00110];
Check = KNM + KNA + PC + QC;
% Unknown P and Q vectors
PU =1 - PC;
QU =1 - QC;
fprintf (’Here is the line admittance matrix:\n’);
Y=[1/Z1 0 0 0;0 1/Z2 0 0;0 O 1/Z3 0;0 O 0 1/Z4]
% Construct Node-Admittance Matrix
fprintf (’And here is the bus admittance matrix\n’)
YN=NI*Y*NI’
% Now: here are some starting voltage magnitudes and angles
VM = [1.05 1 .993 .949 1]’;
VA = [.0965 .146 .00713 .0261 0]’;
%, Here starts a loop
Error = 1;
Tol=1e-10;
N = length(VNM);
% Construct a candidate voltage from what we have so far
VMAG = VNM .* KNM + VM .* KUM;
VANG = VNA .* KNA + VA .*x KUA;



V = VMAG .* exp(j .* VANG);
% and calculate power to start
I = (YN*V);

PI = real(V .* conj(I));

QI = imag(V .* conj(I));
Jipause
while (Error>Tol);

for i=1:N, % Run through all of the buses

% What we do depends on what bus!
if (KUM(i) == 1) & (KUA(i) == 1), % don’t know voltage magnitude or angle
pve= (P(i)-j*Q(i))/conj(V(i));
for n=1:N,
if n "=i, pvc = pvc - (YN(i,n) * V(n)); end
end
V(i) = pvc/YN(i,i);
elseif (KUM(i) == 0) & (KUA(i) == 1), % know magnitude but not angle
% first must generate an estimate for Q
Qn = imag(V(i) * conj(YN(i,:)*V));
pve= (P(i)-j*Qn)/conj(V(i));
for n=1:N,
if n =i, pvc = pvc - (YN(i,n) * V(n)); end
end
pv=pvc/YN(i,i);
V(i) = VM(i) * exp(j*angle(pv));
end % probably should have more cases
end % one shot through voltage list: check error
% Now calculate currents indicated by this voltage expression
I = (YN*V);
% For error checking purposes, compute indicated power
PI = real(V .* conj(I));
QI = imag(V .* conj(I));
% Now we find out how close we are to desired conditions
PERR = (P-PI) .* PC;

QERR = (Q-QI) .* QC;
Error = sum(abs(PERR) .2 + abs(QERR) .72);
end
fprintf ("Here are the voltages\n’)
'
fprintf (’Real Power\n’)
P
fprintf (’Reactive Power\n’)
Q
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1 Introduction

In this chapter we describe an equivalence between electric and magnetic circuits and in turn a
method of describing and analyzing magnetic field systems which can be described in magnetic
circuit fashion. As it turns out, the equivalence is a fair approximation to reality and may be used
with some confidence.

Magnetic circuits are those parts of devices that employ magnetic flux to either induce voltage or
produce force. Such devices include transformers, motors, generators and other actuators (including
things such as solenoid actuators and loudspeakers). In such devices it is necessary to produce
and guide magnetic flux. This is usually done with pieces of ferromagnetic material (which has
permeability very much larger than free space). In this sense, magnetic circuits are like electric
circuits in which conductive material such as aluminum or copper has high electric conductivity
and are used to guide electric current.

The analogies between electric and magnetic circuits are two: the electric circuit quantity of
current is analogous to magnetic circuit quantity flux. (Both of these quantities are ’solenoidal’ in
the sense that they have no divergence). The electric circuit quantity of voltage, or electomotive
force (EMF) is analogous to the magnetic circuit quantity of magnetomotive force (MMF). EMF
is the integral of electric field E, MMF is the integral of magnetic field H.

2 Electric Circuits and Kirchoff’s Laws

2.1 Conservation of Charge and KCL

To begin with, consider the law of Conservation of Charge:

- d
Jodi=> [ qdv=0
# “ dt/volqv

*(©2003 James L. Kirtley Jr.



This assumes, of course, that there is no accumulation of charge anywhere in the system. This
is not a wonderful assumption for any systems with capacitor plates, but if one considers capacitors
to be circuit elements so that both plates of a capacitor are part of any given element the right
hand side of this expression really is zero.

Thsn, if we note current to be the integral of current density: Over some area, a fraction of the

whole area around a node:
i = / / - di

> i=0
k

then we have:

2.2 Faraday’s Law

j{E“-dF:—d/ B da
dt

The left-hand integral may be taken to be a number of sub-integrals, each denoted by a discrete
fractional integral:

b
vk:/ B de

k

If we assume that there are no substantive flux linkages among the circuit elements:

ff o

kazo
k

then we have KVL:

2.3 Ohm’s Law

At this point it is probably appropriate to note that Ohm’s Law can be used to derive the consti-
tutive relationship for a resistor. Suppose we have a conductive element similar to the rectangular
solid shown in Figure 1. Assume current is confined in this element and flowing perpendicular to
the flat end shown in the figure. Current density is

I

Jp = —
hw

where I is to total current and h and w are height and width of the conductor, respectively.
Electric field along the length of the element is:



where ¢ is the electrical conductivity of the material. Voltage developed is:

Vi :/Exdfz &l
g

Which leads us to an expression for element resistance:

l
B=T7= hwo
_ X
y d
h +
N "
P [
T
W

Figure 1: Simple circuit element

3 Magnetic Circuits

As it turns out, magnetic circuits are very similar and are governed by laws that are not at all
different from those of electric circuits, with only one minor difference.

3.1 Conservation of Flux: Gauss’ Law

ﬂ B.di=0

This reflects that notion that there are no sources of flux: this is a truely sinusoidal quantity.
It neither begins nor ends but just goes in circles.
If we note a fraction of the surface around a node and call it surface k, the flux through that

surface is:
B, = / / 1, B - di

If we take the sum of all partial fluxes through a surface surrounding a note we come to the
analog of KCL:

To start, Gauss’ law is:

> @ =0
k



3.2 MMF: Ampere’s Law

Ampere’s Law is simply stated as:

fﬁ-d@:/ 7. da

The integral of current density J is current, quantified in the SI system as Amperes. As it is
generally carried in wires which might number, say , N, it is often quantified as:

// J.di= NI

For this we will often use the term MagnetoMotive Force or MMF, which gets the symbol F. If
we use that symbol to denote the integral of magnetic field over a magnetic circuit element:

b _, o
Fk:/ i - di
ag

Then, if we take enough of these subintegrals to cover the loop around a group of elements, we
have

> Fy=NI
k

Note that this is not exactly the same as KVL, as it has a source term on the right.

3.3 Magnetic Circuit Element: Analogy to Ohm’s Law

Magnetic circuits have an equivalent to resistance. It is the ratio of MMF to flux and has the
symbol R. I direct comparison with the derivation of resistance, a magnetic circuit element is
shown in Figure 2.

h\l + /

X

w

Figure 2: Magnetic circuit element

Assume that the material of this element has permeability © > pg, so that it has a constitutive
relationship:



B, =uH,
If flux density in the material is uniform, total flux through the element is:
® = hwB, = hwuH,

And the MMF is simply the integral of magnetic field H from one end to the other: again we
assume uniformity so that:

F=/H,
The reluctance of this element is then:

F 14
R = —
d

- hwu

3.4 Magnetic Gaps

In reality, magnetic circuits tend to be made up of very highly permeable elements (pieces of iron)
and relatively small air-gaps. A sketch of such a gap is shown in Figure 3.

A

=0

P

Figure 3: Gap between magnetic elements

It is usually permissible to assume that iron elements have very high permeability (u — o0), so
that there is negligible MMF drop. In this sense the iron elements serve in the same role as copper
or aluminum wire in electric circuits. The gap, on the other hand, has reluctance:

__9
hwpo

g
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Figure 4: Gap details

3.5 Boundary Conditions

Shown in Figure 4 is the cross-section of a gap. It is assumed that the elements shown have some
depth into the paper which is greater than the gap width g. If the permeability of the elements to
the right and the left is very high, we say that magnetic flux is largely confined to those elements.
Note that the boundary condition associated with Ampere’s Law dictates that the magnetic field
intensity H, in the air adjacent to the permeable material and parallel with the surface must be
equal to the magnetic field intensity H,, just inside the magnetic material and parallel with the
surface. If the material is very highly permeable (1 — o0), that magnetic field must be nearly zero:
H, = H,, — 0. This means that magnetic field must be perpendicular to the surface of very highly
permeable material. This is the case in the gap itself, where:

By = B,

We should note, however, that there will be 'fringing’ fields in the region near the gap, so that our
expression for the reluctance of the gap will not be quite correct. The accuracy of the expression
which ignores fringing is best for really small gaps and generally over-estimates the reluctance.

4 Faraday’s Law and Inductance

Changing magnetic fields give rise to electric fields and consequently produce voltage. This is how
inductance works. Consider the situation shown rather abstractly in Figure 5.
Faraday’s Law is, in integral form:

, d L
fE-df:—&// Avea 3 - iida

If the contour shown is highly conducting (say, if it is a wire), there is zero electric field over
that part of the contour. Voltage across the terminals is:

b—}
Vab:/ B de

and that is the whole of the integral above. Thus we may conclude that:



Figure 5: Loop for Faraday’s Law

d =
Vab = _ﬁ/ Area B - 1ida

Now, if we define flux linked by this contour to be:

)\:—// Area B - fida

A
Cdt

then voltage is, as we expect:

Vab

As it turns out, current flowing in the wire with sense shown by ¢ in Figure 5 tends to produce
flux with sense opposite to the normal vector shown in that figure, and so produces positive flux.
Generally, in calculating inductance, one uses the ’'right hand rule’ in determing the direction of
flux linkage: if the fingers of your right hand follow the direction of the winding, from the positive
terminal, positive flux is in the direction of your thumb.

4.1 Example: Solenoid Actuator

Shown in Figure 6 is a representation of a common solenoid actuator. When current is put through
the coil a magnetic flux appears in the gaps and pulls the plunger to the left. We will examine the
force and how to calculate it in later chapters. For now, however, we are concerned with magnetic
fields in the device and with the calculation of inductance. Assume that the stator and plunger
are both made of highly permeable materials (u — o0). If the coil carries current I in N turns in
the sense shown, magnetic flux will cross the narrow air-gap to the right in the direction from the
stator to the plunger and then return in the sense shown in the variable length gap of width x. It
is clear that this is also positive sense flux for the coil.

The magnetic circuit equivalent is shown in Figure 7. All of the flux produced crosses the
variable width gap which has reluctance:



Depth D perpendicular to view
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Figure 6: Cross-Section of Solenoid Actuator

Figure 7: Magnetic Equivalent Circuit of Solenoid Actuator

T
R = pohD

Half of the flux crosses each of the other two gaps, which are in parallel and have reluctance:

__9
7 powD

Total flux in the magnetic circuit is

_F
R+ iR

And since A = N® and I' = NI, the inductance of this structure is:

N? N?
L = —_—— ———---
R Re+ iR,
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1 Introduction

This section of notes discusses some of the fundamental processes involved in electric machin-
ery. In the section on energy conversion processes we examine the two major ways of estimating
electromagnetic forces: those involving thermodynamic arguments (conservation of energy) and
field methods (Maxwell’s Stress Tensor). In between these two explications is a bit of description
of electric machinery, primarily there to motivate the description of field based force calculating
methods.

The subsection of the notes dealing with losses is really about eddy currents in both linear and
nonlinear materials and about semi-empirical ways of handling iron losses and exciting currents in
machines.

2 Energy Conversion Process:

In a motor the energy conversion process can be thought of in simple terms. In “steady state”,
electric power input to the machine is just the sum of electric power inputs to the different phase
terminals:

P.= Z vyl
i
Mechanical power is torque times speed:
P,=TQ
And the sum of the losses is the difference:

Py=P.— P,

*(©2003 James L. Kirtley Jr.
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Figure 1: Energy Conversion Process

It will sometimes be convenient to employ the fact that, in most machines, dissipation is small
enough to approximate mechanical power with electrical power. In fact, there are many situations in
which the loss mechanism is known well enough that it can be idealized away. The “thermodynamic”
arguments for force density take advantage of this and employ a “conservative” or lossless energy
conversion system.

2.1 Energy Approach to Electromagnetic Forces:

Magnetic Field
] System

Figure 2: Conservative Magnetic Field System

To start, consider some electromechanical system which has two sets of “terminals”, electrical
and mechanical, as shown in Figure 2. If the system stores energy in magnetic fields, the energy
stored depends on the state of the system, defined by (in this case) two of the identifiable variables:
flux (A), current (i) and mechanical position (z). In fact, with only a little reflection, you should
be able to convince yourself that this state is a single-valued function of two variables and that the
energy stored is independent of how the system was brought to this state.

Now, all electromechanical converters have loss mechanisms and so are not themselves conser-
vative. However, the magnetic field system that produces force is, in principle, conservative in the
sense that its state and stored energy can be described by only two variables. The “history” of the
system is not important.

It is possible to chose the variables in such a way that electrical power into this conservative



system is:

dX
Pe = ) = ‘7
vi =i,

Similarly, mechanical power out of the system is:
dx
pmo— e
f dt

The difference between these two is the rate of change of energy stored in the system:

AW,
— pe _ pm
dt

It is then possible to compute the change in energy required to take the system from one state to
another by:

Won(a) — W (b) = /b "id\ — feda

where the two states of the system are described by a = (Aq, z,) and b = (A\p, xp)
If the energy stored in the system is described by two state variables, A and x, the total

differential of stored energy is:
oW, oWy,
AW, = 7 dX + B dx

and it is also:
AW, = idX\ — fCdx

So that we can make a direct equivalence between the derivatives and:

B W
ox

This generalizes in the case of multiple electrical terminals and/or multiple mechanical termi-
nals. For example, a situation with multiple electrical terminals will have:

AW = igdy — fodx
k

fe=

And the case of rotary, as opposed to linear, motion has in place of force f¢ and displacement
x, torque T° and angular displacement 6.

In many cases we might consider a system which is electricaly linear, in which case inductance
is a function only of the mechanical position zx.

ANz) = L(z)i

In this case, assuming that the energy integral is carried out from A = 0 (so that the part of the
integral carried out over x is zero),

Al 1 A2
Win = /o L(x) AdA = 2 L(x)

This makes

. 1,0 1
7= 2>\83:L(1:

~—

3



Note that this is numerically equivalent to

This is true only in the case of a linear system. Note that substituting L(z)i = X too early in the
derivation produces erroneous results: in the case of a linear system it is a sign error, but in the
case of a nonlinear system it is just wrong.

2.1.1 Coenergy

We often will describe systems in terms of inductance rather than its reciprocal, so that current,
rather than flux, appears to be the relevant variable. It is convenient to derive a new energy
variable, which we will call co-energy, by:

Wy, = Xiig — Wi,

and in this case it is quite easy to show that the energy differential is (for a single mechanical
variable) simply:
AW, = Nedig + fodx
k

so that force produced is: /
f e — 8g/m
4
Consider a simple electric machine example in which there is a single winding on a rotor (call
it the field winding and a polyphase armature. Suppose the rotor is round so that we can describe
the flux linkages as:

)\a = Laia + L(zbib + Labic + M COS(pH)Zf
; ; . 27
Ao = Lapia + Laip + Lapic + M cos(ph — ?)Zf

27
A = Lgpiq+ Lapip + Laic + M COS(p9 + ?)’Lf

2 2
Af = M cos(pb)iq + M cos(pf — g)ib + M cos(pb + g) + Lyig

Now, this system can be simply described in terms of coenergy. With multiple excitation it
is important to exercise some care in taking the coenergy integral (to ensure that it is taken over
a valid path in the multi-dimensional space). In our case there are actually five dimensions, but
only four are important since we can position the rotor with all currents at zero so there is no
contribution to coenergy from setting rotor position. Suppose the rotor is at some angle # and that
the four currents have values iq0, 7p0, 7co and 9. One of many correct path integrals to take would
be:

, a0 . .
w,, = / Lyigdig
0

b0

+ / (LabiaO + Laib) dib
0



+ (LabiaO + LabibO + Laic) dic

o]
o

vf 2 2
+ / ’ (M cos(ph)iao + M cos(pb — g)ibo + M cos(pb + %)ico + sz'f) diy
0

The result is:

Wr/n = §La (Zzo + Z%O + Zzo) + Lab (ZaoZbO + 2a0tco + 7fco7lb0)
. . . 2 . 27 1.
+Mi g (Zao cos(ph) + ipg cos(pl — E) + 0 cos(pb + 3)> + §sz§co

If there is no variation of the stator inductances with rotor position €, (which would be the
case if the rotor were perfectly round), the terms that involve L, and Lab) contribute zero so that
torque is given by:

ow;
T. = i
06

2 2
= —pMijo <iao sin(pf) + ipo sin(pt — %) + ieo sin(pl + ;)>

We will return to this type of machine in subsequent chapters.

2.2 Continuum Energy Flow

At this point, it is instructive to think of electromagnetic energy flow as described by Poynting’s
Theorem:
S=ExH

Energy flow S , called Poynting’s Vector, describes electromagnetic power in terms of electric and
magnetic fields. It is power density: power per unit area, with units in the SI system of units of
watts per square meter.

To calculate electromagnetic power into some volume of space, we can integrate Poyting’s Vector
over the surface of that volume, and then using the divergence theorem:

P:—# S - ida = — V- Sdv
vol

Now, the divergence of the Poynting Vector is, using a vector identity:

v.-§ = V'(E_’Xﬁ):_’-VXE’—E_"VXﬁ
. 9B - -
- _H- 22 _E.J
ot

The power crossing into a region of space is then:
. - - OB
P= E-J+H — |dv
vol ot

Now, in the absence of material motion, interpretation of the two terms in this equation is fairly
simple. The first term describes dissipation:

E-J=|Es =7



The second term is interpreted as rate of change of magnetic stored energy. In the absence of
hysteresis it is:
ow, =
- m_fg.=
ot ot

Note that in the case of free space,
H. — = = = = Zuo|H|?
ot M o at(z“o’ ’>
which is straightforwardedly interpreted as rate of change of magnetic stored energy density:

1
Wm - EMO‘HP
Some materials exhibit hysteretic behavior, in which stored energy is not a single valued function
of either B or H, and we will consider that case anon.

2.3 Material Motion

In the presence of material motion ¥, electric field E'ina “moving” frame is related to electric field
FE in a “stationary” frame and to magnetic field B by:

E=E+dxB
This is an experimental result obtained by observing charged particles moving in combined electric
and magnetic fields. It is a relatavistic expression, so that the qualifiers “moving” and “stationary”
are themselves relative. The electric fields are what would be observed in either frame. In MQS
systems, the magnetic flux density B is the same in both frames.

The term relating to current density becomes:

— -

E-J:(E’—ﬁxé)'j

We can interpret E' - J as dissipation, but the second term bears a little examination. Note
that it is in the form of a vector triple (scalar) product:

—ixB-J=—-t-BxJ=-7-JxB

This is in the form of velocity times force density and represents power conversion from electro-
magnetic to mechanical form. This is consistent with the Lorentz force law (also experimentally
observed):
F=JxB
This last expression is yet another way of describing energy conversion processes in electric
machinery, as the component of apparent electric field produced by material motion through a

magnetic field, when reacted against by a current, produces energy conversion to mechanical form
rather than dissipation.



2.4 Additional Issues in Energy Methods

There are two more important and interesting issues to consider as we study the development
of forces of electromagnetic origin and their calculation using energy methods. These concern
situations which are not simply representable by lumped parameters and situations that involve
permanent magnets.

2.4.1 Coenergy in Continuous Media

Consider a system with not just a multiplicity of circuits but a continuum of current-carrying paths.
In that case we could identify the co-energy as:

/ //\ dJ da
area

where that area is chosen to cut all of the current carrying conductors. This area can be picked to
be perpedicular to each of the current filaments since the divergence of current is zero. The flux A
is calculated over a path that coincides with each current filament (such paths exist since current
has zero divergence). Then the flux is:

:/Edﬁ

Now, if we use the vector potential A for which the magnetic flux density is:
B=VxA

the flux linked by any one of the current filaments is:

“:fﬁd?

where df is the path around the current filament. This implies directly that the coenergy is:

:/ /%Kdﬁfﬁ
area JJ

Now: it is possible to make dl coincide with d@ and be parallel to the current filaments, so that:

W&:/szdﬁm
vol

2.4.2 Permanent Magnets

Permanent magnets are becoming an even more important element in electric machine systems.
Often systems with permanent magnets are approached in a relatively ad-hoc way, made equivalent
to a current that produces the same MMF as the magnet itself.

The constltutlve relationship for a permanent magnet relates the magnetlc flux density B to
magnetic field H and the property of the magnet itself, the magnetization M.

Bzuo(ﬁ—i-ﬁ)
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Now, the effect of the magnetization is to act as if there were a current (called an amperian current)
with density:
J*=VxM

Note that this amperian current “acts” just like ordinary current in making magnetic flux density.
Magnetic co-energy is:
W! = [ A-VxdMdv
vol
Next, note the vector identity

V‘(éxﬁ):ﬁ-(Vxé)—é‘(Vxﬁ)

So that:
W’/":/vol_v' (Axar)av+ | (V= A)-ddtdv

vol

Then, noting that B=Vx A

W,’n:—# Ax dMds+ | B-dMdv

vol
The first of these integrals (closed surface) vanishes if it is taken over a surface just outside the
magnet, where M is zero. Thus the magnetic co-energy in a system with only a permanent magnet
source is

W = B - dMdv

m
vol

Adding current carrying coils to such a system is done in the obvious way.

2.5 Electric Machine Description:

Actually, this description shows a conventional induction motor. This is a very common type of
electric machine and will serve as a reference point. Most other electric machines operate in a
fashion which is the same as the induction machine or which differ in ways which are easy to
reference to the induction machine.

Consider the simplified machine drawing shown in Figure 3. Most (but not all!) machines we
will be studying have essentially this morphology. The rotor of the machine is mounted on a shaft
which is supported on some sort of bearing(s). Usually, but not always, the rotor is inside. I have
drawn a rotor which is round, but this does not need to be the case. I have also indicated rotor
conductors, but sometimes the rotor has permanent magnets either fastened to it or inside, and
sometimes (as in Variable Reluctance Machines) it is just an oddly shaped piece of steel. The stator
is, in this drawing, on the outside and has windings. With most of the machines we will be dealing
with, the stator winding is the armature, or electrical power input element. (In DC and Universal
motors this is reversed, with the armature contained on the rotor: we will deal with these later).

In most electrical machines the rotor and the stator are made of highly magnetically permeable
materials: steel or magnetic iron. In many common machines such as induction motors the rotor
and stator are both made up of thin sheets of silicon steel. Punched into those sheets are slots
which contain the rotor and stator conductors.
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Figure 3: Form of Electric Machine

Figure 4 is a picture of part of an induction machine distorted so that the air-gap is straightened
out (as if the machine had infinite radius). This is actually a convenient way of drawing the machine
and, we will find, leads to useful methods of analysis.

What is important to note for now is that the machine has an air gap g which is relatively
small (that is, the gap dimension is much less than the machine radius r). The machine also has a
physical length 1. The electric machine works by producing a shear stress in the air-gap (with of
course side effects such as production of “back voltage”). It is possible to define the average air-
gap shear stress, which we will refer to as 7. Total developed torque is force over the surface area
times moment (which is rotor radius):

T =2mr%0 < 1>

Power transferred by this device is just torque times speed, which is the same as force times
surface velocity, since surface velocity is u = r{:

P,=QT =2nrl <17>u

If we note that active rotor volume is 772/, the ratio of torque to volume is just:

r 2
y=2<T>
Now, determining what can be done in a volume of machine involves two things. First, it is

clear that the volume we have calculated here is not the whole machine volume, since it does not
include the stator. The actual estimate of total machine volume from the rotor volume is actually
quite complex and detailed and we will leave that one for later. Second, we need to estimate the
value of the useful average shear stress. Suppose both the radial flux density Br and the stator
surface current density Kz are sinusoidal flux waves of the form:

B, = V2B cos (pf — wt)
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Figure 4: Windings in Slots

K. = V2K cos (pf — wt)

Note that this assumes these two quantities are exactly in phase, or oriented to ideally produce
torque, so we are going to get an “optimistic” bound here. Then the average value of surface

traction is:
27

1
<T>= 27 B, K,df = ByK)

™ Jo
This actually makes some sense in view of the empirically derived Lorentz Force Law: Given a
(vector) current density and a (vector) flux density. In the absence of magnetic materials (those
with permeability different from that of free space), the observed force on a conductor is:

— -

F=JxB

Where J is the vector describing current density (A/m?) and B is the magnetic flux density
(T). This is actually enough to describe the forces we see in many machines, but since electric
machines have permeable magnetic material and since magnetic fields produce forces on permeable
material even in the absence of macroscopic currents it is necessary to observe how force appears
on such material. A suitable empirical expression for force density is:

- = |

F=J B—i(ﬁ-ﬁ)Vu

where H is the magnetic field intensity and p is the permeability.
Now, note that current density is the curl of magnetic field intensity, so that:

Fo= (VxH)xpf - (A7) vy

And, since:



force density is:
Fo= (V)AL (A7)~ (/- #) v
u(ﬁ-v)ﬁ—v(;u(ﬁ-ﬁD
This expression can be written by components: the component of force in the i’th dimension is:
F=pY <Hkaa> H, - <1uZH13)
% Lk 205

Now, see that we can write the divergence of magnetic flux density as:

0
3.%

= 0
V-B= —uHp =0
; E?a:kM k
and
Z(H a)}{.za HH—HZi H
Mk k@xk z—kaxku kL zkaxkﬂ k
but since the last term in that is zero, we can write force density as:

_ 0 K 2
F, = 9 (quHk — 25mzn:Hn>

where we have used the Kroneker delta §;, = 1 if i = k, 0 otherwise.
Note that this force density is in the form of the divergence of a tensor:

0
Fy = —T;
or
F=v.T

In this case, force on some object that can be surrounded by a closed surface can be found by
using the divergence theorem:

f: Fdv = V'gdv:# T -7ida

vol vol

or, if we note surface traction to be 7, = >, T;xni , where n is the surface normal vector, then the
total force in direction i is just:

f= %Tida = jIéZTiknkda
s k

The interpretation of all of this is less difficult than the notation suggests. This field description
of forces gives us a simple picture of surface traction, the force per unit area on a surface. If we just
integrate this traction over the area of some body we get the whole force on the body. Note that

11



this works if we integrate the traction over a surface that is itself in free space but which surrounds
the body (because we can impose no force on free space).

Note one more thing about this notation. Sometimes when subscripts are repeated as they are
here the summation symbol is omitted. Thus we would write 7; = >, Tixng = Tipny.

Now, if we go back to the case of a circular cylinder and are interested in torque, it is pretty
clear that we can compute the circumferential force by noting that the normal vector to the cylinder
is just the radial unit vector, and then the circumferential traction must simply be:

19 = poHHy

Simply integrating this over the surface gives azimuthal force, and then multiplying by radius
(moment arm) gives torque. The last step is to note that, if the rotor is made of highly permeable
material, the azimuthal magnetic field is equal to surface current density.

3 Tying the MST and Poynting Approaches Together

Contour Field Region

Figure 5: Illustrative Region of Space

Now that the stage is set, consider energy flow and force transfer in a narrow region of space as
illustrated by Figure 5. The upper and lower surfaces may support currents. Assume that all of the

fields, electric and magnetic, are of the form of a traveling wave in the x- direction: Re {ej (“’t_]“‘)}.

If we assume that form for the fields and also assume that there is no variation in the z- direction
(equivalently, the problem is infinitely long in the z- direction), there can be no x- directed currents
because the divergence of current is zero: V - J=0 Ina magnetostatic system this is true of
electric field E too. Thus we will assume that current is confined to the z- direction and to the two
surfaces illustrated in Figure 5, and thus the only important fields are:

E = i.Re {Ezej(”t*km)}
i.Re {ﬂxej(“’t_kx)}
+ ZyRe {ﬂyej(“t_kx)}

T
I

We may use Faraday’s Law (V x E = —%—?) to establish the relationship between the electric
and magnetic field: the y- component of Faraday’s Law is:

]kEz = _jwlu()ﬂy
or

w
L, = —Eﬂoﬂy
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The phase velocity u,, = 7 is a most important quantity. Note that, if one of the surfaces is
moving (as it would be in, say, an induction machine), the frequency and hence the apparent phase
velocity, will be shifted by the motion. We will use this fact shortly.

Energy flow through the surface denoted by the dotted line in Figure 5 is the component of
Poynting’s Vector in the negative y- direction. The relevant component is:

w

Sy:(Exﬁ)y:Eszz—k

NOHny

Note that this expression contains the xy component of the Maxwell Stress Tensor T, =
poH,Hy so that power flow downward through the surface is:

w
S=-5,= E,uonHy = Upp Ty
The average power flow is the same, in this case, for time and for space, and is:
<S> ‘Re{B.H} = uy R {0}
— 5 (§] L 0,5 = uph 9 € 414,17

We may choose to define a surface impedance:

which becomes:
a,

H

L

Zs = —H0oUph = _,UfouphE

where now we have defined the parameter R to be the ratio between y- and x- directed complex
field amplitudes. Energy flow through that surface is now:

1 w1 2
S = —-Re{E.H}} = SRe {Iﬂxl Zs}

4 Simple Description of a Linear Induction Motor

g (ot -
e J(w t-kx)

— t

T e e x

~

Figure 6: Simple Description of Linear Induction Motor

The stage is now set for an almost trivial description of a linear induction motor. Consider the
geometry described in Figure 6. Shown here is only the relative motion gap region. This is bounded
by two regions of highly permeable material (e.g. iron), comprising the stator and shuttle. On the
surface of the stator (the upper region) is a surface current:

Ky =1i,Re {KZSej(wtka)}
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The shuttle is, in this case, moving in the positive x- direction at some velocity u. It may also be
described as an infinitely permeable region with the capability of supporting a surface current with
surface conductivity o, so that K,, = g.F,.

Note that Ampere’s Law gives us a boundary condition on magnetic field just below the upper
surface of this problem: H, = K, so that, if we can establish the ratio between y- and x- directed
fields at that location,

0 0
< Tny >= Re {H,H} | = K., [Re (R}

Note that the ratio of fields H y /H, = R is independent of reference frame (it doesn’t matter
if we are looking at the fields from the shuttle or the stator), so that the shear stress described by
Ty is also frame independent. Now, if the shuttle (lower surface) is moving relative to the upper
surface, the velocity of the traveling wave relative to the shuttle is:

w
Us = Upp — U = S

k

where we have now defined the dimensionless slip s to be the ratio between frequency seen by the
shuttle to frequency seen by the stator. We may use this to describe energy flow as described by
Poynting’s Theorem. Energy flow in the stator frame is:

Supper = Uph Ty

In the frame of the shuttle, however, it is

Slower = UsTzy = sSupper

Now, the interpretation of this is that energy flow out of the upper surface (Supper) consists of
energy converted (mechanical power) plus energy dissipated in the shuttle (which is S} e, here.
The difference between these two power flows, calculated using Poynting’s Theorem, is power
converted from electrical to mechanical form:

Sconverted = Supper(1 — )

Now, to finish the problem, note that surface current in the shuttle is:

/
Kzr = Ezas = _Usﬂoasﬁy

where the electric field E’, is measured in the frame of the shuttle.
We assume here that the magnetic gap g is small enough that we may assume kg < 1. Ampere’s
Law, taken around a contour that crosses the air-gap and has a normal in the z- direction, yields:

O0H,
g ox

= Kzs + Kzr
In complex amplitudes, this is:

_jkgﬂy - Kzs + Kz'r - KZS - Mousa—sﬂy
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or, solving for H,.

_ IR 1
- kg 14 juo%igs
Average shear stress is
. HOoUsO s
1o pio | K| j pio | K )2 kg
<Tp, > —Re{H H_.}=— Re - = —
w 2 {fyff} 2 kg 1+ jlopece 2 kg 44 (Mozgasf

5 Surface Impedance of Uniform Conductors

The objective of this section is to describe the calculation of the surface impedance presented by a
layer of conductive material. Two problems are considered here. The first considers a layer of linear
material backed up by an infinitely permeable surface. This is approximately the situation presented
by, for example, surface mounted permanent magnets and is probably a decent approximation to
the conduction mechanism that would be responsible for loss due to asynchronous harmonics in
these machines. It is also appropriate for use in estimating losses in solid rotor induction machines
and in the poles of turbogenerators. The second problem, which we do not work here but simply
present the previously worked solution, concerns saturating ferromagnetic material.

5.1 Linear Case

The situation and coordinate system are shown in Figure 7. The conductive layer is of thicknes T’
and has conductivity o and permeability pg. To keep the mathematical expressions within bounds,
we assume rectilinear geometry. This assumption will present errors which are small to the extent
that curvature of the problem is small compared with the wavenumbers encountered. We presume
that the situation is excited, as it would be in an electric machine, by a current sheet of the form

K. = Re {Kej(Wt—kx)}

Conductive Slab H
’ y

" L»
T X
Permeable Surface

Figure 7: Axial View of Magnetic Field Problem

In the conducting material, we must satisfy the diffusion equation:

— oOH

V?H = poo—
Ho ot
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In view of the boundary condition at the back surface of the material, taking that point to be
y = 0, a general solution for the magnetic field in the material is:

H, = Re{Asinhayej(“’t_kx)}

k )
H, = Re{jaAcoshaye](“’th)}

where the coefficient o satisfies:
o? = jwugo + k?

and note that the coefficients above are chosen so that H has no divergence.
Note that if k£ is small (that is, if the wavelength of the excitation is large), this spatial coefficient

o« becomes )
1+
o= —

)
where the skin depth is:
2

wuoo

0=

To obtain surface impedance, we use Faraday’s law:

— OB
VXE=——
ot
which gives:
w
Now: the “surface current” is just
K,=-H,
so that the equivalent surface impedance is:
E
Z="—"= juoE coth aT
—H, N

A pair of limits are interesting here. Assuming that the wavelength is long so that k is negligible,
then if aT is small (i.e. thin material),

w 1
Z o —— = —
4 — JHo 2T ol
On the other hand as a1 — oo,
143
AN
£ 758

Next it is necessary to transfer this surface impedance across the air-gap of a machine. So, with
reference to Figure 8, assume a new coordinate system in which the surface of impedance Z, is
located at y = 0, and we wish to determine the impedance Z = —E,/H_ at y = g.

In the gap there is no current, so magnetic field can be expressed as the gradient of a scalar
potential which obeys Laplace’s equation:

H=-Vy
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Figure 8: Impedance across the air-gap

and
V2 =0
wt—kx)

Ignoring a common factor of eJ( , we can express H in the gap as:

H, = jk(g, ety )
H, = -k (y+eky — e_ky)

At the surface of the rotor,

E,=-H, Z

or

—wWHo (%_"_ - %_) = ijs (Q-‘r +£_>
and then, at the surface of the stator,
E. . wi -9 e

Z = _ == = —
4 ﬂx Jo k %—‘rekz‘g —|—y_6_k9

A bit of manipulation is required to obtain:

g o w [ (o — jkZy) — e (wpo + K Z,)
ETI0L N R (wpo — jhZ,) + e R (wpo + jKZ,)

It is useful to note that, in the limit of Z, — oo, this expression approaches the gap impedance

WO
Zy= jkTg

and, if the gap is small enough that kg — 0,
Z— Zj||Zs
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6 Iron

Electric machines employ ferromagnetic materials to carry magnetic flux from and to appropriate
places within the machine. Such materials have properties which are interesting, useful and prob-
lematical, and the designers of electric machines must deal with this stuff. The purpose of this
note is to introduce the most salient properties of the kinds of magnetic materials used in electric
machines.

We will be concerned here with materials which exhibit magnetization: flux density is something
other than B = ,uoﬁ . Generally, we will speak of hard and soft magnetic materials. Hard materials
are those in which the magnetization tends to be permanent, while soft materials are used in
magnetic circuits of electric machines and transformers. Since they are related we will find ourselves
talking about them either at the same time or in close proximity, even though their uses are widely
disparite.

6.1 Magnetization:

It is possible to relate, in all materials, magnetic flux density to magnetic field intensity with a
consitutive relationship of the form:

EZMo(ﬁ+M)

where magnetic field intensity H and magnetization M are the two important properties. Now,
in linear magnetic material magnetization is a simple linear function of magnetic field:

— —

M =xnH
so that the flux density is also a linear function:
B=po(1+xm)H

Note that in the most general case the magnetic susceptibility cm might be a tensor, leading
to flux density being non-colinear with magnetic field intensity. But such a relationship would still
be linear. Generally this sort of complexity does not have a major effect on electric machines.

6.2 Saturation and Hysteresis

In useful magnetic materials this nice relationship is not correct and we need to take a more general
view. We will not deal with the microscopic picture here, except to note that the magnetization is
due to the alignment of groups of magnetic dipoles, the groups often called domaines. There are
only so many magnetic dipoles available in any given material, so that once the flux density is high
enough the material is said to saturate, and the relationship between magnetic flux density and
magnetic field intensity is nonlinear.

Shown in Figure 9, for example, is a “saturation curve” for a magnetic sheet steel that is
sometimes used in electric machinery. Note the magnetic field intensity is on a logarithmic scale.
If this were plotted on linear coordinates the saturation would appear to be quite abrupt.

At this point it is appropriate to note that the units used in magnetic field analysis are not
always the same nor even consistent. In almost all systems the unit of flux is the weber (W), which
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Figure 9: Saturation Curve: Commercial M-19 Silicon Iron

Courtesy of United States Steel Corporation. (U.S. Stedl). U.S. Stedl accepts no liability for reliance on any
information contained in the graphs shown above.

is the same as a volt-second. In SI the unit of flux density is the tesla (T), but many people refer to
the gauss (G), which has its origin in CGS. 10,000 G = 1 T. Now it gets worse, because there is an
English system measure of flux density generally called kilo-lines per square inch. This is because
in the English system the unit of flux is the line. 10® lines is equal to a weber. Thus a Tesla is 64.5
kilolines per square inch.

The SI and CGS units of flux density are easy to reconcile, but the units of magnetic field
are a bit harder. In SI we generally measure H in amperes/meter (or ampere-turns per meter).
Often, however, you will see magnetic field represented as Oersteds (Oe). One Oe is the same as
the magnetic field required to produce one gauss in free space. So 79.577 A/m is one Oe.

In most useful magnetic materials the magnetic domaines tend to be somewhat “sticky”, and a
more-than-incremental magnetic field is required to get them to move. This leads to the property
called “hysteresis”, both useful and problematical in many magnetic systems.

Hysteresis loops take many forms; a generalized picture of one is shown in Figure 10. Salient
features of the hysteresis curve are the remanent magnetization B, and the coercive field H.. Note
that the actual loop that will be traced out is a function of field amplitude and history. Thus there
are many other “minor loops” that might be traced out by the B-H characteristic of a piece of
material, depending on just what the fields and fluxes have done and are doing.

Now, hysteresis is important for two reasons. First, it represents the mechanism for “trapping”
magnetic flux in a piece of material to form a permanent magnet. We will have more to say about
that anon. Second, hysteresis is a loss mechanism. To show this, consider some arbitrary chunk of
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Figure 10: Hysteresis Curve Nomenclature

material for which we can characterize an MMF and a flux:

F = le/ﬁ-defl

1% L
o — /ﬂzt:// B.dA
N Area

Energy input to the chunk of material over some period of time is

w:/VIdtz/chp://ﬁ-dZ// dB - dA dt
t

Now, imagine carrying out the second (double) integral over a continuous set of surfaces which
are perpendicular to the magnetic field H. (This IS possible!). The energy becomes:

w—/// H - dBdvol dt

and, done over a complete cycle of some input waveform, that is:

w = // Wndvol
vol
W = ]{ﬁ.dé
t

That last expression simply expresses the area of the hysteresis loop for the particular cycle.

Generally, for most electric machine applications we will use magnetic material characterized
as “soft”, having as narrow a hysteresis loop (and therefore as low a hysteretic loss) as possible. At
the other end of the spectrum are “hard” magnetic materials which are used to make permanent
magnets. The terminology comes from steel, in which soft, annealed steel material tends to have
narrow loops and hardened steel tends to have wider loops. However permanent magnet technology
has advanced to the point where the coercive forces possible in even cheap ceramic magnets far
exceed those of the hardest steels.
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6.3 Conduction, Eddy Currents and Laminations:

Steel, being a metal, is an electrical conductor. Thus when time varying magnetic fields pass
through it they cause eddy currents to flow, and of course those produce dissipation. In fact, for
almost all applications involving “soft” iron, eddy currents are the dominant source of loss. To
reduce the eddy current loss, magnetic circuits of transformers and electric machines are almost
invariably laminated, or made up of relatively thin sheets of steel. To further reduce losses the steel
is alloyed with elements (often silicon) which poison the electrical conductivity.

There are several approaches to estimating the loss due to eddy currents in steel sheets and in
the surface of solid iron, and it is worthwhile to look at a few of them. It should be noted that this
is a “hard” problem, since the behavior of the material itself is difficult to characterize.

6.4 Complete Penetration Case

—
) 3
X

\ \
Figure 11: Lamination Section for Loss Calculation

Consider the problem of a stack of laminations. In particular, consider one sheet in the stack
represented in Figure 11. It has thickness ¢ and conductivity o. Assume that the “skin depth”
is much greater than the sheet thickness so that magnetic field penetrates the sheet completely.
Further, assume that the applied magnetic flux density is parallel to the surface of the sheets:

B =1i,Re {\/§Boej“’t}

Now we can use Faraday’s law to determine the electric field and therefore current density in
the sheet. If the problem is uniform in the x- and z- directions,

Note also that, unless there is some net transport current in the x- direction, £ must be anti-
symmetric about the center of the sheet. Thus if we take the origin of y to be in the center, electric
field and current are:

Ew _jWBoy
Jo = —jwBooy
Local power dissipated is

_ope o 12
P(y) = w"Bjoy” = pn
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To find average power dissipated we integrate over the thickness of the lamination:
2 3 2 90 > 2 L 900
<P>:f/ P(y)dy = -w BOO'/ Yy dy = —w*Bjt o
t Jo t 0 12

Pay attention to the orders of the various terms here: power is proportional to the square of
flux density and to the square of frequency. It is also proportional to the square of the lamination
thickness (this is average volume power dissipation).

As an aside, consider a simple magnetic circuit made of this material, with some length £ and
area A, so that volume of material is /A. Flux lined by a coil of N turns would be:

A=N®=NAB

and voltage is of course just V = jwL. Total power dissipated in this core would be:

1 V2
PC = AEEW2B§t20 = E

where the equivalent core resistance is now

A12N?
Re = 7 ot2

6.5 Eddy Currents in Saturating Iron

The same geometry holds for this pattern, although we consider only the one-dimensional problem
(k — 0). The problem was worked by McLean and his graduate student Agarwal [2] [1]. They
assumed that the magnetic field at the surface of the flat slab of material was sinusoidal in time
and of high enough amplitude to saturate the material. This is true if the material has high
permeability and the magnetic field is strong. What happens is that the impressed magnetic field
saturates a region of material near the surface, leading to a magnetic flux density parallel to the
surface. The depth of the region affected changes with time, and there is a separating surface (in
the flat problem this is a plane) that moves away from the top surface in response to the change
in the magnetic field. An electric field is developed to move the surface, and that magnetic field
drives eddy currents in the material.

Figure 12: Idealized Saturating Characteristic
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Assume that the material has a perfectly rectangular magnetization curve as shown in Figure 12,
so that flux density in the x- direction is:

B, = Bysign(H,)

The flux per unit width (in the z- direction) is:

—0o0
o = / B.dy
0
and Faraday’s law becomes:
B - 0P
cot
while Ampere’s law in conjunction with Ohm’s law is:
OH,
ayx =okF,

Now, McLean suggested a solution to this set in which there is a “separating surface” at depth (
below the surface, as shown in Figure 13 . At any given time:

H, = H() (1+§>

Separating Surface

Penetration
Depth

Figure 13: Separating Surface and Penetration Depth

That is, in the region between the separating surface and the top of the material, electric field
FE, is uniform and magnetic field H, is a linear function of depth, falling from its impressed value at
the surface to zero at the separating surface. Now: electric field is produced by the rate of change
of flux which is:

0P ¢
E,.=—=2B,—
ot ot
Eliminating E, we have:
oC _ Hs
22 =
¢ ot oB,
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and then, if the impressed magnetic field is sinusoidal, this becomes:

d¢*>  Ho | sinwt]
— = ——|sinw
dt O'Bo
This is easy to solve, assuming that ( =0 at t =0,
_ 2Hy . wt

= sin
¢ wo By 2
Now: the surface always moves in the downward direction (as we have drawn it), so at each half
cycle a new surface is created: the old one just stops moving at a maximum position, or penetration

depth:
[ 2H,
)=
wo By

This penetration depth is analogous to the “skin depth” of the linear theory. However, it is an
absolute penetration depth.
The resulting electric field is:

E,=——cos— O<wt<m

This may be Fourier analyzed: noting that if the impressed magnetic field is sinusoidal, only the
time fundamental component of electric field is important, leading to:
8 Hy
E, = ——(coswt+2sinwt + ...
° 310l ( )
Complex surface impedance is the ratio between the complex amplitude of electric and magnetic

field, which becomes:
8 1

L, .
LT[ = 375(24‘])

Thus, in practical applications, we can handle this surface much as we handle linear conductive
surfaces, by establishing a skin depth and assuming that current flows within that skin depth of
the surface. The resistance is modified by the factor of é—fr and the “power factor” of this surface is
about 89 % (as opposed to a linear surface where the “power factor” is about 71 %.

Agarwal suggests using a value for By of about 75 % of the saturation flux density of the steel.

7 Semi-Empirical Method of Handling Iron Loss

Neither of the models described so far are fully satisfactory in describing the behavior of laminated
iron, because losses are a combination of eddy current and hysteresis losses. The rather simple
model employed for eddy currents is precise because of its assumption of abrupt saturation. The
hysteresis model, while precise, would require an empirical determination of the size of the hysteresis
loops anyway. So we must often resort to empirical loss data. Manufacturers of lamination steel
sheets will publish data, usually in the form of curves, for many of their products. Here are a few
ways of looking at the data.
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A low frequency flux density vs. magnetic field (“saturation”) curve was shown in Figure 9.
Included with that was a measure of the incremental permeability

, _dB

W=l

In some machine applications either the “total” inductance (ratio of flux to MMF) or “incremental”
inductance (slope of the flux to MMF curve) is required. In the limit of low frequency these numbers
may be useful.

For designing electric machines, however, a second way of looking at steel may be more useful.
This is to measure the real and reactive power as a function of magnetic flux density and (sometimes)
frequency. In principal, this data is immediately useful. In any well-designed electric machine the
flux density in the core is distributed fairly uniformly and is not strongly affected by eddy currents,
etc. in the core. Under such circumstances one can determine the flux density in each part of the
core. With that information one can go to the published empirical data for real and reactive power
and determine core loss and reactive power requirements.
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Figure 14: Real and Apparent Loss: M19, Fully Processed, 29 Ga

Courtesy of United States Steel Corporation. (U.S. Stedl). U.S. Steel accepts no liability for reliance on any
information contained in the graphs shown above.

Figure 14 shows core loss and “apparent” power per unit mass as a function of (RMS) induction
for 29 gage, fully processed M-19 steel. The two left-hand curves are the ones we will find most
useful. “P” denotes real power while “P,” denotes “apparent power”. The use of this data is quite
straightforward. If the flux density in a machine is estimated for each part of the machine and the
mass of steel calculated, then with the help of this chart a total core loss and apparent power can
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Table 1: Exponential Fit Parameters for Two Steel Sheets
29 Ga, Fully Processed

M-19 M-36
Base Flux Density By 1T 1T
Base Frequency fo 60 Hz 60 Hz
Base Power (w/lb) Py 0.59 0.67
Flux Exponent €B 1.88 1.86
Frequency Exponent €EF 1.53 1.48
Base Apparent Power 1 VA 1.08 1.33
Base Apparent Power 2 V A; .0144 .0119
Flux Exponent €0 1.70 2.01
Flux Exponent €1 16.1 17.2

be estimated. Then the effect of the core may be approximated with a pair of elements in parallel
with the terminals, with:

_qV)?
R = 5
q|V|?
X, =
Q
Q = \/P}—P?

Where ¢ is the number of machine phases and V' is phase voltage. Note that this picture is, strictly
speaking, only valid for the voltage and frequency for which the flux density was calculated. But
it will be approximately true for small excursions in either voltage or frequency and therefore
useful for estimating voltage drop due to exciting current and such matters. In design program
applications these parameters can be re-calculated repeatedly if necessary.

“Looking up” this data is a it awkward for design studies, so it is often convenient to do a
“curve fit” to the published data. There are a large number of possible ways of doing this. One
method that has bee found to work reasonably well for silicon iron is an “exponential fit”:

r=n(z) (5)
By fo
This fit is appropriate if the data appears on a log-log plot to lie in approximately straight lines.
Figure 15 shows such a fit for the same steel sheet as the other figures.
For “apparent power” the same sort of method can be used. It appears, however, that the simple
exponential fit which works well for real power is inadequate, at least if relatively high inductions

are to be used. This is because, as the steel saturates, the reactive component of exciting current
rises rapidly. I have had some success with a “double exponential” fit:

B\ B\“

To first order the reactive component of exciting current will be linear in frequency.
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M-19, 29 Ga, Fully Processed
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Figure 15: Steel Sheet Core Loss Fit vs. Flux Density and Frequency

In the disk that is to be distributed with these notes there are a number of data files representing
properties of different types of nonoriented sheet steel. The format of each of the files is the same:
two columns of numbers, the first is flux density in Tesla, RMS, 60 Hz. The second column is watts
per pound or volt-amperes per pound. The materials are denoted by the file names, which are
generally of the format: “M-Mtype-Proc-Data-Gage.prn”. The coding is relatively dense because
of the short file name limit of MSDOS. Mtype is the number designator (as in M-19). Proc is “f”
for fully processed and “s” for semiprocessed. Data is “p” for power, “pa” for apparent power.
Gage is 29 (.014” thick), 26 (.0185” thick) or 24 (.025” thick). Example: m19fp29.prn designates
loss in M-19 material, fully processed, 29 gage.

Also on the disk are three curve fitting routines that appear to work with this data. (Not all of
the routines work with all of the data!). They are:

1. efit.m implements the single exponential fit of loss against flux density. Use: in MATLAB
type
efit <return>.
The program prompts
fit what (name.prn) ==

Enter the file name for the material designator without the .prn extension. The program
will think about the problem for a few seconds and put up a plot of its fit with points
noting the actual data. Enter a <return> and a summary of the fit turns up, including the
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fit parameters and an error indication. These programs use MATLAB’s fmins routine to
minimize a mean-squared error as calculated by the auxiliary function fiterr.m.

2. e2fit.m implements the double exponential fit of apparent power against flux density. Use
is just like efit. It uses the auxiliary function fit2err.m.

3. pfit.m uses the MATLAB function polyfit to fit a polynomial (in B) to the data.

Most of the machine design scripts enclosed with the material for this special summer subject
employ the exponential fits for core iron developed here.
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DC and Derived AC Magnetizing Force in Oersteds and Amperes per Meter at Various Frequencies — H

AK Steel O Am
Di-Max M-19 DC 50 Hz 60 Hz 100 Hz 150 Hz 200 Hz 300 Hz 400 Hz 600 Hz 1000 Hz 1500 Hz 2000 Hz
Fully Processed
014 inch @ 1000 0333265 0334266 0341271 0349278 0356283 0372296 0385306 0412328 0485386 0564449 0.64251.]
. |
(.36 mm, 29 gauge) § 2000 0401 31.9 0.475 37.8 0.480 38.2 0.495 39.4 0.513 40.8 0.533 424 0.567 45.1 0.599 47.7 0.661 52.6 0.808 64.3 0.955 76,0 1.09 869
(%]
3
(S 4000 0564449 0659524 0669532 0700557 0739588 0777618 0846673 0911725 104 828 130 103 156 124 180 143
Magnetization £
Data > 7000 0845673 0904719 0916729 0968770 103 820 109 §.1 121 9%4 133 105 155 124 200 59 248 198 295 235
Z
C
S 10000 134 106 125 993 126 0] 132 105 140 112 148 118 165 131 182 145 217 173 287 228 370 294 453 36|
X
Summary Graphs »- 2 12000 206 164 171 136 172 137 178 141 186 148 194 IS5 213 169 233 185 274 218 366 291 477 380 589 469
Magnetization 2
© 13000 295 235 220 176 22 177 227 18l 234 186 242 193 261 208 282 224 324 258 427 340 550 438
Curves > &
()
Core Loss S 14000 547 435 351 279 351 279 357 284 363 289 369 294 386 307 413 329
Curves > [5000 139 1109 828 659 831 662 837 666 837 666 848 675 865 689 974 775
Data »
. 15500 228 1813 136 1084 136 1081 138 1095 137 1092 138 10% 141 1122 165 1313
Exciting Power
Data > 16000 352 2802 216 1718 217 1728 218 1735 208 1738 219 1742

16500 50.9 4054 324 2577 32.5 2587 32.6 2597 32,5 2590 326 2594
17000 70.3 5592 46.1 3670 46.2 3680 46.4 3692 46.6 3712 46.6 3711
18000 122 9711
19000 202 16044
20000 394 31319
21000 1112 88491

Typical DC and derived AC magnetizing force of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. DC values in
Oersteds from published AK Steel documents. AC values in Oersteds developed from previously unpublished exciting power information provided by AK Steel, 2000. AC values
have been derived from RMS Exciting Power using the following formulas:

88.19 X Density (g/cc) X RMS Exciting Power (VA/Ib)
Magnetic Flux Density (kG) X Frequency (Hz)

Magnetizing Force in Oersteds =

Density of M-19 = 7.65 g/cc
Values in Amperes per meter = Oersteds X 79.58

See exciting power data page for AC exciting power source data. Magnetizing force formula developed by AK Steel; use only for deriving magnetizing force of AK Steel non-
oriented silicon steel. Data table preparation, including conversion of data values, by EMERF, 2004.
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Core Loss in Watts per Pound and Watts per Kilogram at Various Frequencies — Pe

AK Steel Wb Wikg
Di-Max M-19 50 Hz 60 Hz 100 Hz 150 Hz 200 Hz 300 Hz 400 Hz 600 Hz 000 Hz  I500Hz 2000 Hz
Fully Processed
014 inch o 1000 000800176 000900198 0017 00375 0029 0.0639 0.042 00926 0074 0.163  0.1120247 0205045 0465102 09 198 145 320
. inc |
(-36 mm, 29 gauge) § 2000 0031 0.0683 0039 00860 0.0720.159  0.1190262 01730381 0300 066/ 0451 0.994  0.8121.79 179 394 337 743 532 [17
(%)
3
(5 4000 00090240  0.1340295 02520555 04240934 0621137 109 239 164 360 296 65 634 140 118 261 185 408
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Data > 7000 02730602 03400749 0.647 143 11 244 164 361 292 644 445 981 818 180 178 390 337 743 540 |19
G
C
S 10000 0494109 0617136 118 261 204 450 306 674 553 120 859 189 162 357 363 800 715 158 17 257
x
Summary Graphs »- 2 12000 068715 0858189 165 363 286 630 429 946 783 173 122 269 235 518 543 120 109 240 179 395
Magnetization =
© 13000 0812179 10l 223 194 428 336 741 506 12 923 203  l44 318 278 613 651 |43 13229
Curves > S
8]
Data > > 14000 0969 214 121 266 231 509 400 882 600 132 109 241 170 375
Core Loss 15000 116 256 145 319 277 61l 476 10.5  7.05 158 130 287  20. 444
Curves »
. 5500 126 277 156 344 299 659 515 |14 770170 139 307 216 476
Exciting Power
Data > 16000 134 29 167 367 3.18 70! 547 120 8.19 180
16500 142 313 176 389 338 744 579 128 867 19.
7000 149 329 185 408 354 780 609 134 913 20|

18000 200 4.40

Typical total AC core loss of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M- 19 fully processed cold-rolled non-oriented silicon steel. Watts per pound
values from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF, 2004.

Watts per kilogram values developed using this formula: Watts per Kilogram = Watts per Pound X 2.204 .
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Exciting Power in Volt-amps per Pound and Volt-amps per Kilogram at Various Frequencies

AK Steel VAl V-Akg
Di-Max M-19 50 Hz 60 Hz 100 Hz 150 Hz 200 Hz 300 Hz 400 Hz 600 Hz 000 Hz 1500 Hz 2000 Hz
Fully Processed
014 inch @ 1000 00250055 00300066 0051 0.112 00780172 01060234 0.1650364 02280503 03660807 0719158 125 276 190 420
. inc |
(.36 mm, 29 gauge) § 2000 0.07 0.154 00850187  0.147 0324 02280503 0316 069% 0504111 0.710 1.56 118 259 240 5.28 425 936 648 143
(%]
3
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Z
C
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X
Summary Graphs »- 2 12000 152 334 183 404 316 696 49 109 691 152 114 250 166 365 292 644 65l 143 127 280 200 462
Magnetization 2
© 13000 203 469 257 566 438 965 677 149 934 206 S| 32 27 478 35 €7 83 18] 159 350
Curves > &
()
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Curves »
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16000 256 564 309 8.0 517 |14 777 171 104 229
16500  39.6 873 477 105 79.8 176 19 263 159 35

17000 58.1 128 69.9 154 |
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Typical RMS Exciting Power of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. Volt-amps per
pound values from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF,
2004.

Volt-amps per kilogram developed using this formula: Volt-amps per kilogram = Volt-amps per pound X 2.204 .
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Synchronous Machine and Winding Models *

J.L. Kirtley Jr.

1 Introduction

The objective here is to develop a simple but physically meaningful model of the synchronous
machine, one of the major classes of electric machine. We can look at this model from several
different directions. This will help develop an understanding of analysis of machines, particularly
in cases where one or another analytical picture is more appropriate than others. Both operation
and sizing will be of interest here.

Along the way we will approach machine windings from two points of view. On the one hand,
we will approximate windings as sinusoidal distributions of current and flux linkage. Then we will
take a concentrated coil point of view and generalize that into a more realistic and useful winding
model.

2 Physical Picture: Current Sheet Description

Consider this simple picture. The ‘machine’ consists of a cylindrical rotor and a cylindrical stator
which are coaxial and which have sinusoidal current distributions on their surfaces: the outer
surface of the rotor and the inner surface of the stator.

The ‘rotor’ and ‘stator’ bodies are made of highly permeable material (we approximate this as
being infinite for the time being, but this is something that needs to be looked at carefully later).
We also assume that the rotor and stator have current distributions that are axially (z) directed
and sinusoidal:

K% = Kgcosph
KEF = Kpcosp(6—¢)

Here, the angle ¢ is the physical angle of the rotor. The current distribution on the rotor goes
along. Now: assume that the air-gap dimension g is much less than the radius: ¢ << R. It is not

*(©2003 James L. Kirtley Jr.
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Figure 1: Elementary Machine Model: Axial View

difficult to show that with this assumption the radial flux density Br is nearly uniform across the
gap (i.e. not a function of radius) and obeys:

0B,  KS+KE

o9 _ Ho

Then the radial magnetic flux density for this case is simply:
Be= —'L;O—f (Kgsinpl + Krsinp (0 — ¢))

Now it is possible to compute the traction on rotor and stator surfaces by recognizing that
the surface current distributions are the azimuthal magnetic fields: at the surface of the stator,
Hy = —Kf, and at the surface of the rotor, Hy = Kf‘. So at the surface of the rotor, traction is:

pge=illy = _%’qﬁ (Kgsinpd + Krsinp (0 — ¢)) Krcosp (6 — ¢)
The average of that is simply:

o R
<Tp >= —FLKSKR sin pg
2pg
The same exercise done at the surface of the stator yields the same results (with opposite sign).

To find torque, use:

3
T =2rR¥ < 75 >= %;“]KSKR sin pe

We can pause here to make a few observations:

1. For a given value of surface currents Ks and Kr, torque goes as the fourth power of linear
dimension. The volume of the machine goes as the third power, so this implies that torque
capability goes as the 4/3 power of machine volume. Actually, this understates the situation




since the assumed surface current densities are the products of volume current densities and
winding depth, which one would expect to increase with machine size. Thus machine torque
(and power) densities tend to increase somewhat faster with size.

2. The current distributions want to align with each other. In actual practice what is done is to
generate a stator current distribution which is not static as implied here but which rotates in
space:

K? = Kgcos (pf — wt)

and this pulls the rotor along.

3. For a given pair of current distributions there is a maximum torque that can be sustained,
but as long as the torque that is applied to the rotor is less than that value the rotor will
adjust to the correct angle.

3 Continuous Approximation to Winding Patterns:

Now let’s try to produce those surface current distributions with physical windings. In fact we
can’t do exactly that yet, but we can approximate a physical winding with a turns distribution
that would look like:

Ns 0
ns = 5pCosp
Ng
nr = ﬁCOSP(G_@

Note that this implies that Ng and Npg are the total number of turns on the rotor and stator.
ie.:

p/5 ngRdf = Ng

INE]

Then the surface current densities are as we assumed above, with:

Nglg Nrlg

s=5r  TRT R

So far nothing is different, but with an assumed number of turns we can proceed to computing
inductances. It is important to remember what these assumed winding distributions mean: they
are the density of wires along the surface of the rotor and stator. A positive value implies a wire
with sense in the 4z direction, a negative value implies a wire with sense in the -z direction. That
is, if terminal current for a winding is positive, current is in the +z direction if n is positive, in
the -z direction if n is negative. In fact, such a winding would be made of elementary coils with
one half (the negatively going half) separated from the other half (the positively going half) by a
physical angle of 7/p. So the flux linked by that elemental coil would be:

0
o:(0) = /9 / 1oH, (0')CRd6'
e

So, if only the stator winding is excited, radial magnetic field is:
Nglg

r=— sin pf
gp

3



and thus the elementary coil flux is:

poNsIslR
= ————c¢o

2

() 72

s pl

Now, this is flux linked by an elementary coil. To get flux linked by a whole winding we must
‘add up’ the flux linkages of all of the elementary coils. In our continuous approximation to the
real coil this is the same as integrating over the coil distribution:

s = p / ¥ @,(0)ns(0)Rd6
T 2p

This evaluates fairly easily to:

which implies a self-inductance for the stator winding of:

7 ¢RN?Z
Ls = po— £
4 gp?

The same process can be used to find self-inductance of the rotor winding (with appropriate
changes of spatial variables), and the answer is:

7 {RN2
Lr = po— R
4 gp?

To find the mutual inductance between the two windings, excite one and compute flux linked
by the other. All of the expressions here can be used, and the answer is:

EERNSNR

M(¢) = M04 a2

08 po

Now it is fairly easy to compute torque using conventional methods. Assuming both windings
are excited, magnetic coenergy is:

1 1
W = 5leg + 5LRJ}?z + M(¢)IsIp

and then torque is:
ow/! {RNgN,
= _NOE#ISIR sin po
¢ gp

T —
4
and then substituting for NgIg and Ngrlg:

Ngls = 2RKg
Nrlrp = 2RKpg

we get the same answer for torque as with the field approach:

3¢
T =21R¥ < 79 >= pom it

KsKpgsinpo



4 Classical, Lumped-Parameter Synchronous Machine:

Now we are in a position to examine the simplest model of a polyphase synchronous machine.
Suppose we have a machine in which the rotor is the same as the one we were considering, but the
stator has three separate windings, identical but with spatial orientation separated by an electrical
angle of 120° = 27/3. The three stator windings will have the same self- inductance (L,).

With a little bit of examination it can be seen that the three stator windings will have mutual
inductance, and that inductance will be characterized by the cosine of 120°. Since the physical
angle between any pair of stator windings is the same,

1
Lab = Lgc = Lbc = _§La
There will also be a mutual inductance between the rotor and each phase of the stator. Using

M to denote the magnitude of that inductance:

T RN, N
M= i
gap

M,y = M cos(po)
2
My; = M cos <p¢) — ;)

2
M. = Mcos <p¢ + ;)

We show in Chapter 1 of these notes that torque for this system is:

2 2
T = —pMigiysin (pp) — pMiyiy sin (p(;S — ;) — pMi iy sin (qu + ;)

5 Balanced Operation:

Now, suppose the machine is operated in this fashion: the rotor turns at a constant velocity, the
field current is held constant, and the three stator currents are sinusoids in time, with the same
amplitude and with phases that differ by 120 degrees.

pp = wt+9;

iq = Icos(wt)
2

i, = J1cos <wt — W)
3

. 27
ic = Tcos|wt+ —
3
Straightforward (but tedious) manipulation yields an expression for torque:

T = —%pMIIfsindi



Operated in this way, with balanced currents and with the mechanical speed consistent with
the electrical frequency (p§2 = w), the machine exhibits a constant torque. The phase angle ¢; is
called the torque angle, but it is important to use some caution, as there is more than one torque
angle.

Now, look at the machine from the electrical terminals. Flux linked by Phase A will be:

Aa = Lata + Lapiy + Lacic + M Iy cos pg

Noting that the sum of phase currents is, under balanced conditions, zero and that the mutual
phase-phase inductances are equal, this simplifies to:

Ao = (La — Lgp) ia + M1 cospp = Lyiq + M1 cospo

where we use the notation L, to denote synchronous inductance.

Now, if the machine is turning at a speed consistent with the electrical frequency we say it is
operating synchronously, and it is possible to employ complex notation in the sinusoidal steady
state. Then, note:

iq = I cos (wt + 6;) = Re {Iej“twi}
If , we can write an expression for the complex amplitude of flux as:
Ao = Re {Aaej“’t}
where we have used this complex notation:

I = 0
0,
lf = Ifej
Now, if we look for terminal voltage of this system, it is:

v_d)\a
“dt

= Re {ijaej“’t}

This system is described by the equivalent circuit shown in Figure 2.

WO

Figure 2: Round Rotor Synchronous Machine Equivalent Circuit

where the internal voltage is: '
E.p= jwMIfeJG’”



Now, if that is connected to a voltage source (i.e. if is fixed), terminal current is:

where Xy = wlLy is the synchronous reactance.
Then real and reactive power (in phase A) are:

1

= Ly (Y By
2 JXd

1 |V]2  1VE.pe?
27Xy 2 —jXy

This makes real and reactive power:
1VE.

P, = —3 X, sin ¢
1V2 1VE; X
Qo = 5o =55
2Xy 2 cos
If we consider all three phases, real power is
Eof .
pP= —gdef sin §

Now, at last we need to look at actual operation of these machines, which can serve either as
motors or as generators.

Vector diagrams that describe operation as a motor and as a generator are shown in Figures 3
and 4, respectively.

Over—Excited Under—Excited
Figure 3: Motor Operation, Under- and Over- Excited

Operation as a generator is not much different from operation as a motor, but it is common to
make notations with the terminal current given the opposite (“generator”) sign.
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Figure 4: Generator Operation, Under- and Over- Excited

6 Reconciliation of Models

We have determined that we can predict its power and/or torque characteristics from two points
of view : first, by knowing currents in the rotor and stator we could derive an expression for torque
vs. a power angle:

3
T= —gpMIIf sin d;
From a circuit point of view, it is possible to derive an expression for power:

_3VEy

P =
2 X,

sin é

and of course since power is torque times speed, this implies that:

3VEaf . _ _;pVEaf si

no

_5 QXd St 2 de

In this section of the notes we will, first of all, reconcile these notions, look a bit more at what
they mean, and then generalize our simple theory to salient pole machines as an introduction to
two-axis theory of electric machines.

6.1 Torque Angles:

Figure 5 shows a vector diagram that shows operation of a synchronous motor. It represents the
MMEF’s and fluxes from the rotor and stator in their respective positions in space during normal
operation. Terminal flux is chosen to be ‘real’, or occupy the horizontal position. In motor operation
the rotor lags by angle d, so the rotor flux M1y is shown in that position. Stator current is also
shown, and the torque angle between it and the rotor, §; is also shown. Now, note that the dotted
line OA, drawn perpendicular to a line drawn between the stator flux Lyl and terminal flux A;,
has length:
|OA| = Lyl sind; = Aysind



M I

Figure 5: Synchronous Machine Phasor Addition

Then, noting that terminal voltage V' = wA;, E, = wMI; and Xq = wLq , straightforward

substitution yields:

3pVE 3
ip - X:f sind = SpMIIysind,

So the current- and voltage- based pictures do give the same result for torque.

7 Per-Unit Systems:

Before going on, we should take a short detour to look into per-unit systems, a notational device
that, in addition to being convenient, will sometimes be conceptually helpful. The basic notion is
quite simple: for most variables we will note a base quantity and then, by dividing the variable by
the base we have a per-unit version of that variable. Generally we will want to tie the base quantity
to some aspect of normal operation. So, for example, we might make the base voltage and current
correspond with machine rating. If that is the case, then power base becomes:

Pp =3Vpip

and we can define, in similar fashion, an impedance base:

Ty = -2
B i

Now, a little caution is required here. We have defined voltage base as line-neutral and current
base as line current (both RMS). That is not necessary. In a three phase system we could very well
have defined base voltage to have been line-line and base current to be current in a delta connected

element:
Ip

IBA:%

In that case the base power would be unchanged but base impedance would differ by a factor of
three:

Vea = V3V3

Pp = Vgalpa ZBa = 3ZpB



However, if we were consistent with actual impedances (note that a delta connection of elements of
impedance 37 is equivalent to a wye connection of Z), the per-unit impedances of a given system
are not dependent on the particular connection. In fact one of the major advantages of using a
per-unit system is that per-unit values are uniquely determined, while ordinary variables can be
line-line, line-neutral, RMS, peak, etc., for a large number of variations.

Perhaps unfortunate is the fact that base quantities are usually given as line-line voltage and

base power. So that:
Pp Ve 1Vea  V3a

Ip=—2 T — i
B 3Vaa BP71p  3Ipa Pp

Now, we will usually write per-unit variables as lower-case versions of the ordinary variables:

v P

= — = — etc.
ve YT,

v

Thus, written in per-unit notation, real and reactive power for a synchronous machine operating

in steady state are:
2
Vegf . v ve
o sin g q=— — af
Iq Ld Zq

sin

p=—-

These are, of course, in motor reference coordinates, and represent real and reactive power into
the terminals of the machine.

8 Normal Operation:

The synchronous machine is used, essentially interchangeably, as a motor and as a generator. Note
that, as a motor, this type of machine produces torque only when it is running at synchronous
speed. This is not, of course, a problem for a turbogenerator which is started by its prime mover
(e.g. a steam turbine). Many synchronous motors are started as induction machines on their
damper cages (sometimes called starting cages). And of course with power electronic drives the
machine can often be considered to be “in synchronism” even down to zero speed.

As either a motor or as a generator, the synchronous machine can either produce or consume
reactive power. In normal operation real power is dictated by the load (if a motor) or the prime
mover (if a generator), and reactive power is determined by the real power and by field current.

Figure 6 shows one way of representing the capability of a synchronous machine. This picture
represents operation as a generator, so the signs of p and ¢ are reversed, but all of the other elements
of operation are as we ordinarily would expect. If we plot p and ¢ (calculated in the normal way)
against each other, we see the construction at the right. If we start at a location ¢ = —v?/x4, (and
remember that normally v = 1 per-unit , then the locus of p and ¢ is what would be obtained by
swinging a vector of length ve,¢/xq over an angle 6. This is called a capability chart because it is
an easy way of visualizing what the synchronous machine (in this case generator) can do. There
are three easily noted limits to capability. The upper limit is a circle (the one traced out by that
vector) which is referred to as field capability. The second limit is a circle that describes constant
|p 4+ 7q|. This is, of course, related to the magnitude of armature current and so this limit is called
armature capability. The final limit is related to machine stability, since the torque angle cannot
go beyond 90 degrees. In actuality there are often other limits that can be represented on this type
of a chart. For example, large synchronous generators typically have a problem with heating of the

10
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Figure 6: Synchronous Generator Capability Diagram

stator iron when they attempt to operate in highly underexcited conditions (g strongly negative),
so that one will often see another limit that prevents the operation of the machine near its stability
limit. In very large machines with more than one cooling state (e.g. different values of cooling
hydrogen pressure) there may be multiple curves for some or all of the limits.

Another way of describing the limitations of a synchronous machine is embodied in the Vee
Curve. An example is shown in Figure 7 . This is a cross-plot of magnitude of armature current
with field current. Note that the field and armature current limits are straightforward (and are the
right-hand and upper boundaries, respectively, of the chart). The machine stability limit is what
terminates each of the curves at the upper left-hand edge. Note that each curve has a minimum at
unity power factor. In fact, there is yet another cross-plot possible, called a compounding curve, in
which field current is plotted against real power for fixed power factor.

9 Salient Pole Machines: Two-Reaction Theory

So far, we have been describing what are referred to as “round rotor” machines, in which stator
reactance is not dependent on rotor position. This is a pretty good approximation for large turbine
generators and many smaller two-pole machines, but it is not a good approximation for many
synchronous motors nor for slower speed generators. For many such applications it is more cost
effective to wind the field conductors around steel bodies (called poles) which are then fastened
onto the rotor body, with bolts or dovetail joints. These produce magnetic anisotropies into the
machine which affect its operation. The theory which follows is an introduction to two-reaction
theory and consequently for the rotating field transformations that form the basis for most modern
dynamic analyses.

Figure 8 shows a very schematic picture of the salient pole machine, intended primarily to show
how to frame this analysis. As with the round rotor machine the stator winding is located in slots
in the surface of a highly permeable stator core annulus. The field winding is wound around steel
pole pieces. We separate the stator current sheet into two components: one aligned with and one

11
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Figure 7: Synchronous Machine Vee Curve

in quadrature to the field. Remember that these two current components are themselves (linear)
combinations of the stator phase currents. The transformation between phase currents and the d-
and g- axis components is straightforward and will appear in Chapter 4 of these notes.

The key here is to separate MMF and flux into two orthogonal components and to pretend that
each can be treated as sinusoidal. The two components are aligned with the direct axis and with
the quadrature axis of the machine. The direct axis is aligned with the field winding, while the
quadrature axis leads the direct by 90 degrees. Then, if ¢ is the angle between the direct axis and
the axis of phase a, we can write for flux linking phase a:

Aa = Agcosp — A\gsin g
Then, in steady state operation, if V, = % and ¢ = wt + delta ,
Vo = —wAgsing — wAg cos ¢
which allows us to define:

Vd = —w)\q
V;] = w/\d

one might think of the ‘voltage’ vector as leading the ‘flux’ vector by 90 degrees.
Now, if the machine is linear, those fluxes are given by:

A = Ldfd—f-MIf
N, = Ly,

12
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Figure 9: Resolution of Terminal Voltage

Note that, in general, Ly # L,. In wound-field synchronous machines, usually Ly > L,. The
reverse is true for most salient (buried magnet) permanent magnet machines.
Referring to Figure 9, one can resolve terminal voltage into these components:

Vg = Vsind
Vg = Vecosé
or:
Vi = —wly=—wLyl,=Vsino

Vo = whg=wLlglyj+wMI; =YV cosd
which is easily inverted to produce:

Vcoséd — By

I, =
d X,

13



where
Xg=wly Xg=wl, E.p=wMIy

Now, we are working in ordinary variables (this discussion should help motivate the use of per-

unit!), and each of these variables is peak amplitude. Then, if we take up a complex frame of
reference:

Va+3Vy
Ig+ 71,

~ <

complex power is:

3. 3 ,
P+jQ=gVI" = S {(Vala+ Valg) +j (Vala = Valy)}

or:

Figure 10: Phasor Diagram: Salient Pole Machine

A phasor diagram for a salient pole machine is shown in Figure 10. This is a little different
from the equivalent picture for a round-rotor machine, in that stator current has been separated
into its d- and g- axis components, and the voltage drops associated with those components have
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been drawn separately. It is interesting and helpful to recognize that the internal voltage E,; can

be expressed as:
Eaf =F + (Xd — Xq) 1,

where the voltage E7 is on the quadrature axis. In fact, £ would be the internal voltage of a
round rotor machine with reactance X, and the same stator current and terminal voltage. Then

the operating point is found fairly easily:

5 — —tan-! XyIsiny
V + Xyl cosvy

B = \J(V+ X Ising)’ + (X,] cos)?

Power-Angle Curves
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Figure 11: Torque-Angle Curves: Round Rotor and Salient Pole Machines

A comparison of torque-angle curves for a pair of machines, one with a round, one with a salient
rotor is shown in Figure 11 . It is not too difficult to see why power systems analysts often neglect

saliency in doing things like transient stability calculations.

10 Relating Rating to Size

It is possible, even with the simple model we have developed so far, to establish a quantitative
relationship between machine size and rating, depending (of course) on elements such as useful flux
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and surface current density. To start, note that the rating of a machine (motor or generator) is:
[P +jQl=qVI

where ¢ is the number of phases, V' is the RMS voltage in each phase and [ is the RMS current.

To establish machine rating we must establish voltage and current, and we do these separately.

10.1 Voltage

Assume that our sinusoidal approximation for turns density is valid:

nq(0) = ﬁ cos pf

And suppose that working flux density is:
B,(0) = Bysinp(f — ¢)

Now, to compute flux linked by the winding (and consequently to compute voltage), we first
compute flux linked by an incremental coil:

0
M () = / (B, (6') R0/
P
Then flux linked by the whole coil is:

de=p [ A@ma(oyras = T2

By cospop

-z

This is instantaneous flux linked when the rotor is at angle ¢. If the machine is operating at some
electrical frequency w with a phase angle so that p¢ = wt + d, the RMS magnitude of terminal
voltage is:

By

V2

Finally, note that the useful peak current density that can be used is limited by the fraction of
machine periphery used for slots:

v, = 2To/RN,
p4

By = By (1—\,)

where By is the flux density in the teeth, limited by saturation of the magnetic material.

10.2 Current
The (RMS) magnitude of the current sheet produced by a current of (RMS) magnitude I is:

_qNoI
7 292R

And then the current is, in terms of the current sheet magnitude:

2
I =2RK,——
R qNg
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Note that the surface current density is, in terms of area current density Js, slot space factor Ag
and slot depth hy:
K, = XJshs

This gives terminal current in terms of dimensions and useful current density:

4R

I =
qNq

Ashsds

10.3 Rating

Assembling these expressions, machine rating becomes:
B;
V2

This expression is actually fairly easily interpreted. The product of slot factor times one minus
slot factor optimizes rather quickly to 1/4 (when Ay = 1). We could interpret this as:

P +jQ|=qVI = %%R% Ao (1= As) s

|P =jQ| = AsusT™
where the interaction area is:
Ay =27RY

The surface velocity of interaction is:
w
us = —R=QR
p

and the fragment of expression which “looks like” traction is:

B;
V2
Note that this is not quite traction since the current and magnetic flux may not be ideally aligned,
and this is why the expression incorporates reactive as well as real power.

This is not quite yet the whole story. The limit on By is easily understood to be caused by
saturation of magnetic material. The other important element on shear stress density, hgJs is a

7 = hods s (1 — Ag)

little more involved.
We will do a more complete derivation of winding reactances shortly. Here, start by noting that
the per-unit, or normalized synchronous reactance is:

I R X ~hss
T = Ady = T /\S\/_ B,

While this may be somewhat interesting by itself, it becomes useful if we solve it for hgJ,:

That is, if x4 is fixed, hsJ, (and so power) are directly related to air- gap g.Now, to get a limit on
g, we must answer the question of how far the field winding can “throw” effective air- gap flux? To
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understand this question, we must calculate the field current to produce rated voltage, no- load,
and then the excess of field current required to accommodate load current.
Under rated operation, per- unit field voltage is:

egf = v? + (24i)* + 2w i sin

Or, if at rated conditions v and ¢ are both unity (one per- unit), then

€af = \/1 —1—:133 + 2x4sin ¢
Thus, given a value for x4 and 1), per- unit internal voltage e, is also fixed. Then field current
required can be calculated by first estimating field winding current for “no-load operation”.
NI
, = — 1
2gp
and rated field current is:
Iy = Ipnicay
or, required rated field current is:
2gp(1 — A\p)B
N1y = M)
Ho
Next, Iy can be related to a field current density:

Ngs
N¢lyp = TA RrRsJf
where Ngg is the number of rotor slots and the rotor slot area Agg is
Agrs = wrhgr

where hp is rotor slot height and wg is rotor slot width:

21 R

WR = ——
Ngs

R
Then:
Nf]f = WR)\RhRJf
Now we have a value for air- gap g:
_ 2uokyRARhRJf
p(1 = As)Bseay

This then gives us useful armature surface current density:

hody = V3L AR g
Caf )\s

We will not have a lot more to say about this. Note that the ratio of x4/e,f can be quite small
(if the per-unit reactance is small), will never be a very large number for any practical machine,
and is generally less than one. As a practical matter it is unusual for the per-unit synchronous
reatance of a machine to be larger than about 2 or 2.25 per-unit. What this tells us should be
obvious: either the rotor or the stator of a machine can produce the dominant limitation on shear
stress density (and so on rating). The best designs are “balanced”, with both limits being reached
at the same time.
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11 Winding Inductance Calculation

The purpose of this section is to show how the inductances of windings in round- rotor machines
with narrow air gaps may be calculated. We deal only with the idealized air- gap magnetic fields,
and do not consider slot, end winding, peripheral or skew reactances. We do, however, consider
the space harmonics of winding magneto-motive force (MMF).

To start, consider the MMF of a full- pitch, concentrated winding. Assuming that the winding
has a total of IV turns over p pole- pairs, the MMF is:

> 4 NI

F= Z n—2—s1nnp¢
n=1
nodd

This leads directly to magnetic flux density in the air- gap:

o
B, = —_—
- Zl g nr 3 sin np¢g
n =

nodd

Note that a real winding, which will most likely not be full- pitched and concentrated, will have a
winding factor which is the product of pitch and breadth factors, to be discussed later.

Now, suppose that there is a polyphase winding, consisting of more than one phase (we will use
three phases), driven with one of two types of current. The first of these is balanced, current:

I, = Icos(wt)
2
I, = Icos(wt— %)
2
I. = Icos(wt+ g) (1)

Conversely, we might consider Zero Sequence currents:
I,=1,=1.=1Icoswt

Then it is possible to express magnetic flux density for the two distinct cases. For the balanced

case:
00

Z vn SIN(Np F wt)

where
e The upper sign holds for n = 1,7, ...
e The lower sign holds for n = 5,11, ...

e all other terms are zero
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and

The zero- sequence case is simpler: it is nonzero only for the triplen harmonics:

s 4 NI
B, — @77§(sin(npd> — wt) + sin(npg + wt))
n=39,.. 9 " 2p 2

Next, consider the flux from a winding on the rotor: that will have the same form as the flux
produced by a single armature winding, but will be referred to the rotor position:

o0
o 4 NI |
B,y = Z %E% sin npg¢’
n=1
nodd
which is, substituting ¢/ = ¢ — %t,
oo
o 4 NI .
B, = Z %E% sinn(pe — wt)

n=1
nodd

The next step here is to find the flux linked if we have some air- gap flux density of the form:

o
B, = Z By sin(npe £ wt)

n=1

Now, it is possible to calculate flux linked by a single- turn, full- pitched winding by:

¢_A;&mm

and this is:
> Brn
¢ = 2RI — cos(wt
g;w (wt)

This allows us to compute self- and mutual- inductances, since winding flux is:
A=N¢

The end of this is a set of expressions for various inductances. It should be noted that, in the
real world, most windings are not full- pitched nor concentrated. Fortunately, these shortcomings
can be accommodated by the use of winding factors.

The simplest and perhaps best definition of a winding factor is the ratio of flux linked by an
actual winding to flux that would have been linked by a full- pitch, concentrated winding with the

same number of turns. That is:
)‘actual
kw

A full—pitch
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It is relatively easy to show, using reciprocity arguments, that the winding factors are also
the ratio of effective MMF produced by an actual winding to the MMF that would have been
produced by the same winding were it to be full- pitched and concentrated. The argument goes
as follows: mutual inductance between any pair of windings is reciprocal. That is, if the windings
are designated one and two, the mutual inductance is flux induced in winding one by current in
winding two, and it is also flux induced in winding fwo by current in winding one. Since each
winding has a winding factor that influences its linking flux, and since the mutual inductance must
be reciprocal, the same winding factor must influence the MMF produced by the winding.

The winding factors are often expressed for each space harmonic, although sometimes when a
winding factor is referred to without reference to a harmonic number, what is meant is the space
factor for the space fundamental.

Two winding factors are commonly specified for ordinary, regular windings. These are usually
called pitch and breadth factors, reflecting the fact that often windings are not full pitched, which
means that individual turns do not span a full 7 electrical radians and that the windings occupy a
range or breadth of slots within a phase belt. The breadth factors are ratios of flux linked by a given
winding to the flux that would be linked by that winding were it full- pitched and concentrated.
These two winding factors are discussed in a little more detail below. What is interesting to note,
although we do not prove it here, is that the winding factor of any given winding is the product of
the pitch and breadth factors:

kyw = kpky

With winding factors as defined here and in the sections below, it is possible to define winding
inductances. For example, the synchronous inductance of a winding will be the apparent induc-
tance of one phase when the polyphase winding is driven by a balanced set of currents. This is,
approximately:

i 34 uoN2RIK2,

I, —
d 27 p3gn?

n=1,5,7,...

This expression is approximate because it ignores the asynchronous interactions between higher
order harmonics and the rotor of the machine. These are beyond the scope of this note.

Zero- sequence inductance is the ratio of flux to current if a winding is excited by zero sequence

currents:
(@)
Lo= >
n=3,9,...

4 L oN>RIKZ,
T pign?

And then mutual inductance, as between a field winding (f) and an armature winding (a), is:

M@B = 3

n=1
nodd

4 10Ny Nok pokan R
T p2gn?

cos(npb)

Now we turn out attention to computing the winding factors for simple, regular winding patterns.
We do not prove but only state that the winding factor can, for regular winding patterns, be
expressed as the product of a pitch factor and a breadth factor, each of which can be estimated
separately.
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Pitch factor is found by considering the flux linked by a less- than- full pitched winding. Consider
the situation in which radial magnetic flux density is:

B, = By sin(np¢ — wt)

A winding with pitch o will link flux:

s

i_A'_&
A=NIL[7" 7 By, sin(npg — wt)Rdeo

™

2p  2p

Pitch « refers to the angular displacement between sides of the coil, expressed in electrical
radians. For a full- pitch coil a = 7.

The flux linked is:
\ 2NIRB,, . (mr) . (na)
= ————sin(—) sin(—
np 2 2
The pitch factor is seen to be:

. hao
kpn = Sin 7

Now for breadth factor. This describes the fact that a winding may consist of a number of coils,
each linking flux slightly out of phase with the others. A regular winding will have a number (say
m) coil elements, separated by electrical angle 7.

A full- pitch coil with one side at angle £ will, in the presence of sinusoidal magnetic flux density,
link flux:

A= Nl/ B sin(npgp — wt)Rdeo

This is readily evaluated to be:

- 2N2§B” Re (ej (“’t_”g))

where complex number notation has been used for convenience in carrying out the rest of this
derivation.

Now: if the winding is distributed into m sets of slots and the slots are evenly spaced, the
angular position of each slot will be:

m—1
2

§i =1y — ¥

and the number of turns in each slot will be mip, so that actual flux linked will be:

2NZRB 1 ZR (e](“)t n&))

np mzo

The breadth factor is then simply:
1 m—1
ky=— Y o in(iv="517)

m =0
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Note that this can be written as:

. m—1
eI
k

m
= S e
m 1=0

Now, focus on that sum. We know that any coverging geometric sum has a simple sum:

i
Tt =
i=0

1—=x
and that a truncated sum is:

m—

IR

1=
Then the useful sum can be written as:

[ary

00
-2
1=0 3

=m

m—1

[%S)
Z eIy — (1 _ e]nm'y) Ze—jnz'y —
=0

1 — /"
Now, the breadth factor is found:

— e—Jny
i=0 l—e
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Class Notes Chapter 10
Analytic Design Evaluation of Induction Machines *

J.L. Kirtley Jr.

1 Introduction

Induction machines are perhaps the most widely used of all electric motors. They are generally
simple to build and rugged, offer reasonable asynchronous performance: a manageable torque-speed
curve, stable operation under load, and generally satisfactory efficiency. Because they are so widely
used, they are worth understanding.

In addition to their current economic importance, induction motors and generators may find
application in some new applications with designs that are not similar to motors currently in
commerce. An example is very high speed motors for gas compressors, perhaps with squirrel cage
rotors, perhaps with solid iron (or perhaps with both).

Because it is possible that future, high performance induction machines will be required to
have characteristics different from those of existing machines, it is necessary to understand them
from first principles, and that is the objective of this document. It starts with a circuit theoretical
view of the induction machine. This analysis is strictly appropriate only for wound-rotor machines,
but leads to an understanding of more complex machines. This model will be used to explain the
basic operation of induction machines. Then we will derive a model for squirrel-cage machines.
Finally, we will show how models for solid rotor and mixed solid rotor/squirrel cage machines can
be constructed.

The view that we will take in this document is relentlessly classical. All of the elements that
we will use are calculated from first principles, and we do not resort to numerical analysis or
empirical methods unless we have no choice. While this may seem to be seriously limiting, it serves
our basic objective here, which is to achieve an understanding of how these machines work. It is
our feeling that once that understanding exists, it will be possible to employ more sophisticated
methods of analysis to get more accurate results for those elements of the machines which do not
lend themselves to simple analysis.

An elementary picture of the induction machine is shown in Figure 1. The rotor and stator are
coaxial. The stator has a polyphase winding in slots. The rotor has either a winding or a cage, also

*(©2003 James L. Kirtley Jr.



in slots. This picture will be modified slightly when we get to talking of “solid rotor” machines,
anon. Generally, this analysis is carried out assuming three phases. As with many systems, this
generalizes to different numbers of phases with little difficulty.

Stator Core

Stator Winding
in Slots

Rotor Winding
or Cage in
Slots

Rotor

Air-Gap

Figure 1: Axial View of an Induction Machine

2 Induction Motor Transformer Model

The induction machine has two electrically active elements: a rotor and a stator. In normal
operation, the stator is excited by alternating voltage. (We consider here only polyphase machines).
The stator excitation creates a magnetic field in the form of a rotating, or traveling wave, which
induces currents in the circuits of the rotor. Those currents, in turn, interact with the traveling
wave to produce torque. To start the analysis of this machine, assume that both the rotor and the
stator can be described by balanced, three — phase windings. The two sets are, of course, coupled
by mutual inductances which are dependent on rotor position. Stator fluxes are (A, A\p, A¢) and
rotor fluxes are (Ag, Ap, A¢). The flux vs. current relationship is given by:

B i
Ao Ly  Mgp w
e | = g &
)\B MSR LR iB

L Ao | L ic |



where the component matrices are:

La Lab Lab
é = Lab La Lab (2)
Lab Lab La

La Lap Lap
L.,=| Lap La Lus (3)
Lap Lap La

The mutual inductance part of (1) is a circulant matrix:
M cos(ph) M cos(pf + 2F) M cos(

pb —
%s}z = | M cos(pd — 2%) M cos(ph) M cos(pf +
M cos(p + 2F) M cos(pd — 2F) M cos(pb)

=)
2m

T (4)

To carry the analysis further, it is necessary to make some assumptions regarding operation.
To start, assume balanced currents in both the stator and rotor:

ia = Igcos(wt)
iy = Igcos(wt— 2F) (5)
ic= Igcos(wt+ 2F)

ia= Igcos(wrt+ ER)
ip = Igcos(wrt+&r — 2%) (6)
ic = Ipcos(wrt+&r+ %ﬁ)

The rotor position 6 can be described by

Under these assumptions, we may calculate the form of stator fluxes. As it turns out, we need
only write out the expressions for A\, and A4 to see what is going on:

Ao = (Lq— Lap)Iscos(wt) + MIg(cos(wrt + &r) cos p(wm + 6p) (8)
27 2 27 2

+ cos(wpt + &R + ?) cos(p(wmt + 6p) — ?) + cos(wrt + &r — ?) cos(p(wmt + o) + ?)

which, after reducing some of the trig expressions, becomes:

3
Ao = (Lg — Lap)Is cos(wt) + §MIR cos((pwm + wgr)t + Er + pbo) (9)
Doing the same thing for the rotor phase A yields:
27 27

Aa = MIs(cosp(wmt + 6p) cos(wt)) + cos(p(wmt + 6p) — ?) cos(wt — ?) (10)

2T 2
+ cos(p(wmt + o) + g) cos(wt + ?) + (La — Lag)Igcos(wrt + &R)



This last expression is, after manipulating:

3
g = §MIS cos((w — pwm)t — pbo) + (La — Lap)Ir cos(wrt + &r) (11)

These two expressions, 9 and 11 give expressions for fluxes in the armature and rotor windings
in terms of currents in the same two windings, assuming that both current distributions are sinu-
soidal in time and space and represent balanced distributions. The next step is to make another
assumption, that the stator and rotor frequencies match through rotor rotation. That is:

W — pwm = WR (12)
It is important to keep straight the different frequencies here:

w is stator electrical frequency
wpg  is rotor electrical frequency
wy, is mechanical rotation speed

so that pwy, is electrical rotation speed.
To refer rotor quantities to the stator frame (i.e. non- rotating), and to work in complex
amplitudes, the following definitions are made:

Ao = Re(A,e™) (13)
A4 = Re(A e/“R) (14)
i = Re(I,e’*") (15)
ig = Re(I4e/“RY) (16)
With these definitions, the complex amplitudes embodied in 58 and 66 become:
A, =LsI, + ;MlAej(fRergO) (17)
3 —ipfo i€r
Ay =5MLge + Lrl e (18)

There are two phase angles embedded in these expressions: 6y which describes the rotor physical
phase angle with respect to stator current and £z which describes phase angle of rotor currents
with respect to stator currents. We hereby invent two new rotor variables:

Ayp =A™ (19)

lAR — lAej(pGO‘FER) (20)

These are rotor flux and current referred to armature phase angle. Note that A p and Iy
have the same phase relationship to each other as do A4 and I 4. Using 19 and 20 in 17 and 18,
the basic flux/current relationship for the induction machine becomes:

A, Ls M| 1,
FARERAIEN @
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This is an equivalent single- phase statement, describing the flux/current relationship in phase
a, assuming balanced operation. The same expression will describe phases b and c.
Voltage at the terminals of the stator and rotor (possibly equivalent) windings is, then:

Ka - ija + R(lla (22)
Var = jwrAag + Ralag (23)
or: 3
Ka = jWLSLz =+ ngMlAR + Rala (24)
.3 .
Var = jwrgML,+ jwrLrLag + Ralag (25)

To carry this further, it is necessary to go a little deeper into the machine’s parameters. Note
that Lg and Lgr are synchronous inductances for the stator and rotor. These may be separated
into space fundamental and “leakage” components as follows:

34 ugRIN2k2
Ls=1Lg— Lap = §*W+Lsz (26)
™ pig
34 g RIN2J2
Lp=1La—Lyp=>-tC" "Rk 41 (27)

21 p?g

Where the normal set of machine parameters holds:

is rotor radius

is active length

is the effective air- gap

is the number of pole- pairs
represents number of turns
represents the winding factor

as a subscript refers to the stator
as a subscript refers to the rotor
is “leakage” inductance

S n T e oy

The two leakage terms Lg; and Lg; contain higher order harmonic stator and rotor inductances,
slot inducances, end- winding inductances and, if necessary, a provision for rotor skew. Essentially,
they are used to represent all flux in the rotor and stator that is not mutually coupled.

In the same terms, the stator- to- rotor mutual inductance, which is taken to comprise only a
space fundamental term, is:

_ 4 wRINgNRkskr
m P9
Note that there are, of course, space harmonic mutual flux linkages. If they were to be included,

they would hair up the analysis substantially. We ignore them here and note that they do have an
effect on machine behavior, but that effect is second- order.

M

(28)



Air- gap permeance is defined as:

Oug = 4 po Rl
Yom pg
so that the inductances are:
3
Lg= ipagk?g]\fg + Lg;

3
L = 5pagkNi + L

M = pqgNsNrkskr

Here we define “slip” s by:

WR = Sw
so that

w

g—1_ P¥m

w

Then the voltage balance equations become:

3 .3
Vo= jw (pagkéNé + Lsz) I+ jw9agNsNrkskrlag + Ral,

2

.3 . 3
Vair= Jé‘wif@agNsNRkslea + jsw (2%5;/‘6122]\[123 + LRl) Iir+ Ralpg

At this point, we are ready to define rotor current referred to the stator.

(35)

(36)

This is done by

assuming an effective turns ratio which, in turn, defines an equivalent stator current to produce

the same fundamental MMF as a given rotor current:

(37)

Now, if we assume that the rotor of the machine is shorted so that V45 = 0 and do some

manipulation we obtain:

V=i Xu+X1)I,+jiXul, + R,

. . R
0=jXml, +j(Xa + Xo)I + ?212

where the following definitions have been made:

3
Xy = §wpagN§k§

X1 =wlg

(38)

(39)

(40)

(41)



Nsk‘s>2
Xo =wlL 42
s =wLu (20 (42
Ngks)2
Ry =R 43
2 A<NRkR (43)

These expressions describe a simple equivalent circuit for the induction motorshow in Figure 2.
We will amplify on this equivalent circuit anon.

Figure 2: Equivalent Circuit

2.1 Effective Air-Gap: Carter’s Coefficient

In induction motors, where the air-gap is usually quite small, it is necessary to correct the air-gap
permeance for the effect of slot openings. These make the permeance of the air-gap slightly smaller
than calculated from the physical gap, effectively making the gap a bit bigger. The ratio of effective

to physical gap is:
t+s

Jeff = gm (44)

where

fe)=£ (5

29) = atan(a) — logsec a (45)

3 Operation: Energy Balance

Now we are ready to see how the induction machine actually works. Assume for the moment
that Figure 2 represents one phase of a polyphase system and that the machine is operated under
balanced conditions and that speed is constant or varying only slowly. “Balanced conditions” means
that each phase has the same terminal voltage magnitude and that the phase difference between
phases is a uniform. Under those conditions, we may analyze each phase separately (as if it were
a single phase system). Assume an RMS voltage magnitude of V; across each phase.

The “gap impedance”, or the impedance looking to the right from the right-most terminal of
X1 is:

. . R
Zg = jXml|(j X2+ ?2) (46)



A total, or terminal impedance is then

Zy =jX1+ Ro+ Z (47)
and terminal current is N
I =t 48
=7 (48)
Rotor current is found by using a current divider:
i X
JXo + 72
“Air-gap” power is then calculated (assuming a three-phase machine):
R
Pag = 3]1212?2 (50)

This is real (time-average) power crossing the air-gap of the machine. Positive slip implies rotor
speed less than synchronous and positive air-gap power (motor operation). Negative slip means
rotor speed is higher than synchronous, negative air-gap power (from the rotor to the stator) and
generator operation.

Now, note that this equivalent circuit represents a real physical structure, so it should be possible
to calculate power dissipated in the physical rotor resistance, and that is:

Ps = Poys (51)

(Note that, since both P,y and s will always have the same sign, dissipated power is positive.)
The rest of this discussion is framed in terms of motor operation, but the conversion to generator
operation is simple. The difference between power crossing the air-gap and power dissipated in the
rotor resistance must be converted from mechanical form:

Pm = Lfag — Ps (52)
and electrical input power is:
Bn = Lag + Pa (53)
where armature dissipation is:
P, = 3|L|’R, (54)
Output (mechanical) power is
Pout = Pag — Pu (55)

Where P,, describes friction, windage and certain stray losses which we will discuss later.
And, finally, efficiency and power factor are:

Pout
n="p (56)
_ Py
cosp = VI, (57)



% Torque-Speed Curve for an Induction Motor

% Assumes the classical model
% This is a single-circuit model

% Required parameters are R1, X1, X2, R2, Xm, Vt, Ns

% Assumed is a three-phase motor

% This thing does a motoring, full speed range curve
% Copyright 1994 James L. Kirtley Jr.

s = .002:.002:1;

N =Ns .x (1 - 8);

oms = 2xpi*Ns/60;

Rr = R2 ./ s;

Zr = j*X2 + Rr;

Za = par(j*Xm, Zr);

Zt = R1 + jxX1 +Za;

Ia =Vt ./ Zt;

I2 = Ia .* cdiv (Zr, j*Xm);
Pag = 3 .x abs(I2) .2 .* Rr;
Pm = Pag .* (1 - s);

Trq = Pag ./ oms;
subplot(2,1,1)

plot(N, Trq)
title(’Induction Motor’);
ylabel (°N-m’);
subplot(2,1,2)

plot (N, Pm);
ylabel(’Watts’);

xlabel (’RPM’) ;

3.1 Example of Operation

The following MATLAB script generates a torque-speed and power-speed curve for the simple
induction motor model described above. Note that, while the analysis does not require that any
of the parameters, such as rotor resistance, be independent of rotor speed, this simple script does
assume that all parameters are constant.

3.2 Example

That MATLAB script has been run for a standard motor with parameters given in Table 1.
Torque vs. speed and power vs. speed are plotted for this motor in Figure 3. These curves were

vector of slip
Speed, in RPM
Synchronous speed
Rotor resistance
Total rotor impedance
Air-gap impedance
Terminal impedance
Terminal Current
Rotor Current
Air-Gap Power
Converted Power
Developed Torque

generated by the MATLAB script shown above.



Table 1: Example, Standard Motor

Rating 300 kw
Voltage 440 VRMS,; 1-1

254 VRMS, I-n
Stator Resistance R1 .0073 Q
Rotor Resistance R2 .0064 Q
Stator Reactance X1 .06 Q
Rotor Reactance X2 .06 Q
Magnetizing Reactance Xm 2.5 Q
Synchronous Speed Ns 1200 RPM

4 Squirrel Cage Machine Model

Now we derive a circuit model for the squirrel-cage motor using field analytical techniques. The
model consists of two major parts. The first of these is a description of stator flux in terms of stator
and rotor currents. The second is a description of rotor current in terms of air- gap flux. The result
of all of this is a set of expressions for the elements of the circuit model for the induction machine.

To start, assume that the rotor is symmetrical enough to carry a surface current, the funda-
mental of which is:

K, =1.Re (Krej(swt—pqﬁ’))
=17, Re (Krej(Wt*pqﬁ)) (58)

Note that in 58 we have made use of the simple transformation between rotor and stator
coordinates:

¢ = ¢ — wnt (59)

and that
pwm =w —wr = w(l —s) (60)

Here, we have used the following symbols:

K, is complex amplitude of rotor surface current
s is per- unit “slip”

w is stator electrical frequency

Wy is rotor electrical frequency

Wi is rotational speed

The rotor current will produce an air- gap flux density of the form:

B, = Re (ﬁrej(wt—pqﬁ)) (61)
where
. R
B, = —ju—K, (62)
pg
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Induction Motor

6000
4000} R
£
pd
2000}
O Il Il Il Il Il
0 200 400 600 800 1000 1200
x 10°
8
6, -
2
@ 4 .
=
2,
O Il Il Il Il
0 200 400 600 800 1000 1200

RPM

Figure 3: Torque and Power vs. Speed for Example Motor

Note that this describes only radial magnetic flux density produced by the space fundamental
of rotor current. Flux linked by the armature winding due to this flux density is:

Aar = INgkg Oﬁ B, (¢)Rdp (63)
P
This yields a complex amplitude for Agp:
Aag = Re (A AReM) (64)
where
Aan = 2O NS (65

Adding this to flux produced by the stator currents, we have an expression for total stator flux:

2l/,L0R2N5k'S

K, 66
plg (66)

ELY)

_ (34 poN3RIR
S \27m pYg

+ Lsz) I, +

Expression 66 motivates a definiton of an equivalent rotor current Io in terms of the space
fundamental of rotor surface current density:

T R
Io=—-——-—K 67

Then we have the simple expression for stator flux:

11



Ay = (Laa + Lsi)L, + Laals (68)

where L,q is the fundamental space harmonic component of stator inductance:

34 puoNZEZRI

L,;=
ad 27 p29

(69)

The second part of this derivation is the equivalent of finding a relationship between rotor flux
and I». However, since this machine has no discrete windings, we must focus on the individual
rotor bars.

Assume that there are Npg slots in the rotor. Each of these slots is carrying some current. If
the machine is symmetrical and operating with balanced currents, we may write an expression for
current in the k** slot as:

ir = Re (lkejs“’t) (70)
where
_ ;27D
Iy =Ie ' Vr (71)

and [ is the complex amplitude of current in slot number zero. Expression 71 shows a uniform
progression of rotor current phase about the rotor. All rotor slots carry the same current, but that
current is phase retarded (delayed) from slot to slot because of relative rotation of the current wave
at slip frequency.

The rotor current density can then be expressed as a sum of impulses:

Np-1
1 jwrt—k2zR) 27k
K. = Re —IYTTTINR S () — S 72

The unit impulse function §() is our way of approximating the rotor current as a series of
impulsive currents around the rotor.
This rotor surface current may be expressed as a fourier series of traveling waves:

o0
K, = Re( Z Knej(wrt—npqﬁ’)) (73)
n=-—00

Note that in 73, we are allowing for negative values of the space harmonic index n to allow for
reverse- rotating waves. This is really part of an expansion in both time and space, although we are
considering only the time fundamental part. We may recover the n® space harmonic component
of 73 by employing the following formula:

1 2 :
K, =< ;/0 (@, t)e ™/t 0dg > (74)

Here the brackets <> denote time average and are here beause of the two- dimensional nature

of the expansion. To carry out 74 on 72, first expand 72 into its complex conjugate parts:

Np—1 *
1 L k2 I* —j(wrt—k?&“”)} ) 2mk
=52 {Re "R RS R )

12



If 75 is used in 74, the second half of 75 results in a sum of terms which time average to zero.
The first half of the expression results in:

I 27 Nr—1 _j27rpk ] p¢5
K = — Ng n -0
Kn=gopf, 2o ¢ et - o (76)

The impulse function turns the integral into an evaluation of the rest of the integrand at the
impulse. What remains is the sum:

K, = Z Gl (77)
The sum in 77 is easily evaluated. It is:

e NR

(78)

Ne1 j2rkp(n—1) _ Np if (n— 1)]\% = integer
0 otherwise

k=0

The integer in 78 may be positive, negative or zero. As it turns out, only the first three of these
(zero, plus and minus one) are important, because these produce the largest magnetic fields and
therefore fluxes. These are:

(n—l)NiR =-1 orn:—%
=0 orn=1
=1 orn= L};er (79)

Note that 79 appears to produce space harmonic orders that may be of non- integer order. This
is not really true: is is necessary that np be an integer, and 79 will always satisfy that condition.
So, the harmonic orders of interest to us are one and

ny = DRy (30)
p
_ _(Nr_
S (p 1) 51

Each of the space harmonics of the squirrel- cage current will produce radial flux density. A
surface current of the form:

NRL (o imnd
Ko = e (it ) (82)
produces radial magnetic flux density:
B,, = Re (Bmej(wrt—nw’)) (83)
where
poNRL
B. = — 84
Bon = =05 mng (84)

13



In turn, each of the components of radial flux density will produce a component of induced
voltage. To calculate that, we must invoke Faraday’s law:
— 0B
VxFE=—— 85
Y (85)

The radial component of 85, assuming that the fields do not vary with z, is:

190 0B,
Roo T o (86)

Or, assuming an electric field component of the form:

E., = Re (Enej(wrt—nm)) (87)

Using 84 and 87 in 86, we obtain an expression for electric field induced by components of air-
gap flux:

R
B, = Y B, (88)
np
,,U()NRUJTR
- 2mg(np)? ~ (89)

Now, the total voltage induced in a slot pushes current through the conductors in that slot. We
may express this by:

El + En— + En-l— = Zslotl (90)

Now: in 90, there are three components of air- gap field. FEj is the space fundamental field,
produced by the space fundamental of rotor current as well as by the space fundamental of stator
current. The other two components on the left of 90 are produced only by rotor currents and
actually represent additional reactive impedance to the rotor. This is often called zigzag leakage
inductance. The parameter Zg,; represents impedance of the slot itself: resistance and reactance
associated with cross- slot magnetic fields. Then 90 can be re-written as:

.,LLONRwTR( 1 1 >
Ei=Zg0L
BT Rt g G ()

To finish this model, it is necessary to translate 91 back to the stator. See that 67 and 77 make
the link between I and I5:

(91)

Ngr
I, = I 92
=2 6Ngks™ ( )
Then the electric field at the surface of the rotor is:
6Ngks . 3 uoNgksR < 1 1 >}
E, = Z — I 93
Ey= |7, Lot a2 (83

This must be translated into an equivalent stator voltage. To do so, we use 88 to translate 93
into a statement of radial magnetic field, then find the flux liked and hence stator voltage from
that. Magnetic flux density is:

14



pE;

B. =
= wrR
6Nsksp (Rslot . ) .3 woNgksp ( 1 1 )]
L, — I 94
{ NgrR Wy +J Salot +‘77T g (n4p)? - (n_p)? 2 (94)

where the slot impedance has been expressed by its real and imaginary parts:

Zsior = Bsiot + jwr Lsiot (95)
Flux linking the armature winding is:
0 )
Aag = NskslR / Re (ﬁreﬂwt—m)) dp (96)
T 2p
Which becomes: ‘
Aag = Re (Aageﬂwt) (97)
where:
2NgkgslR
Mgy = j%ﬁr (98)

Then “air- gap” voltage is:

2wNgkglR

2wWiVshistl B,
p

12IN2E2 Ry 6 poRIN2E? 1 1
= -1 SS('LSO ) jw— SS( ) 99
[ N \Jelaor =0 ) e e Y )| @Y

%4 = Jjwh,, =~

~—ag

Expression 99 describes the relationship between the space fundamental air- gap voltage V,
and rotor current I,. This expression fits the equivalent circuit of Figure 4 if the definitions made
below hold:

XQ;[E

Ry

s

Figure 4: Rotor Equivalent Circuit

12IN2E? 6 o RINZK? 1 1

Xy = w—r SO S S( + ) 100

2 = ey Lot T T 2 T e 2 (100)
121 N2k2

R2 - ﬁRslot (101)
Ngr

15



The first term in 100 expresses slot leakage inductance for the rotor. Similarly, 101 expresses
rotor resistance in terms of slot resistance. Note that L, and Ry, are both expressed per unit
length. The second term in 100 expresses the “zigzag” leakage inductance resulting from harmonics
on the order of rotor slot pitch.

Next, see that armature flux is just equal to air- gap flux plus armature leakage inductance.
That is, 68 could be written as:

A, =Ayy+ Lal, (102)

There are a number of components of stator slot leakage L,;, each representing flux paths that
do not directly involve the rotor. Each of the components adds to the leakage inductance. The
most prominent components of stator leakage are referred to as slot, belt, zigzag, end winding, and
skew. Each of these will be discussed in the following paragraphs.

Belt and zigzag leakage components are due to air- gap space harmonics. As it turns out, these
are relatively complicated to estimate, but we may get some notion from our first- order view of
the machine. The trouble with estimating these leakage components is that they are not really
independent of the rotor, even though we call them “leakage”. Belt harmonics are of order n = 5
and n = 7. If there were no rotor coupling, the belt harmonic leakage terms would be:

34 ,LL()N%]C%RZ
Xoogs = =———=2"— 103
s = o 52p2g (103)
34 poN2Kk2RI
Xgo7 = =——2"— 104
Wl = on 2p2g (104)

The belt harmonics link to the rotor, however, and actually appear to be in parallel with
components of rotor impedance appropriate to bp and 7p pole- pair machines. At these harmonic
orders we can usually ignore rotor resistance so that rotor impedance is purely inductive. Those
components are:

12IN2E2 6 o RIN2K? 1 1
Xorg =w— 557 = S 5( ) 105
25 =W, Uslot TR (Ne+50)2 | (Nr—5p)2 (105)
12IN2k2 6 uoRINZK? 1 1
Xor=w—"S5"T], - S 7( ) 106
2r =W Bslot T \ W T N (106)

In the simple model of the squirrel cage machine, because the rotor resistances are relatively
small and slip high, the effect of rotor resistance is usually ignored. Then the fifth and seventh
harmonic components of belt leakage are:

X5 = Xags|| X2 (107)

X7 = Xogrl| Xa7 (108)
Stator zigzag leakage is from those harmonics of the orders pns = Ngos == p where Ngjops-

34MON§RZ< [ N K, )

X. =
¢ 2w g (Nslots + p)2 (Nslots - p)2

(109)
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Note that these harmonic orders do not tend to be shorted out by the rotor cage and so no
direct interaction with the cage is ordinarily accounted for.

In order to reduce saliency effects that occur because the rotor teeth will tend to try to align
with the stator teeth, induction motor designers always use a different number of slots in the rotor
and stator. There still may be some tendency to align, and this produces “cogging” torques which
in turn produce vibration and noise and, in severe cases, can retard or even prevent starting. To
reduce this tendency to “cog”, rotors are often built with a little “skew”, or twist of the slots from
one end to the other. Thus, when one tooth is aligned at one end of the machine, it is un-aligned
at the other end. A side effect of this is to reduce the stator and rotor coupling by just a little,
and this produces leakage reactance. This is fairly easy to estimate. Consider, for example, a
space-fundamental flux density B, = Bj cos pf, linking a (possibly) skewed full-pitch current path:

z
i

A= / l / g ;‘ B cos p RdOdx
379t

4
P

~8

Here, the skew in the rotor is ¢ electrical radians from one end of the machine to the other.

Evaluation of this yields:

2B1 Rl sin %

P35
Now, the difference between what would have been linked by a non-skewed rotor and what is

linked by the skewed rotor is the skew leakage flux, now expressible as:

sin%
Xip=Xag |1 - <
2

The final component of leakage reactance is due to the end windings. This is perhaps the most
difficult of the machine parameters to estimate, being essentially three-dimensional in nature. There
are a number of ways of estimating this parameter, but for our purposes we will use a simplified
parameter from Alger[1]:

A=

1o
© T 4n22  p2

(p—0.3)

As with all such formulae, extreme care is required here, since we can give little guidance as to
when this expression is correct or even close. And we will admit that a more complete treatment
of this element of machine parameter construction would be an improvement.

4.1 Harmonic Order Rotor Resistance and Stray Load Losses

It is important to recognize that the machine rotor “sees” each of the stator harmonics in essentially
the same way, and it is quite straightforward to estimate rotor parameters for the harmonic orders,
as we have done just above. Now, particularly for the “belt” harmonic orders, there are rotor
currents flowing in response to stator mmf’s at fifth and seventh space harmonic order. The
resistances attributable to these harmonic orders are:

12IN2k2
R275 = TRRSIOtMS (110)
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12IN2k2
Rar = 7Rslot,? (111)

Ngr
The higher-order slot harmonics will have relative frequencies (slips) that are:

sn_1$(1—s)n{ Zig:i—i }kaninteger (112)

The induction motor electromagnetic interaction can now be described by an augmented mag-
netic circuit as shown in Figure 17. Note that the terminal flux of the machine is the sum of all
of the harmonic fluxes, and each space harmonic is excited by the same current so the individual
harmonic components are in series.

Each of the space harmonics will have an electromagnetic interaction similar to the fundamental:
power transferred across the air-gap is:

R
Pem,n = 3122771 2.

Sn
Of course dissipation in each circuit is:

Pd,n = 3I22,nR2,n
leaving

R
Pm,n _ 3122771 S2,n

(1 —sp)

Note that this equivalent circuit has provision for two sets of circuits which look like “cages”.
In fact one of these sets is for the solid rotor body if that exists. We will discuss that anon. There
is also a provision (r.) for loss in the stator core iron.

Power deposited in the rotor harmonic resistance elements is characterized as “stray load” loss
because it is not easily computed from the simple machine equivalent circuit.

n

4.2 Slot Models

Some of the more interesting things that can be done with induction motors have to do with the
shaping of rotor slots to achieve particular frequency-dependent effects. We will consider here three
cases, but there are many other possibilities.

First, suppose the rotor slots are representable as being rectangular, as shown in Figure 5, and
assume that the slot dimensions are such that diffusion effects are not important so that current in
the slot conductor is approximately uniform. In that case, the slot resistance and inductance per
unit length are:

1

Rylot Wahso (113)
hs

Lot = Ho 3w, (114)

The slot resistance is obvious, the slot inductance may be estimated by recognizing that if the
current in the slot is uniform, magnetic field crossing the slot must be:

I x
ws h

y =
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Then energy stored in the field in the slot is simply:

1 hs o ( Ix \? 1 poh
—Lg. 1% = / = ( > de = =—=7?
9 slot Ws o 2 \wshs v 6 ws

—
SR | i

'

Figure 5: Single Slot

4.3 Deep Slots

Now, suppose the slot is not small enough that diffusion effects can be ignored. The slot becomes
“deep” to the extent that its depth is less than (or even comparable to) the skin depth for conduction
at slip frequency. Conduction in this case may be represented by using the Diffusion Equation:

— OH

VZH = pioo——

Koo ot

In the steady state, and assuming that only cross-slot flux (in the y direction) is important, and

the only variation that is important is in the radial (x) direction:

2

0°H,

Ox?

= Jjwspoo Hy
This is solved by solutions of the form:
H, = Hiei(lﬂ')%

where the skin depth is
2

Ws oo

J=

Since H, must vanish at the bottom of the slot, it must take the form:

sinh(1 4 )%

H, = Hygp oo 908
Y OP G (1 + ) Be
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Since current is the curl of magnetic field,

oH, 1+ j cosh(1+ j)
dr — OPTS Ginh(1+ )

ST

Then slot impedance, per unit length, is:

11+ .
Zglot = wfsjcoth(l +7)

hs

J

Of course the impedance (purely reactive) due to the slot depression must be added to this. It
is possible to extract the real and imaginary parts of this impedance (the process is algebraically a
bit messy) to yield:

1 sinh2% +sin2%
w506 cosh 2}3—3 — €os 2%
hg 1 1 sinh2% —sin2k

L = —_ 4 —
slot Ho Wy  Ws Wsod cosh 2%5 — cos 2%

R

slot

4.4 Multiple Cages

The purpose of a “deep” slot is to improve starting performance of a motor. When the rotor is
stationary, the frequency seen by rotor conductors is relatively high, and current crowding due to
the skin effect makes rotor resistance appear to be high. As the rotor accelerates the frequency seen
from the rotor drops, lessening the skin effect and making more use of the rotor conductor. This,
then, gives the machine higher starting torque (requiring high resistance) without compromising
running efficiency.

This effect can be carried even further by making use of multiple cages, such as is shown in
Figure 6. Here there are two conductors in a fairly complex slot. Estimating the impedance of this
slot is done in stages to build up an equivalent circuit.

Assume for the purposes of this derivation that each section of the multiple cage is small enough
that currents can be considered to be uniform in each conductor. Then the bottom section may be
represented as a resistance in series with an inductance:

1
R =
“ J’LU1h1
L, = HoM
3’[01

The narrow slot section with no conductor between the top and bottom conductors will contribute
an inductive impedance:

h
L, = Moi

s

The top conductor will have a resistance:

owaho
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Figure 6: Double Slot

Now, in the equivalent circuit, current flowing in the lower conductor will produce a magnetic field
across this section, yielding a series inductance of

Ly = po—
2

By analogy with the bottom conductor, current in the top conductor flows through only one third of
the inductance of the top section, leading to the equivalent circuit of Figure 7, once the inductance

of the slot depression is added on:
hq
Ly = po—
Wq

Lt %Lb %Lb Ls L(z

Ry R,

Figure 7: Equivalent Circuit: Double Bar

Now, this rotor bar circuit fits right into the framework of the induction motor equivalent circuit,
shown for the double cage case in Figure 8, with

12INZkS
Roq N, SR
12IN2k?
Ry, = —25R
2b Np b
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12IN2k2 2
w——2"5(ZLy + Ls + Lq)

X —
2a NR 3
120N2k2 1
Xog = w—5(Li+ 2L
2a w NR ( t+ 3 b)

Figure 8: Equivalent Circuit: Double Cage Rotor

4.5 Rotor End Ring Effects

It is necessary to correct for “end ring” resistance in the rotor. To do this, we note that the
magnitude of surface current density in the rotor is related to the magnitude of individual bar
current by:

2R
I,=K,— 11
- (115)
Current in the end ring is:
Ip = KZE (116)
p

Then it is straightforward to calculate the ratio between power dissipated in the end rings to power
dissipated in the conductor bars themselves, considering the ratio of current densities and volumes.
Assuming that the bars and end rings have the same radial extent, the ratio of current densities is:

Jr _ N,

= - 11
J, 27p I, (117)

where w, is the average width of a conductor bar and I, is the axial end ring length.
Now, the ratio of losses (and hence the ratio of resistances) is found by multiplying the square
of current density ratio by the ratio of volumes. This is approximately:

R Ngr w\? _2rR 1,  NgpRuw,
end_(Rw>27rRl _ NgrRuw (118)

Ryot - \2mp I, Nplw,  #wllp?

4.6 Windage

Bearing friction, windage loss and fan input power are often regarded as elements of a “black art”.
We approach them with some level of trepidation, for motor manufacturers seem to take a highly
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empirical view of these elements. What follows is an attempt to build reasonable but simple models
for two effects: loss in the air gap due to windage and input power to the fan for cooling. Some
caution is required here, for these elements of calculation have not been properly tested, although
they seem to give reasonable numbers
The first element is gap windage loss. This is produced by shearing of the air in the relative
rotation gap. It is likely to be a signifigant element only in machines with very narrow air gaps or
very high surface speeds. But these include, of course, the high performance machines with which
we are most interested. We approach this with a simple “couette flow” model. Air-gap shear loss
is approximately:
Py = 2nR*Q3lp, f (119)

where p, is the density of the air-gap medium (possibly air) and f is the friction factor, estimated
by:

.0076
f=— (120)
Rp
and the Reynold’s Number R, is
Q
R, — M (121)
Vair

and vg;, is the kinematic viscosity of the air-gap medium.

The second element is fan input power. We base an estimate of this on two hypotheses. The
first of these is that the mass flow of air circulated by the fan can be calculated by the loss in the
motor and an average temperature rise in the cooling air. The second hypothesis is the the pressure
rise of the fan is established by the centrifugal pressure rise associated with the surface speed at
the outside of the rotor. Taking these one at a time: If there is to be a temperature rise AT in the
cooling air, then the mass flow volume is:

: Pq
m =
C,AT
and then volume flow is just
) m
0=—
Pair

Pressure rise is estimated by centrifugal force:

2
w
AP = pyiy (prfan)

then power is given by:

Py = AP0
For reference, the properties of air are:
Density Pair 1.18  kg/m?
Kinematic Viscosity —v,;, 1.56 X 1075 m?/sec
Heat Capacity Ccp 1005.7  J/kg
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4.7 Magnetic Circuit Loss and Excitation

There will be some loss in the stator magnetic circuit due to eddy current and hysteresis effects
in the core iron. In addition, particularly if the rotor and stator teeth are saturated there will be
MMEF expended to push flux through those regions. These effects are very difficult to estimate from
first principles, so we resort to a simple model.

Assume that the loss in saturated steel follows a law such as:

We €f B )Eb
P;=Pp|— — 122
L (w3> <BB (122)
This is not too bad an estimate for the behavior of core iron. Typically, €; is a bit less than
two (between about 1.3 and 1.6) and ¢, is a bit more than two (between about 2.1 and 2.4). Of
course this model is good only for a fairly restricted range of flux density. Base dissipation is
usually expressed in “watts per kilogram”, so we first compute flux density and then mass of the

two principal components of the stator iron, the teeth and the back iron.
In a similar way we can model the exciting volt-amperes consumed by core iron by something

like:
B €yl B €v2 w
.= = — - 12
@ <Va1 (BB> Ve <BB> ) wB (123)

This, too, is a form that appears to be valid for some steels. Quite obviously it may be necessary
to develop different forms of curve ’fits’ for different materials.
Flux density (RMS) in the air-gap is:

pVa

Br=———7— 124
" 2RlNak:1w3 ( )
Then flux density in the stator teeth is:

B, =B, (125)
wt

where w; is tooth width and wy is slot top width. Flux in the back-iron of the core is
B.=B,— (126)

where d. is the radial depth of the core.
One way of handling this loss is to assume that the core handles flux corresponding to terminal
voltage, add up the losses and then compute an equivalent resistance and reactance:

_ 3Val?

Pcore

Te

_ 3Val?

° QCOI‘G

then put this equivalent resistance in parallel with the air-gap reactance element in the equivalent
circuit.
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5 Solid Iron Rotor Bodies

Solid steel rotor electric machines (SSRM) can be made to operate with very high surface speeds and
are thus suitable for use in high RPM situations. They resemble, in form and function, hysteresis
machines. However, asynchronous operation will produce higher power output because it takes
advantage of higher flux density. We consider here the interactions to be expected from solid iron
rotor bodies. The equivalent circuits can be placed in parallel (harmonic-by-harmonic) with the
equivalent circuits for the squirrel cage, if there is also a cage in the machine.

To estimate the rotor parameters Rogs and Xos, we assume that important field quantities in
the machine are sinusoidally distributed in time and space, so that radial flux density is:

B, = Re (B,&“1)) (127)

and, similarly, axially directed rotor surface current is:

K, = Re ( Kzej(wt—m)) (128)
Now, since by Faraday’s law:
— 0B
VXE=—— 129
X o (129)
we have, in this machine geometry:
10 0B,
—_E, = — 130
RO¢p ~ ot (130)
The transformation between rotor and stator coordinates is:
¢ = — wnt (131)
where wy, is rotor speed. Then:
pwm =w —wr =w(l —3) (132)

and
Now, axial electric field is, in the frame of the rotor, just:

E. = Re ( Ezej(wt—pqs)) (133)
— Re (Ezej(curt—mﬁ/)) (134)

and R
E, = ‘“J; B, (135)

Of course electric field in the rotor frame is related to rotor surface current by:
E,=Z,K, (136)

Now these quantities can be related to the stator by noting that air-gap voltage is related to
radial flux density by:

p
B, =—"t 1
B = SN R (137)

25



The stator-equivalent rotor current is:

]2: R

T
z K 138
2T 3 Nk (138)

Then we can find stator referred, rotor equivalent impedance to be:

Q = §éiN2k2 w E,

7. — — Z = 139
D) 12 27TR a (lwr Kz ( )
Now, if rotor surface impedance can be expressed as:
Zy = Rs + jwrLs (140)
then "
Zy="2+jX (141)
where
341
R2 == igﬁNgk%Rs (142)
341
X, = ﬁENgksz (143)

Now, to find the rotor surface impedance, we make use of a nonlinear eddy-current model proposed
by Agarwal. First we define an equivalent penetration depth (similar to a skin depth):

2H,,

5 =
er'B(]

(144)

where o is rotor surface material volume conductivity, By, ”saturation flux density” is taken to be
75 % of actual saturation flux density and

k;
Hpy = K| =~ (145)
Then rotor surface resistivity and surface reactance are:
16 1
= 14
B 3106 (146)
Xs = BRs (147)

Note that the rotor elements X5 and Ry depend on rotor current Is, so the problem is nonlinear.
We find, however, that a simple iterative solution can be used. First we make a guess for Ry and find
currents. Then we use those currents to calculate Ry and solve again for current. This procedure
is repeated until convergence, and the problem seems to converge within just a few steps.

Aside from the necessity to iterate to find rotor elements, standard network techniques can be
used to find currents, power input to the motor and power output from the motor, torque, etc.
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5.1 Solution

Not all of the equivalent circuit elements are known as we start the solution. To start, we assume
a value for Ro, possibly some fraction of X,,, but the value chosen doesn not seem to matter
much. The rotor reactance Xs is just a fraction of Re. Then, we proceed to compute an “air-gap”
impedance, just the impedance looking into the parallel combination of magnetizing and rotor
branches:

. . R
Zg = jXml|(j X2+ f) (148)

(Note that, for a generator, slip s is negative).
A total impedance is then

Zi=jX1+ R+ Z, (149)
and terminal current is v,
I = A (150)
Rotor current is just: '
IL=1 ijR (151)
JXo + 72

Now it is necessary to iteratively correct rotor impedance. This is done by estimating flux
density at the surface of the rotor using (145), then getting a rotor surface impedance using (146)
and using that and (143 to estimate a new value for Rp. Then we start again with (148). The
process “drops through” this point when the new and old estimates for Ry agree to some criterion.

5.2 Harmonic Losses in Solid Steel

If the rotor of the machine is constructed of solid steel, there will be eddy currents induced on the
rotor surface by the higher-order space harmonics of stator current. These will produce magnetic
fields and losses. This calculation assumes the rotor surface is linear and smooth and can be
characterized by a conductivity and relative permeability. In this discussion we include two space
harmonics (positive and negative going). In practice it may be necessary to carry four (or even
more) harmonics, including both ‘belt’ and ‘zigzag’ order harmonics.

Terminal current produces magnetic field in the air-gap for each of the space harmonic orders,
and each of these magnetic fields induces rotor currents of the same harmonic order.

The “magnetizing” reactances for the two harmonic orders, really the two components of the
zigzag leakage, are:

k‘2
Xop= X35 (152)
P Ngk%
k‘2
Xon = Xin—5 (153)
N3k

where N, and N,, are the positive and negative going harmonic orders: For ‘belt’ harmonics
these orders are 7 and 5. For ‘zigzag’ they are:
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Ns_p
p

Now, there will be a current on the surface of the rotor at each harmonic order, and following 67,
the equivalent rotor element current is:

Ny, =

(155)

m

I, = — K 1

=2p 3 Nak:pip ( 56)
T R

I, =——K 157

These currents flow in response to the magnetic field in the air-gap which in turn produces an
axial electric field. Viewed from the rotor this electric field is:

L, = s,wRB, (158)
E, =s,wRB, (159)

where the slip for each of the harmonic orders is:

sp=1—Np(1—5) (160)
sp =1+ Np(1—5s) (161)
and then the surface currents that flow in the surface of the rotor are:
E
K ==P 162
=P Zsp ( )
E
K === 163
=N an ( )

where Z,, and Z,, are the surface impedances at positive and negative harmonic slip frequencies,
respectively. Assuming a linear surface, these are, approximately:

14
Z,— -t (164)
od
where o is material restivity and the skin depth is
2
0= (165)
Ws o

and ws is the frequency of the given harmonic from the rotor surface. We can postulate that the
appropriate value of u to use is the same as that estimated in the nonlinear calculation of the space
fundamental, but this requires empirical confirmation.

The voltage induced in the stator by each of these space harmonic magnetic fluxes is:

2Nkl Rw
=—" B 1
p Npp =p ( 66)
2N knl Rw
L= e R 1
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Then the equivalent circuit impedance of the rotor is just:

V, 34Nk Z,

Z —_ —— = ].
71, 27 NyR s, (168)
Vi 34 N2K2l Zgy
D=1 TR NuR s, (169)
The equivalent rotor circuit elements are now:
34 N2k2L 1
_ 34 L 1
7 27 N,R 09, (170)
34 N2K21 1
o = 52 MR a5, (a7
1
Xop = §R2p (172)
1
Xop = §R2n (173)

5.3 Stray Losses

So far in this document, we have outlined the major elements of torque production and consequently
of machine performance. We have also discussed, in some cases, briefly, the major sources of loss
in induction machines. Using what has been outlined in this document will give a reasonable
impression of how an induction machine works. We have also discussed some of the stray load
losses: those which can be (relatively) easily accounted for in an equivalent circuit description of
the machine. But there are other losses which will occur and which are harder to estimate. We do
not claim to do a particularly accurate job of estimating these losses, and fortunately they do not
normally turn out to be very large. To be accounted for here are:

1. No-load losses in rotor teeth because of stator slot opening modulation of fundamental flux
density,

2. Load losses in the rotor teeth because of stator zigzag mmf, and

3. No-load losses in the solid rotor body (if it exists) due to stator slot opening modulation of
fundamental flux density.

Note that these losses have a somewhat different character from the other miscellaneous losses we
compute. They show up as drag on the rotor, so we subtract their power from the mechanical
output of the machine. The first and third of these are, of course, very closely related so we take
them first.

The stator slot openings ‘modulate’ the space fundamental magnetic flux density. We may
estimate a slot opening angle (relative to the slot pitch):

2rwgNs  wygNy
0D = =

2nr r
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Then the amplitude of the magnetic field disturbance is:

2 0
By = Brl—sin—D
m 2

In fact, this flux disturbance is really in the form of two traveling waves, one going forward and one
backward with respect to the stator at a velocity of w/N;. Since operating slip is relatively small,
the two variations will have just about the same frequency as viewed from the rotor, so it seems
reasonable to lump them together. The frequency is:

N
wg = wW—

Now, for laminated rotors this magnetic field modulation will affect the tips of rotor teeth. We
assume (perhaps arbitrarily) that the loss due to this magnetic field modulation can be estimated
from ordinary steel data (as we estimated core loss above) and that only the rotor teeth, not any of
the rotor body, are affected. The method to be used is straightforward and follows almost exactly
what was done for core loss, with modification only of the frequency and field amplitude.

For solid steel rotors the story is only a little different. The magnetic field will produce an axial
electric field:

w
E.=R%By
p
and that, in turn, will drive a surface current
E,
k=2

S

Now, what is important is the magnitude of the surface current, and since |Z,] = V1 + .52R, ~
1.118 R, we can simply use rotor resistance. The nonlinear surface penetration depth is:

2By
U‘)HU’KZ|

A brief iterative substitution, re-calculating § and then |K | quickly yields consistent values for §
and Rs. Then the full-voltage dissipation is:

2
Py = 27TR1’K3’

o

and an equivalent resistance is:

2
_ 3|Val
R.s =

PT'S

Finally, the zigzag order current harmonics in the stator will produce magnetic fields in the
air gap which will drive magnetic losses in the teeth of the rotor. Note that this is a bit different
from the modulation of the space fundamental produced by the stator slot openings (although the
harmonic order will be the same, the spatial orientation will be different and will vary with load
current). The magnetic flux in the air-gap is most easily related to the equivalent circuit voltage
on the n*" harmonic:
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NPy,

B, =
2lRNykomega

This magnetic field variation will be substantial only for the zigzag order harmonics: the belt
harmonics will be essentially shorted out by the rotor cage and those losses calculated within
the equivalent circuit. The frequency seen by the rotor is that of the space harmonics, already
calculated, and the loss can be estimated in the same way as core loss, although as we have pointed
out it appears as a ‘drag’ on the rotor.

6 Induction Motor Speed Control

6.1 Introduction

The inherent attributes of induction machines make them very attractive for drive applications.
They are rugged, economical to build and have no sliding contacts to wear. The difficulty with
using induction machines in servomechanisms and variable speed drives is that they are “hard to
control”, since their torque-speed relationship is complex and nonlinear. With, however, modern
power electronics to serve as frequency changers and digital electronics to do the required arithmetic,
induction machines are seeing increasing use in drive applications.

In this chapter we develop models for control of induction motors. The derivation is quite brief
for it relies on what we have already done for synchronous machines. In this chapter, however, we
will stay in “ordinary” variables, skipping the per-unit normalization.

6.2 Volts/Hz Control

Remembering that induction machines generally tend to operate at relatively low per unit slip, we
might conclude that one way of building an adjustable speed drive would be to supply an induction
motor with adjustable stator frequency. And this is, indeed, possible. One thing to remember is
that flux is inversely proportional to frequency, so that to maintain constant flux one must make
stator voltage proportional to frequency (hence the name “constant volts/Hz”). However, voltage
supplies are always limited, so that at some frequency it is necessary to switch to constant voltage
control. The analogy to DC machines is fairly direct here: below some “base” speed, the machine
is controlled in constant flux (“volts/Hz”) mode, while above the base speed, flux is inversely
proportional to speed. It is easy to see that the maximum torque is then inversely to the square of
flux, or therefore to the square of frequency.

To get a first-order picture of how an induction machine works at adjustable speed, start with
the simplified equivalent network that describes the machine, as shown in Figure 9

Earlier in this chapter, it was shown that torque can be calculated by finding the power dissi-
pated in the virtual resistance Ra/s and dividing by electrical speed. For a three phase machine,
and assuming we are dealing with RMS magnitudes:

R
T, = 32|22
w S

where w is the electrical frequency and p is the number of pole pairs. It is straightforward to find
I, using network techniques. As an example, Figure 10 shows a series of torque/speed curves for
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Figure 9: Equivalent Circuit

an induction machine operated with a wide range of input frequencies, both below and above its
“base” frequency. The parameters of this machine are:

Number of Phases 3
Number of Pole Pairs 3
RMS Terminal Voltage (line-line) 230
Frequency (Hz) 60
Stator Resistance R, .06 Q
Rotor Resistance Ro .055 Q
Stator Leakage X .34 Q
Rotor Leakage X9 .33 Q)
Magnetizing Reactance X, 10.6 ©

Strategy for operating the machine is to make terminal voltage magnitude proportional to frequency
for input frequencies less than the “Base Frequency”, in this case 60 Hz, and to hold voltage constant
for frequencies above the “Base Frequency”.

For high frequencies the torque production falls fairly rapidly with frequency (as it turns out,
it is roughly proportional to the inverse of the square of frequency). It also falls with very low
frequency because of the effects of terminal resistance. We will look at this next.

6.3 Idealized Model: No Stator Resistance

Ignore, for the moment, R;. An equivalent circuit is shown in Figure 11. It is fairly easy to show
that, from the rotor, the combination of source, armature leakage and magnetizing branch can be
replaced by its equivalent circuit, as shown in in Figure 12.

In the circuit of Figure 12, the parameters are:

Xm
X + X1
X = Xm|| X1

Vi =V

If the machine is operated at variable frequency w, but the reactance is established at frequency
wp, current is:
Vl

l: - / w R2
JXT+Xo) o+ 72
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Figure 10: Induction Machine Torque-Speed Curves

Figure 11: Idealized Circuit: Ignore Armature Resistance

and then torque is
2P _3p VPR
- R
W O X (B
Now, if we note that what counts is the absolute slip of the rotor, we might define a slip with
respect to base frequency:

T, = 3|12|

Then, if we assume that voltage is applied proportional to frequency:

V' = Vo/i
wpB
and with a little manipulation, we get:
R
T 3p Vol?s2
CowB (X)X (§2)2

SB
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Figure 12: Idealized Equivalent

This would imply that torque is, if voltage is proportional to frequency, meaning constant applied
flux, dependent only on absolute slip. The torque-speed curve is a constant, dependent only on the
difference between synchronous and actual rotor speed.

This is fine, but eventually, the notion of “volts per Hz” runs out because at some number of
Hz, there are no more volts to be had. This is generally taken to be the “base” speed for the drive.
Above that speed, voltage is held constant, and torque is given by:

_ 3£ ’V/P%
CowB (X)X 4 ((2)2

SB

The peak of this torque has a square-inverse dependence on frequency, as can be seen from Figure 13.

Induction Motor Torque
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Figure 13: Idealized Torque-Speed Curves: Zero Stator Resistance
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6.4 Peak Torque Capability
Assuming we have a smart controller, we are interested in the actual capability of the machine. At
some voltage and frequency, torque is given by:
T, — 35,252 BEIVP
= 21— =
‘ s (X 4+ X2)(25))? + (B, + 12)2

Now, we are interested in finding the peak value of that, which is given by the value of Ras which
maximizes power transfer to the virtual resistance. This is given by the matching condition:

B Jrr e ()

Then maximum (breakdown) torque is given by:

LIV JRE + (X] + X2)(:2))?
(X7 + X2)(2))2 + (By + JRP + ((X] + X2)(:5))?)?

Tmax =

This is plotted in Figure 14. Just as a check, this was calculated assuming R; = 0, and the
results are plotted in figure 15. This plot shows, as one would expect, a constant torque limit region
to zero speed.

Breakdown Torque
300 T

Newton-Meters

.
0 20 40 60 80 100 120
Drive Frequency, Hz

Figure 14: Torque-Capability Curve For An Induction Motor

6.5 Field Oriented Control

One of the more useful impacts of modern power electronics and control technology has enabled
us to turn induction machines into high performance servomotors. In this note we will develop a
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Figure 15: Idealized Torque Capability Curve: Zero Stator Resistance

picture of how this is done. Quite obviously there are many details which we will not touch here.
The objective is to emulate the performance of a DC machine, in which (as you will recall), torque
is a simple function of applied current. For a machine with one field winding, this is simply:

T = GIyI,

This makes control of such a machine quite easy, for once the desired torque is known it is easy to
translate that torque command into a current and the motor does the rest.

Of course DC (commutator) machines are, at least in large sizes, expensive, not particularly
efficient, have relatively high maintenance requirements because of the sliding brush/commutator
interface, provide environmental problems because of sparking and carbon dust and are environ-
mentally sensitive. The induction motor is simpler and more rugged. Until fairly recently the
induction motor has not been widely used in servo applications because it was thought to be ”hard
to control”. As we will show, it does take a little effort and even some computation to do the
controls right, but this is becoming increasingly affordable.

6.6 Elementary Model:

We return to the elementary model of the induction motor. In ordinary variables, referred to the
stator, the machine is described by flux-current relationships (in the d-q reference frame):

Ads _ Ls M ids
AdR M Lpg idR

Ms | _ [ Ls M [ dgs
AR M Lg || i
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Note the machine is symmetric (there is no saliency), and since we are referred to the stator,
the stator and rotor self-inductances include leakage terms:

Ls = M+ Lgy

The voltage equations are:

dAgs .
Vds — W — (U)\qs + rStds
dAgs )
Vgs = dZ + wAgs + TSlqS
dA )
0 = dh - ws)\qR + TRUR
dt
dA )
0 = d[tIR + wsAdr + TRIgR

Note that both rotor and stator have “speed” voltage terms since they are both rotating with
respect to the rotating coordinate system. The speed of the rotating coordinate system is w with
respect to the stator. With respect to the rotor that speed is , where wm is the rotor mechanical
speed. Note that this analysis does not require that the reference frame coordinate system speed
w be constant.

Torque is given by:

3 . .
T¢ = 2P (Adsiqs — Agsids)

6.7 Simulation Model

As a first step in developing a simulation model, see that the inversion of the flux-current relation-
ship is (we use the d- axis since the g- axis is identical):

as = bn___, M\
ZdS - LSLR _ M2 ds LSLR _ M2 dR
. M \ Lg )
VA = —
" LsLp— M2"% " LgLg— M2
Now, if we make the following definitions (the motivation for this should by now be obvious):
X4 = woLs
Xka = wolr
Xad = u.)(]M
M2
X, = Lg— —
the currents become:
e = Y05 Ked@o
ds Xél ds Xa X& dR
i = Xaawo, - Xawo
dR X1 X s X Xia dR



The g- axis is the same.
Torque may be, with these calculations for current, written as:

-3 woXad
2P XX

3 ) .
Te = -p (Aisiqs — Agsids) = (AdsAqr — AgsAdRr)

2
Note that the usual problems with ordinary variables hold here: the foregoing expression was
written assuming the variables are expressed as peak quantities. If RMS is used we must replace
3/2 by 3!
With these, the simulation model is quite straightforward. The state equations are:

d\ )
TZS = Vys+ w)\qs — Rgigg
d\ )

dzs = Vys —wlgs — Rgigs
dA )

d;m = wsAqr — RRigr
d\ .

dzR = —wsAgr — Rsigr
dQ, 1
— = = (T.+1T,

dt J( + )

where the rotor frequency (slip frequency) is:
ws =w — py,

For simple simulations and constant excitaion frequency, the choice of coordinate systems is
arbitrary, so we can choose something convenient. For example, we might choose to fix the coordi-
nate system to a synchronously rotating frame, so that stator frequency w = wqy. In this case, we
could pick the stator voltage to lie on one axis or another. A common choice is V; =0 and V, = V.

6.8 Control Model

If we are going to turn the machine into a servomotor, we will want to be a bit more sophisticated
about our coordinate system. In general, the principle of field-oriented control is much like emu-
lating the function of a DC (commutator) machine. We figure out where the flux is, then inject
current to interact most directly with the flux.

As a first step, note that because the two stator flux linkages are the sum of air-gap and leakage
flux,

Ads = Aagd + Lsiigs
)\qS = )\agq—i—Lsgiqs

This means that we can re-write torque as:

3 ) .
T¢ = ip (AagquS - AaqudS)
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Next, note that the rotor flux is, similarly, related to air-gap flux:

Aagd = Adr — LRretdr
Aagq = )\qR_LRZiqR

Torque now becomes:
o3 R R
T° = —p(Ndriqs — A\qRids) — §pLR£ (tdrigs — iqRidS)

2

Now, since the rotor currents could be written as:

i Mar M,
dR LR LRdS
iop = @—%is
q LR LRq

That second term can be written as:
. . 1 ) )
laRles ~ iqRids = 7 (AdRigS — AgRids)
So that torque is now:

3 Lgy . . 3 M . .
T¢ = 2P (1 — LR> (AdRiqs — AqRrids) = I (AdRiqs — AgRids)

6.9 Field-Oriented Strategy:

What is done in field-oriented control is to establish a rotor flux in a known position (usually this
position is the d- axis of the transformation) and then put a current on the orthogonal axis (where
it will be most effective in producing torque). That is, we will attempt to set

Mr = Mo
M = 0

Then torque is produced by applying quadrature-axis current:

M
Te =2

= — Aot
2pLR 0%qS

The process is almost that simple. There are a few details involved in figuring out where the
quadrature axis is and how hard to drive the direct axis (magnetizing) current.

Now, suppose we can succeed in putting flux on the right axis, so that A\jg = 0, then the two
rotor voltage equations are:

d\

0 = di _wsAqR‘i"rRIdR
dt
d\

0 = d(zR“‘ws)\dR‘i‘rRIqR
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Now, since the rotor currents are:

. Aar M .
i = — — —1
dR LR LR ds
. )\qR M .
i = = —-——1
qR LR LR qS
The voltage expressions become, accounting for the fact that there is no rotor quadrature axis
flux:
dAir (AdR M . )
0 TR|— — —1
at TR\ T. T Lp
0 = (USAdR — TRfRiqS
Noting that the rotor time constant is
L
Tp =2
TR
we find:
dX ‘
Tr— L \gp = Migg
dt
M 45
ws = ——=
’ Tr Air

The first of these two expressions describes the behavior of the direct-axis flux: as one would
think, it has a simple first-order relationship with direct-axis stator current. The second expression,
which describes slip as a function of quadrature axis current and direct axis flux, actually describes
how fast to turn the rotating coordinate system to hold flux on the direct axis.

Now, a real machine application involves phase currents i,, 7;, and 7., and these must be derived
from the model currents i4s and i4s. This is done with, of course, a mathematical operation which
uses a transformation angle 6. And that angle is derived from the rotor mechanical speed and
computed slip:

0 :/(pwm + ws) dt

A generally good strategy to make this sort of system work is to measure the three phase currents
and derive the direct- and quadrature-axis currents from them. A good estimate of direct-axis flux is
made by running direct-axis flux through a first-order filter. The tricky operation involves dividing
quadrature axis current by direct axis flux to get slip, but this is now easily done numerically (as
are the trigonometric operations required for the rotating coordinate system transformation). An
elmentary block diagram of a (possbly) plausible scheme for this is shown in Figure 16.

In this picture we start with commanded values of direct- and quadrature- axis currents, corre-
sponding to flux and torque, respectively. These are translated by a rotating coordinate transfor-
mation into commanded phase currents. That transformation (simply the inverse Park’s transform)
uses the angle q derived as part of the scheme. In some (cheap) implementations of this scheme
the commanded currents are used rather than the measured currents to establish the flux and slip.
We have shown the commanded currents i, etc. as inputs to an “Amplifier”. This might be
implemented as a PWM current-source, for example, and a tight loop here results in a rather high
performance servo system.
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1 Introduction

Virtually all electric machines, and all practical electric machines employ some form of rotating
or alternating field/current system to produce torque. While it is possible to produce a “true
DC” machine (e.g. the “Faraday Disk”), for practical reasons such machines have not reached
application and are not likely to. In the machines we have examined so far the machine is operated
from an alternating voltage source. Indeed, this is one of the principal reasons for employing AC
in power systems.

The first electric machines employed a mechanical switch, in the form of a carbon brush/commutator
system, to produce this rotating field. While the widespread use of power electronics is making
“brushless” motors (which are really just synchronous machines) more popular and common, com-
mutator machines are still economically very important. They are relatively cheap, particularly in
small sizes, they tend to be rugged and simple.

You will find commutator machines in a very wide range of applications. The starting motor
on all automobiles is a series-connected commutator machine. Many of the other electric motors in
automobiles, from the little motors that drive the outside rear-view mirrors to the motors that drive
the windshield wipers are permanent magnet commutator machines. The large traction motors
that drive subway trains and diesel/electric locomotives are DC commutator machines (although
induction machines are making some inroads here). And many common appliances use “universal”
motors: series connected commutator motors adapted to AC.

1.1 Geometry:

A schematic picture (“cartoon”) of a commutator type machine is shown in 1. The armature of
this machine is on the rotor (this is the part that handles the electric power), and current is fed to
the armature through the brush/commutator system. The interaction magnetic field is provided

*(©2003 James L. Kirtley Jr.
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Figure 1: Wound-Field DC Machine Geometry

(in this picture) by a field winding. A permanent magnet field is applicable here, and we will have
quite a lot more to say about such arrangements below.

Now, if we assume that the interaction magnetic flux density averages B,., and if there are Cy
conductors underneath the poles at any one time, and if there are m parallel paths, then we may
estimate torque produced by the machine by:

T, = ﬁREBTIa
m

where R and £ are rotor radius and length, respectively and I, is terminal current. Note that C,
is not necessarily the total number of conductors, but rather the total number of active conductors
(that is, conductors underneath the pole and therefore subject to the interaction field). Now, if we
note Ny as the number of field turns per pole, the interaction field is just:

N¢l
B, = fLf
g
leading to a simple expression for torque in terms of the two currents:
T, = Gl Iy

where G is now the motor coefficient (units of N-m/ampere squared):
C. N
G =p—-2"LRe
m g
Now, let’s go back and look at this from the point of view of voltage. Start with Faraday’s Law:

. 0B
E=-—"
V x 5

Integrating both sides and noting that the area integral of a curl is the edge integral of the

quantity, we find:
- 0B
E-dl =— —
pEa—-f %
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Now, that is a bit awkward to use, particularly in the case we have here in which the edge of
the contour is moving (note we will be using this expression to find voltage). We can make this a
bit more convenient to use if we note:

d 5 9B =
s f B-nda—// —a-t—-n.da-l-jéva-df

where 7 is the velocity of the contour. This gives us a convenient way of noting the apparent electric
field within a moving object (as in the conductors in a DC machine):

E'=E+vxB

Figure 2: Motion of a contour through a magnetic field produces flux change and electric field in
the moving contour

Now, note that the armature conductors are moving through the magnetic field produced by
the stator (field) poles, and we can ascribe to them an axially directed electric field:

E, = —RQB,

If the armature conductors are arranged as described above, with C, conductors in m parallel
paths underneath the poles and with a mean active radial magnetic field of B,., we can compute a
voltage induced in the stator conductors:

By= CapoB,
m

Note that this is only the voltage induced by motion of the armature conductors through the
field and does not include brush or conductor resistance. If we include the expression for effective
magnetic field, we find that the back voltage is:

E, = GQI;

which leads us to the conclusion that newton-meters per ampere squared equals volt seconds per
ampere. This stands to reason if we examine electric power into the interaction and mechanical
power out:

Pem == EbIa = TPQ



Now, a more complete model of this machine would include the effects of armature, brush and
lead resistance, so that in steady state operation:

Vo = Rul, + GQI;

Now, consider this machine with its armatucre connected to a voltage source and its field
operating at steady current, so that:

Vo — GQI;
lo=—"%—"
a
R.
+
+
Va GQl

Figure 3: DC Machine Equivalent Circuit

Then torque, electric power in and mechanical power out are:

Vo — GQU
T. = GI;——
f R,
Vo — GQy
Po = Vo——F5—"
R,
P, = GQIJCV;’_RGQIJC

Now, note that these expressions define three regimes defined by rotational speed. The two
“break points” are at zero speed and at the “zero torque” speed:

p— Va
- Gy

Qo

For 0 < 2 < Qp, the machine is a motor: electric power in and mechanical power out are both
positive. For higher speeds: Qg < €0, the machine is a generator, with electrical power in and
mechanical power out being both negative. For speeds less than zero, electrical power in is positive
and mechanical power out is negative. There are few needs to operate machines in this regime,
short of some types of ”plugging” or emergency braking in tractions systems.

1.2 Hookups:

We have just described a mode of operation of a commutator machine usually called “separately
excited”, in which field and armature circuits are controlled separately. This mode of operation is
used in some types of traction applications in which the flexibility it affords is useful. For example,
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Figure 4: DC Machine Operating Regimes
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Figure 5: Two-Chopper, separately excited machine hookup

some traction applications apply voltage control in the form of “choppers” to separately excited
machines.

Note that the “zero torque speed” is dependend on armature voltage and on field current.
For high torque at low speed one would operate the machine with high field current and enough
armature voltage to produce the requisite current. As speed increases so does back voltage, and
field current may need to be reduced. At any steady operating speed there will be some optimum
mix of field and armature currents to produced the required torque. For braking one could (and this
is often done) re-connect the armature of the machine to a braking resistor and turn the machine
into a generator. Braking torque is controlled by field current.

A subset of the separately excited machine is the shunt connection in which armature and field
are supplied by the same source, in parallel. This connection is not widely used any more: it does
not yield any meaningful ability to control speed and the simple applications to which is used to
be used are mostly being handled by induction machines.



Figure 6: Series Connection

Another connection which is still widely used in the series connection, in which the field winding
is sized so that its normal operating current level is the same as normal armature current and the
two windings are connected in series. Then:

Vv

Ih=I=——
77 Ry + Ry + GO

And then torque is:
B GV?
(Ra + Ry + GQ)*

3

e

It is important to note that this machine has no “zero-torque” speed, leading to the possibility
that an unloaded machine might accelerate to dangerous speeds. This is particularly true because
the commutator, made of pieces of relatively heavy material tied together with non- conductors, is
not very strong.

Speed control of series connected machines can be achieved with voltage control and many
appliances using this type of machine use choppers or phase control. An older form of control
used in traction applications was the series dropping resistor: obviously not a very efficient way of
controlling the machine and not widely used (except in old equipment, of course).

A variation on this class of machine is the very widely used “universal motor”, in which the stator
and rotor (field and armature) of the machine are both constructed to operate with alternating
current. This means that both the field and armature are made of laminated steel. Note that such
a machine will operate just as it would have with direct current, with the only addition being the
reactive impedance of the two windings. Working with RMS quantities:

%

I = =

= T R+ Ry + GOt jw(La+Ly)
2

_ ]

(Ro + Ry 4+ GQ)* + (WL, + wLy)?

where w is the electrical supply frequency. Note that, unlike other AC machines, the universal
motor is not limited in speed to the supply frequency. Appliance motors typically turn substantially
faster than the 3,600 RPM limit of AC motors, and this is one reason why they are so widely used:
with the high rotational speeds it is possible to produce more power per unit mass (and more power
per dollar).



1.3 Commutator:

The commutator is what makes this machine work. The brush and commutator system of this
class of motor involves quite a lot of “black art”, and there are still aspects of how they work
which are poorly understood. However, we can make some attempt to show a bit of what the
brush/commutator system does.

To start, take a look at the picture shown in Figure 7. Represented are a pair of poles (shaded)
and a pair of brushes. Conductors make a group of closed paths. Current from one of the brushes
takes two parallel paths. You can follow one of those paths around a closed loop, under each of
the two poles (remember that the poles are of opposite polarity) to the opposite brush. Open
commutator segments (most of them) do not carry current into or out of the machine.

Figure 7: Commutator and Current Paths

A commutation interval occurs when the current in one coil must be reversed. (See Figure 8
In the simplest form this involves a brush bridging between two commutator segments, shorting
out that coil. The resistance of the brush causes the current to decay. When the brush leaves the
leading segment the current in the leading coil must reverse.

Figure 8: Commutator at Commutation

We will not attempt to fully understand the commutation process in this type of machine, but
we can note a few things. Resistive commutation is the process relied upon in small machines.



When the current in one coil must be reversed (because it has left one pole and is approaching the
other), that coil is shorted by one of the brushes. The brush resistance causes the current in the
coil to decay. Then the leading commutator segment leaves the brush the current MUST reverse
(the trailing coil has current in it), and there is often sparking.

1.4 Commutation

Stator Yoke

Field Poles

Rotor

Armature Winding
Field Winding

Commutation
Interpoles

Figure 9: Commutation Interpoles

In larger machines the commutation process would involve too much sparking, which causes
brush wear, noxious gases (ozone) that promote corrosion, etc. In these cases it is common to use
separate commutation interpoles. These are separate, usually narrow or seemingly vestigal pole
pieces which carry armature current. They are arranged in such a way that the flux from the
interpole drives current in the commutated coil in the proper direction. Remember that the coil
being commutated is located physically between the active poles and the interpole is therefore in the
right spot to influence commutation. The interpole is wound with armature current (it is in series
with the main brushes). It is easy to see that the interpole must have a flux density proportional
to the current to be commutated. Since the speed with which the coil must be commutated is
proportional to rotational velocity and so is the voltage induced by the interpole, if the right
number of turns are put around the interpole, commutation can be made to be quite accurate.

1.5 Compensation:

The analysis of commutator machines often ignores armature reaction flux. Obviously these ma-
chines DO produce armature reaction flux, in quadrature with the main field. Normally, commuta-
tor machines are highly salient and the quadrature inductance is lower than direct-axis inductance,
but there is still flux produced. This adds to the flux density on one side of the main poles (pos-
sibly leading to saturation). To make the flux distribution more uniform and therefore to avoid
this saturation effect of quadrature axis flux, it is common in very highly rated machines to wind
compensation coils: essentially mirror-images of the armature coils, but this time wound in slots
in the surface of the field poles. Such coils will have the same number of ampere-turns as the



Field Poles
Pole—-Face

Compensation
Winding
Rotor
Armature Winding
Field Winding

Commutation
Interpoles

Figure 10: Pole Face Compensation Winding

armature. Normally they have the same number of turns and are connected directly in series with
the armature brushes. What they do is to almost exactly cancel the flux produced by the armature
coils, leaving only the main flux produced by the field winding. One might think of these coils as
providing a reaction torque, produced in exactly the same way as main torque is produced by the
armature. A cartoon view of this is shown in Figure 10.

2 Permanent Magnets in Electric Machines

Of all changes in materials technology over the last several years, advances in permanent magnets
have had the largest impact on electric machines. Permanent magnets are often suitable as replace-
ments for the field windings in machines: that is they can produce the fundamental interaction
field. This does three things. First, since the permanent magnet is lossless it eliminates the energy
required for excitation, usually improving the efficiency of the machine. Second, since eliminating
the excitation loss reduces the heat load it is often possible to make PM machines more compact.
Finally, and less appreciated, is the fact that modern permanent magnets have very large coercive
force densities which permit vastly larger air gaps than conventional field windings, and this in turn
permits design flexibility which can result in even better electric machines.

These advantages come not without cost. Permanent magnet materials have special character-
istics which must be taken into account in machine design. The highest performance permanent
magnets are brittle ceramics, some have chemical sensitivities, all are sensitive to high temperatures,
most have sensitivity to demagnetizing fields, and proper machine design requires understanding
the materials well. These notes will not make you into seasoned permanent magnet machine de-
signers. They are, however, an attempt to get started, to develop some of the mathematical skills



required and to point to some of the important issues involved.

2.1 Permanent Magnets:

Hysteresis Loop: Permanent Magnet

100 300 400

Tesla

Kilo Amperes/Meter

Figure 11: Hysteresis Loop Of Ceramic Permanent Magnet

Permanent magnet materials are, at core, just materials with very wide hysteresis loops. Fig-
ure 11 is an example of something close to one of the more popular ceramic magnet materials.Note
that this hysteresis loop is so wide that you can see the effect of the permeability of free space.

Demagnetization Curve
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Figure 12: Demagnetization Curve

It is usual to display only part of the magnetic characteristic of permanent magnet materials
(see Figure 12), the third quadrant of this picture, because that is where the material is normally
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operated. Note a few important characteristics of what is called the “demagnetization curve”. The
remanent flux density B, is the value of flux density in the material with zero magnetic field H.
The coercive field H, is the magnetic field at which the flux density falls to zero. Shown also on
the curve are loci of constant energy product. This quantity is unfortunately named, for although
it has the same units as energy it represents real energy in only a fairly general sense. It is the
product of flux density and field intensity. As you already know, there are three commonly used
systems of units for magnetic field quantities, and these systems are often mixed up to form very
confusing units. We will try to stay away from the English system of units in which field intensity
H is measured in amperes per inch and flux density B in lines (actually, usually kilolines) per
square inch. In CGS units flux density is measured in Gauss (or kilogauss) and magnetic field
intensity in Oersteds. And in SI the unit of flux density is the Tesla, which is one Weber per square
meter, and the unit of field intensity is the Ampere per meter. Of these, only the last one, A/m is
obvious. A Weber is a volt-second. A Gauss is 10~* Tesla. And, finally, an Oersted is that field
intensity required to produce one Gauss in the permeability of free space. Since the permeability
of free space pg = 47 x 107" Hy/m, this means that one Oe is about 79.58 A/m. Commonly, the
energy product is cited in MgOe (Mega-Gauss-Oersted)s. One MgOe is equal to 7.958kJ/m3. A
commonly used measure for the performance of a permanent magnet material is the maximum
energy product, the largest value of this product along the demagnetization curve.

To start to understand how these materials might be useful, consider the situation shown in
Figure 13: A piece of permanent magnet material is wrapped in a magnetic circuit with effectively
infinite permeability. Assume the thing has some (finite) depth in the direction you can’t see. Now,
if we take Ampere’s law around the path described by the dotted line,

fﬁ-dizo

since there is no current anywhere in the problem. If magnetization is upwards, as indicated by
the arrow, this would indicate that the flux density in the permanent magnet material is equal to
the remanent flux density (also upward).

Permanent Magnet

N

Magnetic Circuit, 1 — co A

Figure 13: Permanent Magnet in Magnetic Circuit

A second problem is illustrated in Figure 14, in which the same magnet is embedded in a
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magnetic circuit with an air gap. Assume that the gap has width g and area Ag. The magnet has
height hm and area Am. For convenience, we will take the positive reference direction to be up (as
we see it here) in the magnet and down in the air-gap.

Permanent Magnet

—l——l :T/h
T L :

Magnetic Circuit, 1 — co A

Figure 14: Permanent Magnet Driving an Air-Gap

Thus we are following the same reference direction as we go around the Ampere’s Law loop.
That becomes:

fﬁ-d?:HmherHgg

Now, Gauss’ law could be written for either the upper or lower piece of the magnetic circuit.
Assuming that the only substantive flux leaving or entering the magnetic circuit is either in the
magnet or the gap:

ﬂ B-dA=BpnAn— uoHyA,
Solving this pair we have:

B, = _NOjighimHm = poPuHn,
m 9

This defines the unit permeance, essentially the ratio of the permeance facing the permanent
magnet to the internal permeance of the magnet. The problem can be, if necessary, solved graph-
ically, since the relationship between B,, and H,, is inherently nonlinear, as shown in Figure 15
“load line” analysis of a nonlinear electronic circuit.

Now, one more ‘cut’ at this problem. Note that, at least for fairly large unit permeances the
slope of the magnet characteristic is fairly constant. In fact, for most of the permanent magnets
used in machines (the one important exception is the now rarely used ALNICO alloy magnet), it
is generally acceptable to approximate the demagnitization curve with:

ém = Um (ﬁm + MO)

Here, the magnetization M is fixed. Further, for almost all of the practical magnet materials
the magnet permeability is nearly the same as that of free space (um ~ po). With that in mind,

12
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T

Figure 15: Load Line, Unit Permeance Analysis
consider the problem shown in Figure 16, in which the magnet fills only part of a gap in a magnetic

circuit. But here the magnet and gap areas are essentially the same. We could regard the magnet

as simply a magnetization.

Permanent Magnet

Magnetic Circuit, i — oo A

Figure 16: Surface Magnet Primitive Problem

In the region of the magnet and the air-gap, Ampere’s Law and Gauss’ law can be written:

VxH = 0
V - o (f_jm + M()) =0
V- uoﬁg = 0
the divergence of H in the magnet is zero.

Now, if in the magnet the magnetization is constant,
Because there is no current here, H is curl free, so that everywhere:

—

H = -V
V3 = 0

That is, magnetic field can be expressed as the gradient of a scalar potential which satisfies
Laplace’s equation. It is also pretty clear that, if we can assign the scalar potential to have a value
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of zero anywhere on the surface of the magnetic circuit it will be zero over all of the magnetic
circuit (i.e. at both the top of the gap and the bottom of the magnet). Finally, note that we can’t
actually assume that the scalar potential satisfies Laplace’s equation everywhere in the problem.
In fact the divergence of M is zero everywhere except at the top surface of the magnet where it is
singular! In fact, we can note that there is a (some would say fictitious) magnetic charge density:

pm:_v'M

At the top of the magnet there is a discontinuous change in M and so the equivalent of a
magnetic surface charge. Using H, to note the magnetic field above the magnet and H,, to note
the magnetic field in the magnet,

uoHg = po (Hm + Mo)
om = My=Hy;— Hpy,

and then to satisfy the potential condition, if hm is the height of the magnet and g is the gap:

gHy = hy Hy,
Solving,
b,
H, = M;
¢ Ot g

Now, one more observation could be made. We would produce the same air-gap flux density
if we regard the permanent magnet as having a surface current around the periphery equal to the
magnetization intensity. That is, if the surface current runs around the magnet:

Ky = My
This would produce an MMF in the gap of:
F = Kghp,

and then since the magnetic field is just the MMF divided by the total gap:

— L = M, him
I hmtyg hm + g
The real utility of permanent magnets comes about from the relatively large magnetizations:

numbers of a few to several thousand amperes per meter are common, and these would translate
into enormous current densities in magnets of ordinary size.

3 Simple Permanent Magnet Machine Structures: Commutator
Machines

Figure 17 is a cartoon picture of a cross section of the geometry of a two-pole commutator machine
using permanent magnets. This is actually the most common geometry that is used. The rotor
(armature) of the machine is a conventional, windings-in-slots type, just as we have already seen
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Stator Yoke

Armature Winding
Field Magnets

Rotor

Figure 17: PM Commutator Machine

for commutator machines. The field magnets are fastened (often just bonded) to the inside of a
steel tube that serves as the magnetic flux return path.

Assume for the purpose of first-order analysis of this thing that the magnet is describable by its
remanent flux density B, and had permeability of ug. First, we will estimate the useful magnetic
flux density and then will deal with voltage generated in the armature. Interaction Flux Density
Using the basics of the analysis presented above, we may estimate the radial magnetic flux density
at the air-gap as being:

By = I
1+ P,
where the effective unit permeance is:
_ Jihm 49
¢ ff g Am

A book on this topic by James Ireland suggests values for the two “fudge factors”:
1. The “leakage factor” f; is cited as being about 1.1.

2. The “reluctance factor” f is cites as being about 1.2.

We may further estimate the ratio of areas of the gap and magnet by:

Ay, R+4§

Now, there are a bunch of approximations and hand wavings in this expression, but it seems to
work, at least for the kind of machines contemplated.

A second correction is required to correct the effective length for electrical interaction. The
reason for this is that the magnets produce fringing fields, as if they were longer than the actual
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"stack length” of the rotor (sometimes they actually are). This is purely empirical, and Ireland
gives a value for effective length for voltage generation of:

E*

Eeff:ﬁ

where ¢* = ¢+ 2N R | and the empirical coefficient

A R

where

B = 7.4—9.0h—m

R
A = 09

3.0.1 Voltage:

It is, in this case, simplest to consider voltage generated in a single wire first. If the machine is
running at angular velocity €2, speed voltage is, while the wire is under a magnet,

vs = QRIB,

Now, if the magnets have angular extent 6, the voltage induced in a wire will have a waveform
as shown in Figure 18: It is pulse-like and has the same shape as the magnetic field of the magnets.

VS|

—1"
o

I

Figure 18: Voltage Induced in One Conductor

The voltage produced by a coil is actually made up of two waveforms of exactly this form, but
separated in time by the ”coil throw” angle. Then the total voltage waveform produced will be
the sum of the two waveforms. If the coil thrown angle is larger than the magnet angle, the two
voltage waveforms add to look like this: There are actually two coil-side waveforms that add with
a slight phase shift.

If, on the other hand, the coil thrown is smaller than the magnet angle, the picture is the same,
only the width of the pulses is that of the coil rather than the magnet. In either case the average
voltage generated by a coil is: .

v= QRENS%Bd

16



S
e

o

Figure 19: Voltage Induced in a Coil

where 0* is the lesser of the coil throw or magnet angles and N, is the number of series turns in
the coil. This gives us the opportunity to develop the number of “active” turns:

Co_ 0" _ Crott®
m T m T

Here, C, is the number of active conductors, Ciyt is the total number of conductors and m is the
number of parallel paths. The motor coefficient is then:

_ ReegCrot Ba 6"

m s

K

3.1 Armature Resistance

The last element we need for first-order prediction of performance of the motor is the value of
armature resistance. The armature resistance is simply determined by the length and area of the
wire and by the number of parallel paths (generally equal to 2 for small commutator motors). If
we note N, as the number of coils and N, as the number of turns per coil,

N, = Nela
m

Total armature resistance is given by:
N,
Ra = Qngt*s
m

where p,, is the resistivity (per unit length) of the wire:

1

pw = T 72
Zdw(fw

(dy is wire diameter, o, is wire conductivity and ¢; is length of one half-turn). This length depends
on how the machine is wound, but a good first-order guess might be something like this:

b=l +TR
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1 Introduction

This document is a brief introduction to the design evaluation of permanent magnet motors, with
an eye toward servo and drive applications. It is organized in the following manner: First, we
describe three different geometrical arrangements for permanent magnet motors:

1. Surface Mounted Magnets, Conventional Stator,
2. Surface Mounted Magnets, Air-Gap Stator Winding, and
3. Internal Magnets (Flux Concentrating).

After a qualitative discussion of these geometries, we will discuss the elementary rating param-
eters of the machine and show how to arrive at a rating and how to estimate the torque and power
vs. speed capability of the motor. Then we will discuss how the machine geometry can be used to
estimate both the elementary rating parameters and the parameters used to make more detailed
estimates of the machine performance.

Some of the more involved mathematical derivations are contained in appendices to this note.

2 Motor Morphologies

There are, of course, many ways of building permanent magnet motors, but we will consider only a
few in this note. Actually, once these are understood, rating evaluations of most other geometrical
arrangements should be fairly straightforward. It should be understood that the “rotor inside” vs.
“rotor outside” distinction is in fact trivial, with very few exceptions, which we will note.

*(©2003 James L. Kirtley Jr.



2.1 Surface Magnet Machines

Figure 1 shows the basic magnetic morphology of the motor with magnets mounted on the surface
of the rotor and an otherwise conventional stator winding. This sketch does not show some of
the important mechanical aspects of the machine, such as the means for fastening the permanent
magnets to the rotor, so one should look at it with a bit of caution. In addition, this sketch and
the other sketches to follow are not necessarily to a scale that would result in workable machines.

Stator Core

Rotor Core
Stator Winding
in Slots
Rotor
Magnets

Figure 1: Axial View of a Surface Mount Motor

This figure shows an axial section of a four-pole (p = 2) machine. The four magnets are
mounted on a cylindrical rotor “core”, or shaft, made of ferromagnetic material. Typically this
would simply be a steel shaft. In some applications the magnets may be simply bonded to the
steel. For applications in which a glue joint is not satisfactory (e.g. for high speed machines) some
sort of rotor banding or retaining ring structure is required.

The stator winding of this machine is “conventional”, very much like that of an induction motor,
consisting of wires located in slots in the surface of the stator core. The stator core itself is made of
laminated ferromagnetic material (probably silicon iron sheets), the character and thickness of the
sheets determined by operating frequency and efficiency requirements. They are required to carry
alternating magnetic fields, so must be laminated to reduce eddy current losses.

This sort of machine is simple in construction. Note that the operating magnetic flux density in
the air-gap is nearly the same as in the magnets, so that this sort of machine cannot have air-gap
flux densities higher than that of the remanent flux density of the magnets. If low cost ferrite
magnets are used, this means relatively low induction and consequently relatively low efficiency
and power density. (Note the qualifier “relatively” here!). Note, however, that with modern, high
performance permanent magnet materials in which remanent flux densities can be on the order of
1.2 T, air-gap working flux densities can be on the order of 1 T. With the requirement for slots to
carry the armature current, this may be a practical limit for air-gap flux density anyway.

It is also important to note that the magnets in this design are really in the “air gap” of



the machine, and therefore are exposed to all of the time- and space- harmonics of the stator
winding MMF. Because some permanent magnets have electrical conductivity (particularly the
higher performance magnets), any asynchronous fields will tend to produce eddy currents and
consequent losses in the magnets.

2.2 Interior Magnet or Flux Concentrating Machines

Interior magnet designs have been developed to counter several apparent or real shortcomings of
surface mount motors:

e Flux concentrating designs allow the flux density in the air-gap to be higher than the flux
density in the magnets themselves.

e In interior magnet designs there is some degree of shielding of the magnets from high order
space harmonic fields by the pole pieces.

e There are control advantages to some types of interior magnet motors, as we will show anon.
Essentially, they have relatively large negative saliency which enhances “flux weakening” for
high speed operation, in rather direct analogy the what is done in DC machines.

e Some types of internal magnet designs have (or claim) structural advantages over surface
mount magnet designs.

Armature Winding
in Slots

Non-Magnetic

Rotor Core Rotor

Magnets

Rotor Pole
Pieces

Figure 2: Axial View of a Flux Concentrating Motor

The geometry of one type of internal magnet motor is shown (crudely) in Figure 2. The
permanent magnets are oriented so that their magnetization is azimuthal. They are located between
wedges of magnetic material (the pole pieces) in the rotor. Flux passes through these wedges,
going radially at the air- gap, then azimuthally through the magnets. The central core of the rotor



must be non-magnetic, to prevent “shorting out” the magnets. No structure is shown at all in
this drawing, but quite obviously this sort of rotor is a structural challenge. Shown is a six-pole
machine. Typically, one does not expect flux concentrating machines to have small pole numbers,
because it is difficult to get more area inside the rotor than around the periphery. On the other
hand, a machine built in this way but without substantial flux concentration will still have saliency
and magnet shielding properties.

Stator Core

Stator Slots

Air Gap

Rotor

Saliency Slots

Figure 3: Axial View of Internal Magnet Motor

A second morphology for an internal magneti motor is shown in Figure 3. This geometry
has been proposed for highly salient synchronous machines without permanent magnets: such
machines would run on the saliency torque and are called synchronous reluctance motors. however,
the saliency slots may be filled with permanent magnet material, giving them some internally
generated flux as well. The rotor iron tends to short out the magnets, so that the ’bridges’ around
the ends of the permanent magnets must be relatively thin. They are normally saturated.

At first sight, these machines appear to be quite complicated to analyze, and that judgement
seems to hold up.

2.3 Air Gap Armature Windings

Shown in Figure 4 is a surface-mounted magnet machine with an air-gap, or surface armature
winding. Such machines take advantage of the fact that modern permanent magnet materials have
very low permeabilities and that, therefore, the magnetic field produced is relatively insensitive to
the size of the air-gap of the machine. It is possible to eliminate the stator teeth and use all of the
periphery of the air-gap for windings.

Not shown in this figure is the structure of the armature winding. This is not an issue in
“conventional” stators, since the armature is contained in slots in the iron stator core. The use of
an air-gap winding gives opportunities for economy of construction, new armature winding forms
such as helical windings, elimination of “cogging” torques, and (possibly) higher power densities.



Stator Back Irol
Rotor Core

Armature
Winding

Magnetic
Gap

Rotor Magnets

Figure 4: Axial View of a PM Motor With an Air-Gap Winding

3 Zeroth Order Rating

In determining the rating of a machine, we may consider two separate sets of parameters. The first
set, the elementary rating parameters, consist of the machine inductances, internal flux linkage and
stator resistance. From these and a few assumptions about base and maximum speed it is possible
to get a first estimate of the rating and performance of the motor. More detailed performance
estimates, including efficiency in sustained operation, require estimation of other parameters. We
will pay more attention to that first set of parameters, but will attempt to show how at least some
of the more complete operating parameters can be estimated.

3.1 Voltage and Current: Round Rotor

To get started, consider the equivalent circuit shown in Figure 5. This is actually the equivalent
circuit which describes all round rotor synchronous machines. It is directly equivalent only to some
of the machines we are dealing with here, but it will serve to illustrate one or two important points.

What is shown here is the equivalent circuit of a single phase of the machine. Most motors
are three-phase, but it is not difficult to carry out most of the analysis for an arbitrary number
of phases. The circuit shows an internal voltage E, and a reactance X which together with the
terminal current I determine the terminal voltage V. In this picture armature resistance is ignored.
If the machine is running in the sinusoidal steady state, the major quantities are of the form:

E, = w),cos(wt+9)
Vi V coswt
I, = Icos(wt—1)

Il

The machine is in synchronous operation if the internal and external voltages are at the same



Figure 5: Synchronous Machine Equivalent Circuit

Figure 6: Phasor Diagram For A Synchronous Machine

frequency and have a constant (or slowly changing) phase relationship (d). The relationship between
the major variables may be visualized by the phasor diagram shown in Figure 3.1. The internal
voltage is just the time derivative of the internal flux from the permanent magnets, and the voltage
drop in the machine reactance is also the time derivative of flux produced by armature current in
the air-gap and in the “leakage” inductances of the machine. By convention, the angle v is positive
when current I lags voltage V and the angle § is positive then internal voltage F, leads terminal
voltage V. So both of these angles have negative sign in the situation shown in Figure 3.1.
If there are q phases, the time average power produced by this machine is simply:

P = gVICOSdJ

For most polyphase machines operating in what is called “balanced” operation (all phases doing
the same thing with uniform phase differences between phases), torque (and consequently power)
are approximately constant. Since we have ignored power dissipated in the machine armature, it
must be true that power absorbed by the internal voltage source is the same as terminal power, or:

P = %EQI cos (1 — 9)



Since in the steady state:
p==2r
p
where T is torque and w/p is mechanical rotational speed, torque can be derived from the terminal
quantities by simply:
T= p%)\aI cos (¢ — 0)

In principal, then, to determine the torque and hence power rating of a machine it is only
necessary to determine the internal flux, the terminal current capability, and the speed capability
of the rotor. In fact it is almost that simple. Unfortunately, the model shown in Figure 5 is not
quite complete for some of the motors we will be dealing with, and we must go one more level into
machine theory.

3.2 A Little Two-Reaction Theory

The material in this subsection is framed in terms of three-phase (¢ = 3) machine theory, but
it is actually generalizable to an arbitrary number of phases. Suppose we have a machine whose
three-phase armature can be characterized by internal fluxes and inductance which may, in general,
not be constant but is a function of rotor position. Note that the simple model we presented in
the previous subsection does not conform to this picture, because it assumes a constant terminal
inductance. In that case, we have:

Aph = éphlph T AR 1)

where Ag is the set of internally produced fluxes (from the permanent magnets) and the stator
winding may have both self- and mutual- inductances.

Now, we find it useful to do a transformation on these stator fluxes in the following way: each
armature quantity, including flux, current and voltage, is projected into a coordinate system that
is fixed to the rotor. This is often called the Park’s Transformation. For a three phase machine it
is:

Ud Ugq
Ug | =g =Tup =L | uy (2)
uQ Ue

Where the transformation and its inverse are:

cosf  cos(0 — )  cos(0+ 3F)

T==2| —sinf —sin(6—2F) —sin(f+ ) (3)
= 3 1 1 1
2 2 2
cos —sinf 1
T'=| cos(f — ) —sin(d— %) 1 (4)
cos(f+2F) —sin(@+2F) 1



It is easy to show that balanced polyphase quantities in the stationary, or phase variable frame,
translate into constant quantities in the so-called “d-q” frame. For example:

I, = [Icoswt
2
I, = Icos(wt— g)
2
I. = Icos(wt+ %)
0 = wt + 90
maps to:
I; = Icosfy
I, = —Isinfy

Now, if 8 = wt + 6y, the transformation coordinate system is chosen correctly and the “d-” axis
will correspond with the axis on which the rotor magnets are making positive flux. That happens
if, when 6 = 0, phase A is linking maximum positive flux from the permanent magnets. If this is
the case, the internal fluxes are:

Aaa = Apcosl

2
Aab = )\fcos(H—g)

2
Aac = Apcos(f+ g)
Now, if we compute the fluxes in the d-q frame, we have:
Adg = Ly Lag +Ar =TL, T " Lig + Ag (5)

Now: two things should be noted here. The first is that, if the coordinate system has been chosen
as described above, the flux induced by the rotor is, in the d-q frame, simply:

Af
Ap=10 (6)
0

That is, the magnets produce flux only on the d- axis.
The second thing to note is that, under certain assumptions, the inductances in the d-q frame
are independent of rotor position and have no mutual terms. That is:

Lq

0
L, =TL T'=10 I, (7)
0 0

~o o

0

The assertion that inductances in the d-q frame are constant is actually questionable, but it is
close enough to being true and analyses that use it have proven to be close enough to being correct
that it (the assertion) has held up to the test of time. In fact the deviations from independence



on rotor position are small. Independence of axes (that is, absence of mutual inductances in the
d-q frame) is correct because the two axes are physically orthogonal. We tend to ignore the third,
or “zero” axis in this analysis. It doesn’t couple to anything else and has neither flux nor current
anyway. Note that the direct- and quadrature- axis inductances are in principle straightforward to
compute. They are

direct axis the inductance of one of the armature phases (corrected for the fact of multiple phases)
with the rotor aligned with the axis of the phase, and

quadrature axis the inductance of one of the phases with the rotor aligned 90 electrical degrees
away from the axis of that phase.

Next, armature voltage is, ignoring resistance, given by:

d d
Kph = jAph = %z Adq (8)

and that the transformed armature voltage must be:
qu = th

= —Adq + (T*T_I)Adq (9)

The second term in this expresses “speed voltage”. A good deal of straightforward but tedious
manipulation yields:

0 -4 o
TiT—l— @0 odt 0 10
:dt: - dt ( )
0O 0 0

The direct- and quadrature- axis voltage expressions are then:

dM\g
Vd = E — w)\q (11)

d\
Vq = 7;+WAd (12)

where
_do

T

Instantaneous power is given by:
P =V, + VI, + V.. (13)

Using the transformations given above, this can be shown to be:

P = ;led + g‘fqlq + 3Vulp (14)
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which, in turn, is:

3 ,dM\g dNg dAg

2( 7 Iy + It Iq) +3 gt Iy (15)
Then, noting that w = pQ and that (15) describes electrical terminal power as the sum of shaft

power and rate of change of stored energy, we may deduce that torque is given by:

3
P =wS(haly = Agla) +

T:gMMQ—MQ) (16)

Note that we have stated a generalization to a g- phase machine even though the derivation
given here was carried out for the ¢ = 3 case. Of course three phase machines are by far the
most common case. Machines with higher numbers of phases behave in the same way (and this
generalization is valid for all purposes to which we put it), but there are more rotor variables
analogous to “zero axis”.

Now, noting that, in general, L; and L, are not necessarily equal,

N = Lglg+ )\f (17)
A = Ll (18)

then torque is given by:
T =p3 O + (L= Ly) 1) Iy (19)

3.3 Finding Torque Capability

For high performance drives, we will generally assume that the power supply, generally an inverter,
can supply currents in the correct spatial relationship to the rotor to produce torque in some
reasonably effective fashion. We will show in this section how to determine, given a required torque
(or if the torque is limited by either voltage or current which we will discuss anon), what the
values of I; and I, must be. Then the power supply, given some means of determining where the
rotor is (the instantaneous value of ), will use the inverse Park’s transformation to determine the
instantaneous valued required for phase currents. This is the essence of what is known as “field
oriented control”, or putting stator currents in the correct location in space to produce the required
torque.

Our objective in this section is, given the elementary parameters of the motor, find the capability
of the motor to produce torque. There are three things to consider here:

e Armature current is limited, generally by heating,
e A second limit is the voltage capability of the supply, particularly at high speed, and

e [f the machine is operating within these two limits, we should consider the optimal placement
of currents (that is, how to get the most torque per unit of current to minimize losses).

Often the discussion of current placement is carried out using, as a tool to visualize what is going
on, the I, I, plane. Operation in the steady state implies a single point on this plane. A simple
illustration is shown in Figure 7. The thermally limited armature current capability is represented
as a circle around the origin, since the magnitude of armature current is just the length of a vector
from the origin in this space. Note that since in general, for permanent magnet machines with
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Figure 7: Limits to Operation

buried magnets, Ly < Lg, so the optimal operation of the machine will be with negative I;. We
will show how to determine this optimum operation anon, but it will in general follow a curve in
the 14, I, plane as shown.

Finally, an ellipse describes the woltage limit. To start, consider what would happen if the
terminals of the machine were to be short-circuited so that V' = 0. If the machine is operating at
sufficiently high speed so that armature resistance is negligible, armature current would be simply:

I, = -3
I, = 0

Now, loci of constant flux turn out to be ellipses around this point on the plane. Since terminal
flux is proportional to voltage and inversely proportional to frequency, if the machine is operating
with a given terminal voltage, the ability of that voltage to command current in the I, I, plane is
an ellipse whose size “shrinks” as speed increases.

To simplify the mathematics involved in this estimation, we normalize reactances, fluxes, cur-
rents and torques. First, let us define the base flux to be simply A\, = Ay and the base current I to
be the armature capability. Then we define two per-unit reactances:

Lal,
g = % (20)
L,
T o= (21)
Next, define the base torque to be:
q
T, = p§>\b[b

and then, given per-unit currents ¢4 and iy, the per-unit torque is simply:

te = (1 — (l'q — .CCd) id) iq (22)
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It is fairly straightforward (but a bit tedious) to show that the locus of current-optimal operation
(that is, the largest torque for a given current magnitude or the smallest current magnitude for a
given torque) is along the curve:

o ‘ﬁé

1 ? 1 1 2 g
+2<4<xq—xd>> " (g — va) <4<xq—xd>> ] (23)

o i2 1 ’ 1 1 72
e T T 2_2<4(:1:q—xd)> +2(xq—xd) (4(xq—xd)> ) (24)

The “rating point” will be the point along this curve when i, = 1, or where this curve crosses the
armature capability circle in the i4, ¢ plane. It should be noted that this set of expressions only
works for salient machines. For non-salient machines, of course, torque-optimal current is on the
g-axis. In general, for machines with saliency, the “per-unit” torque will not be unity at the rating,
so that the rated, or “Base Speed” torque is not the “Base” torque, but:

T, =T, x t, (25)

where t. is calculated at the rating point (that is, i, = 1 and ig and i, as per (23) and (24)).
For sufficiently low speeds, the power electronic drive can command the optimal current to
produce torque up to rated. However, for speeds higher than the “Base Speed”, this is no longer

true. Define a per-unit terminal flux:

bV

WAy

Operation at a given flux magnitude implies:
W = (14 zgia) + (24iq)?

which is an ellipse in the 44, ¢; plane. The Base Speed is that speed at which this ellipse crosses the
point where the optimal current curve crosses the armature capability. Operation at the highest
attainable torque (for a given speed) generally implies d-axis currents that are higher than those
on the optimal current locus. What is happening here is the (negative) d-axis current serves to
reduce effective machine flux and hence voltage which is limiting g-axis current. Thus operation
above the base speed is often referred to as “flux weakening”.

The strategy for picking the correct trajectory for current in the i4, ¢y plane depends on the
value of the per-unit reactance x4. For values of x4 > 1, it is possible to produce some torque at any
speed. For values of x4 < 1, there is a speed for which no point in the armature current capability is
within the voltage limiting ellipse, so that useful torque has gone to zero. Generally, the maximum
torque operating point is the intersection of the armature current limit and the voltage limiting

ellipse:
. Tq v\’ x2 —p? +1
W = 5 5 - 3 +ﬁ (26)
xZ — x5 xrZ— x5 i — x5

q

i = J1—143 (27)
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Table 1: Example Machine

D- Axis Inductance  2.53 mHy
Q- Axis Inductance 6.38 mHy
Internal Flux 58.1 mWb
Armature Current 30 A

Table 2: Operating Characteristics of Example Machine

Per-Unit D-Axis Current At Rating Point ig5 -.5924
Per-Unit Q-Axis Current At Rating Point i,  .8056

Per-Unit D-Axis Reactance zq 1.306
Per-Unit Q-Axis Reactance Tq 3.294
Rated Torque (Nm) T, 9.17
Terminal Voltage at Base Point (V) 97

It may be that there is no intersection between the armature capability and the voltage limiting
ellipse. If this is the case and if x4 < 1, torque capability at the given speed is zero.

If, on the other hand, x4 > 1, it may be that the intersection between the voltage limiting
ellipse and the armature current limit is not the maximum torque point. To find out, we calculate
the maximum torque point on the voltage limiting ellipse. This is done in the usual way by
differentiating torque with respect to iq while holding the relationship between ig and i, to be on
the ellipse. The algebra is a bit messy, and results in:

P _3$d(xq—$d)—x§ B 3xq (xqg — x4) — 23 2+ (g —zq) (W% — 1)+ x4 (28)
@ = 422 (zg — xq) 422 (zq — xq) 2 (g — zq) 23
g = g;lq\/W — (14 4ig)® (29)

Ordinarily, it is probably easiest to compute (28) and (29) first, then test to see if the currents
are outside the armature capability, and if they are, use (26) and (27).

These expressions give us the capability to estimate the torque-speed curve for a machine. As
an example, the machine described by the parameters cited in Table 1 is a (nominal) 3 HP, 4-pole,
3000 RPM machine.

The rated operating point turns out to have the following attributes:

The loci of operation in the I4, I, plane is shown in Figure 8. The armature current limit
is shown only in the second and third quadrants, so shows up as a semicircle. The two ellipses
correspond with the rated point (the larger ellipse) and with a speed that is three times rated
(9000 RPM). The torque-optimal current locus can be seen running from the origin to the rating
point, and the higher speed operating locus follows the armature current limit. Figure 9 shows the
torque/speed and power/speed curves. Note that this sort of machine only approximates “constant
power” operation at speeds above the “base” or rating point speed.

13
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4 Parameter Estimation

We are now at the point of estimating the major parameters of the motors. Because we have a
number of different motor geometries to consider, but because they share parameters in not too
orderly a fashion, this section will have a number of sub-parts. First, we calculate flux linkage,
then reactance.

4.1 Flux Linkage

Given a machine which may be considered to be uniform in the axial direction, flux linked by a
single, full-pitched coil which spans an angle from zero to 7 /p, is:

b= /O " B, RIdo

where B, is the radial flux through the coil. And, if B, is sinusoidally distributed this will have

a peak value of
_ 2RIB,

p

Now, if the actual winding has N, turns, and using the pitch and breadth factors derived in
Appendix 1, the total flux linked is simply:

Pp

2RIB1 Nk,
Ap = (30)
p
where
ko = ok
L«
k, = sm§
sinm3
ky = —
msin

The angle « is the pitch angle,

a = 27rpﬁp
S

where NN, is the coil span (in slots) and Ny is the total number of slots in the stator. The angle
is the slot electrical angle:

27
=

Now, what remains to be found is the space fundamental magnetic flux density B;. In the
third appendix it is shown that, for magnets in a surface-mount geometry, the magnetic field at
the surface of the magnetic gap is:

v

Bl = qulkg (31)

where the space-fundamental magnetization is:
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B, 4 0
M; = ——sin Pm
Ho 2
where B, is remanent flux density of the permanent magnets and 6,, is the magnet angle.
and where the factor that describes the geometry of the magnetic gap depends on the case. For
magnets inside and p # 1,

RE1 p p+1 p+1 D 2 pl-p 1—p
o = R <p+1 s )er—lRi (A1~ s ))

For magnets inside and p = 1,

1 Ry
kg = B2 R2< <R2 RQ>+R21ogR1)

For the case of magnets outside and p # 1:

Rf_l p p+1 p+1 p 2p ((pl—p 1-p
kg:REP—R?p <p+1 (5 — 1 )+ﬁRS (- )>

and for magnets outside and p = 1,

1 Ry
ko = R2< (B3 — R}) + R2log Rl)

Where R; and R; are the outer and inner magnetic boundaries, respectively, and Ry and R;
are the outer and inner boundaries of the magnets.

Note that for the case of a small gap, in which both the physical gap g and the magnet thickness
hy, are both much less than rotor radius, it is straightforward to show that all of the above expres-
sions approach what one would calculate using a simple, one-dimensional model for the permanent
magnet:

hm
N

Y g+ h

This is the whole story for the winding-in-slot, narrow air-gap, surface magnet machine. For air-
gap armature windings, it is necessary to take into account the radial dependence of the magnetic
field.

4.2 Air-Gap Armature Windings

With no windings in slots, the conventional definition of winding factor becomes difficult to apply.

If, however, each of the phase belts of the winding occupies an angular extent 6,,, then the equivalent
o (31) is

sin p%w

[
P

kw =
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Next, assume that the “density” of conductors within each of the phase belts of the armature
winding is uniform, so that the density of turns as a function of radius is:

2N,r

]\7(7“):7]%2 7

This just expresses the fact that there is more azimuthal room at larger radii, so with uniform
density the number of turns as a function of radius is linearly dependent on radius. Here, R, and
R,; are the outer and inner radii, respectively, of the winding.

Now it is possible to compute the flux linked due to a magnetic field distribution:

Ruwo 21N kyr 2r
A= /R I T s () (32)

Note the form of the magnetic field as a function of radius expressed in 80 and 81 of the second
appendix. For the “winding outside” case it is:

H.=A (rp_l + Rﬁpr—?’—l)

Then a winding with all its turns concentrated at the outer radius » = Ry, would link flux:

2Rk,  2ARyoky

N o () = 20 (s i)

Carrying out (32), it is possible, then, to express the flux linked by a thick winding to the flux that
would have been linked by a radially concentrated winding at its outer surface by:

A
ke = Tf
where, for the winding outside, p # 2 case:
9 Y A W S A
kt = 5 3 ( v ) § + i (33)
(1—a?) (1+4¢6%) 2+p 2-p

where we have used the definitions £ = Ry,,/Rs and © = Ry;/Ryo- In the case of winding outside,

p=2
2 1—at) ¢t
M= AT (T ) <( 4 = _logx> (34)

In a very similar way, we can define a winding factor for a thick winding in which the reference
radius is at the inner surface. (Note: this is done because the inner surface of the inside winding
is likely to be coincident with the inner ferromagnetic surface, as the outer surface of the outer
winding ls likely to be coincident with the outer ferromagnetic surface). For p # 2:

Qr—P 1— 2+p 1— 2—p
ke = & ( . +(nfﬂ)2px> (35)

(1—a2)(14+7%") \ 2+4+p 2—p

and for p = 2:

2772 1—a? 4
ki = A= 22 (1 7) ( T ) 10ga?> (36)
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where n = R; /Ry
So, in summary, the flux linked by an air-gap armature is given by:
_ 2RIB1 Nokyky
p
where Bj is the flux density at the outer radius of the physical winding (for outside winding
machines) or at the inner radius of the physical winding (for inside winding machines). Note that
the additional factor k; is a bit more than one (it approaches unity for thin windings), so that,

for small pole numbers and windings that are not too thick, it is almost correct and in any case
“conservative” to take it to be one.

y: (37)

4.3 Interior Magnet Motors:

For the flux concentrating machine, it is possible to estimate air-gap flux density using a simple
reluctance model.
The air- gap permeance of one pole piece is:

RO
Pag = NolJ
g

where 0, is the angular width of the pole piece.
And the incremental permeance of a magnet is:
hl
Pm = Ho——
Wm

The magnet sees a unit permeance consisting of its own permeance in series with one half of
each of two pole pieces (in series) :

_ Pag _ By wm
Y om 49 by
Magnetic flux density in the magnet is:
u
B, =208
m 0 1+ Ou
And then flux density in the air gap is:
2h, 2hmwm,
B,=—B,, =B
97 RO, ™ T4gh, + RO,wy,
The space fundamental of that can be written as:
4 )
By = —sin &Bow—m'ym
s 2 29
where we have introduced the shorthand:
1
Ym = 0, R
L
The flux linkage is then computed as before:
2RIB1 N,k
Af = # (38)
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4.4 Winding Inductances

The next important set of parameters to compute are the d- and g- axis inductances of the machine.
We will consider three separate cases, the winding-in-slot, surface magnet case, which is magnet-
ically “round”, or non-salient, the air-gap winding case, and the flux concentrating case which is
salient, or has different direct- and quadrature- axis inductances.

4.4.1 Surface Magnets, Windings in Slots

In this configuration there is no saliency, so that Ls; = L,. There are two principal parts to
inductance, the air-gap inductance and slot leakage inductance. Other components, including end
turn leakage, may be important in some configurations, and they would be computed in the same
way as for an induction machine. As is shown in the first Appendix, the fundamental part of air-gap
inductance is:

g4 poN2ELIR,
27 pA(g + hu)

Here, g is the magnetic gap, including the physical rotational gap and any magnet retaining means
that might be used. h,, is the magnet thickness.

Since the magnet thickness is included in the air-gap, the air-gap permeance may not be very
large, so that slot leakage inductance may be important. To estimate this, assume that the slot
shape is rectangular, characterized by the following dimensions:

hs height of the main portion of the slot

ws  width of the top of the main portion of the slot
hg height of the slot depression

wy slot depression opening

Of course not all slots are rectangular: in fact in most machines the slots are trapezoidal in
shape to maintain teeth cross-sections that are radially uniform. However, only a very small error
(a few percent) is incurred in calculating slot permeance if the slot is assumed to be rectangular
and the top width is used (that is the width closest to the air-gap). Then the slot permeance is,

per unit length:
1 hs i hq )

3ws  wy

d1 (39)

Assume for the rest of this discussion a standard winding, with m slots in each phase belt
(this assumes, then, that the total number of slots is Ny = 2pgm), and each slot holds two half-
coils. (A half-coil is one side of a coil which, of course, is wound in two slots). If each coil
has N, turns (meaning N, = 2pmN,) , then the contribution to phase self-inductance of one
slot is, if both half-coils are from the same phase, 4/PN2. If the half-coils are from different
phases, then the contribution to self inductance is [PN? and the magnitude of the contribution to
mutual inductance is [PN?2. (Some caution is required here. For three phase windings the mutual
inductance is negative, so are the senses of the currents in the two other phases, so the impact of
“mutual leakage” is to increase the reactance. This will be true for other numbers of phases as
well, even if the algebraic sign of the mutual leakage inductance is positive, in which case so will
be the sense of the other- phase current.)

We will make two other assumptions here. The standard one is that the winding “coil throw”,
or span between sides of a coil, is ]2\[—; — Ngp. Ngp is the coil “short pitch”. The other is that each
phase belt will overlap with, at most two other phases: the ones on either side in sequence. This
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last assumption is immediately true for three- phase windings (because there are only two other
phases. It is also likely to be true for any reasonable number of phases.

Noting that each phase occupies 2p(m — Ngp) slots with both coil halves in the same slot and
4pN, slots in which one coil half shares a slot with a different phase, we can write down the two
components of slot leakage inductance, self- and mutual:

Las = 2pl|(m — Ny) (2N,)* + 2N, NZ|
Lam = 2pINg,N?
For a three- phase machine, then, the total slot leakage inductance is:
Lo = Las + Lam = 2pIPN? (4m — Np)

For a uniform, symmetric winding with an odd number of phases, it is possible to show that the
effective slot leakage inductance is:

2
L, = L4s — 2L 4, cos aill
q

Total synchronous inductance is the sum of air-gap and leakage components: so far this is:

Lg=Lg + L,

4.4.2 Air-Gap Armature Windings

It is shown in Appendix 2 that the inductance of a single-phase of an air-gap winding is:
Lo=Y Lunp
n

where the harmonic components are:

3 ,uolkinNaQ (1 . $2—k72k> (1 _ $2+k)

T k(1 — 22)2 (4 — k2) (1 — ~2F)
¢2h (1 _ xk+2)2 g2k (1 _ $2—k)2
CHRP1-") @R -)
(1 _ V—21f962+k> (1 _ x2—k> .

L )y v R R R

L =

where we have used the following shorthand coefficients:

T = Ry
B R'[UO
_ B

Y= R,

R'[UO

6 - RS
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This fits into the conventional inductance framework:

4 uoNZRLE?

’LUTLk
a

L
"o N2p2g

if we assign the “thick armature” coefficient to be:
29k 1 (1 _ xQ—k,Y%) (1 _ x2+k)
Rwo (1 — $2)2 (4 - k2) (1 - 721{)
2 2
£2k (1 _ xk+2) g2k (1 _ m2—k)
C+RF 1) -k OE-1)

N (1 _ ,Y—2kx2+k) (1 _ x2—k) k1 le

ko, =

(A—k2) (2 —1) 1— k2 2

and k = np and g = Rs; — R; is the conventionally defined “air gap”. If the aspect ratio R;/R; is
not too far from unity, neither is k,. In the case of p = 2, the fundamental component of k, is:

29k 1 1—a' 2y 4ot (1 4 41— 2t
g 5 € _ Y + ( 47)10g$+ ) v - (10g$)2+£ ( x4)
Ruo (1 — 22) 8 4(1 -~ (1 =9 16 (1 —~*)

For a g-phase winding, a good approximation to the inductance is given by just the first space
harmonic term, or:

ko =

g4 poNZRLE;

wnk
a

L,=1=%
47 ox n2p?g

4.4.3 Internal Magnet Motor

The permanent magnets will have an effect on reactance because the magnets are in the main flux
path of the armature. Further, they affect direct and quadrature reactances differently, so that the
machine will be salient. Actually, the effect on the direct axis will likely be greater, so that this
type of machine will exhibit “negative” saliency: the quadrature axis reactance will be larger than
the direct- axis reactance.

A full- pitch coil aligned with the direct axis of the machine would produce flux density:

poNal

Note that only the pole area is carrying useful flux, so that the space fundamental of radial flux
density is:

_ poNI 4 sin?ge

29 w1 I

By

Then, since the flux linked by the winding is:

_ 2RINkyBi
P

Aa
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The d- axis inductance, including mutual phase coupling, is (for a g- phase machine):

_ g4 poNGRIEG, . pby

L, =
d 2 T p2g 7771 2

The quadrature axis is quite different. On that axis, the armature does not tend to push flux
through the magnets, so they have only a minor effect. What effect they do have is due to the fact
that the magnets produce a space in the active air- gap. Thus, while a full- pitch coil aligned with
the quadrature axis will produce an air- gap flux density:

NT
B, = 10

the space fundamental of that will be:

where 6; is the angular width taken out of the pole by the magnets.
So that the expression for quadrature axis inductance is:

4 g N2 RIK? 9
L, = 13 10lNo Flk, (1 _ smpf>
21 p3g 2

5 Current Rating and Resistance

The last part of machine rating is its current capability. This is heavily influenced by cooling meth-
ods, for the principal limit on current is the heating produced by resistive dissipation. Generally,
it is possible to do first-order design estimates by assuming a current density that can be handled
by a particular cooling scheme. Then, in an air-gap winding:

9’11}6
2

Nalu = (Rbe = Ri) 5" a
and note that, usually, the armature fills the azimuthal space in the machine:
2¢0pe = 27
For a winding in slots, nearly the same thing is true: if the rectangular slot model holds true:

2qN,I, = NihgwsJs

where we are using Js to note slot current density. Now, suppose we can characterize the total slot
area by a “space factor” As which is the ratio between total slot area and the annulus occupied by
the slots: for the rectangular slot model:

Nghgsws

Ao = — e
™ (R%uo - R%uz)

where R,,; = R+hg and Ry, = Ryi+hs in a normal, stator outside winding. In this case, J, = JsAs
and the two types of machines can be evaluated in the same way.
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It would seem apparent that one would want to make Ag as large as possible, to permit high
currents. The limit on this is that the magnetic teeth between the conductors must be able to carry
the air-gap flux, and making them too narrow would cause them to saturate. The peak of the time
fundamental magnetic field in the teeth is, for example,

2R
By = By Nows
where w; is the width of a stator tooth:
_ 2m(R+ hg)
Wy N, — Ws
so that B
By ~ T

5.1 Resistance

Winding resistance may be estimated as the length of the stator conductor divided by its area and
its conductivity. The length of the stator conductor is:

lc = 2lNafe

where the “end winding factor” f. is used to take into account the extra length of the end turns
(which is usually not negligible). The area of each turn of wire is, for an air-gap winding :

_ we Ryp — Ry

Ay Wi N
2 N,

where A\, the “packing factor” relates the area of conductor to the total area of the winding. The
resistance is then just:

4IN?
Ro = 2 3
HU’@ (Rwo - sz) )\WU
and, of course, o is the conductivity of the conductor.
For windings in slots the expression is almost the same, simply substituting the total slot area:

2¢IN?

Fa = N hats g0

The end turn allowance depends strongly on how the machine is made. One way of estimating
what it might be is to assume that the end turns follow a roughly circular path from one side of
the machine to the other. The radius of this circle would be, very roughly, R,,/p, where R,, is the
average radius of the winding: Ry, ~ (Ruyo + Ruwi)/2

Then the end-turn allowance would be:

TRy,

fo=141
pl
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Figure 10: Coordinate System for Inductance Calculation

6 Appendix 1: Air-Gap Winding Inductance

In this appendix we use a simple two-dimensional model to estimate the magnetic fields and then
inductances of an air-gap winding. The principal limiting assumption here is that the winding is
uniform in the Z direction, which means it is long in comparison with its radii. This is generally not
true, nevertheless the answers we will get are not too far from being correct. The style of analysis
used here can be carried into a three-dimensional, or quasi-three dimensional domain to get much
more precise answers, at the expense of a very substantial increase in complexity.

The coordinate system to be used is shown in Figure 10. To maintain generality we have four
radii: R; and R, are ferromagnetic boundaries, and would of course correspond with the machine
shaft and the stator core. The winding itself is carried between radii R; and Rs, which correspond
with radii R,; and R, in the body of the text. It is assumed that the armature is carrying a
current in the z- direction, and that this current is uniform in the radial dimension of the armature.
If a single phase of the armature is carrying current, that current will be:

Nalq

J0 = 55 o
T (-

over the annular wedge occupied by the phase. The resulting distribution can be fourier analyzed,
and the n-th harmonic component of this will be (assuming the coordinate system has been chosen
appropriately):
. Bue 4 N,
T b R

where the n-th harmonic winding factor is:

sin neg—e
kwn = T 0.
and note that 6, is the electrical winding angle:
Hwe = pgw
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Now, it is easiest to approach this problem using a vector potential. Since the divergence of

flux density is zero, it is possible to let the magnetic flux density be represented by the curl of a
vector potential:

B=VxA
Taking the curl of that:
V x (VXZ) = pod =VV -4 - V¥4
and using the coulomb gage
V-A=0

we have a reasonable tractable partial differential equation in the vector potential:
VQZ = —,U()j

Now, since in our assumption there is only a z- directed component of J, we can use that one
component, and in circular cylindrical coordinates that is:

10 0A, 1 92
— 77142 = - z
rarr or + r2 062 Ho

For this problem, all variables will be varying sinusoidally with angle, so we will assume that
angular dependence e/*?. Thus:

10 04, k?

This is a three-region problem. Note the regions as:
i R, <r< R

w Ri<r<Ry
o Ro<r<R

For i and o, the current density is zero and an appropriate solution to (40) is:
A, = Ak + Ak

In the region of the winding, w, a particular solution must be used in addition to the homoge-
neous solution, and

A, = Ak A r k44,
where, for k # 2,

NOerz
A =
b 4 — k2
or, if k = 2,
.1 1
Ay = —% (logr — 4)
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And, of course, the two pertinent components of the magnetic flux density are:

10A,
B, = =

r 00

0A,
By, — _
0 or

Next, it is necessary to match boundary conditions. There are six free variables and corre-
spondingly there must be six of these boundary conditions. They are the following:

e At the inner and outer magnetic boundaries, »r = R; and r = R, the azimuthal magnetic
field must vanish.

e At the inner and outer radii of the winding itself, r = Ry and r = Rs, both radial and
azimuthal magnetic field must be continuous.

These conditions may be summarized by:

kALRETY kAT R = 0
kASRETY — kAR = 0

AYRE™T + AV RS — ’fizl‘g? = AR 4 A° Ry
—kAYRE 4+ KAV Ry % = —kALRE' 4+ kA RyF!
AYRY 4 AV RTETT — ’ff‘]‘? = A Ry 4+ ALRM
—kAYRYT + KAV R 4 % = —kA Ry 4 kAR

Note that we are carrying this out here only for the case of k # 2. The k = 2 case may be obtained
by substituting its particular solution in at the beginning or by using L.’Hopital’s rule on the final
solution. This set may be solved (it is a bit tedious but quite straightforward) to yield, for the
winding region:

1 1o Rszg_k _ R?kR%—k R§+k _ R%-Hc ,rk
’ 2k |\ 2—k) (RS = R}") — (2+F) (RSF = RY)
R%—k _ R%—k N RS—QkRg-l-k _ Rl—ZkR%-l-k T_k B 2k‘ T2
(2= k) (R7 = R7*) 2+ k) (B — R7?) 4—k?

Now, the inductance linked by any single, full-pitched loop of wire located with one side at
azimuthal position # and radius r is:
)\i = QZAZ(T, 9)

To extend this to the whole winding, we integrate over the area of the winding the incremental flux
linked by each element times the turns density. This is, for the n-th harmonic of flux linked:

MkynNg [F2
Ap, = wntra A, d
B R Ju O
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Making the appropriate substitutions for current into the expression for vector potential, this
becomes:

8 polke Nala |(RFR3" — RIFRY™" R3** — RYTM O\ RyT? - RYP?
Tk (RS — R2)* |\ (2—Fk) (R — R¥)  (2+k) (R3* — R?) k+2
RyP-R{Y RPPRST-RPRIT\ R -RYY 2%k Ry R

An =

7 Appendix 2: Permanent Magnet Field Analysis

This section is a a field analysis of the kind of radially magnetized, permanent magnet structures
commonly used in electric machinery. It is a fairly general analysis, which will be suitable for use
with either surface or in-slot windings, and for the magnet inside or the magnet outside case.

This is a two-dimensional layout suitable for situations in which field variation along the length
of the structure is negligible.

8 Layout

The assumed geometry is shown in Figure 11. Assumed iron (highly permeable) boundaries are
at radii R; and Rs;. The permanent magnets, assumed to be polarized radially and alternately
(i.e. North-South ...), are located between radii Ry and Ry. We assume there are p pole pairs (2p
magnets) and that each magnet subsumes an electrical angle of 6,,.. The electrical angle is just p
times the physical angle, so that if the magnet angle were 6,,,. = 7, the magnets would be touching.

If the magnets are arranged so that the radially polarized magnets are located around the
azimuthal origin (6 = 0), the space fundamental of magnetization is:

M = i, Mg cos pf) (41)
where the fundamental magnitude is:
4 Ome B
My = — sin —2e —tem (42)
m 2 o

and Brem is the remanent magnetization of the permanent magnet.
Since there is no current anywhere in this problem, it is convenient to treat magnetic field as
the gradient of a scalar potential:

H=-Vy (43)

The divergence of this is:
V3% =-V-H (44)

Since magnetic fluz density is divergence-free,

V-B=0 (45)

we have:
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Figure 11: Axial View of Magnetic Field Problem

V-H=-V-M (46)

or:

— 1
V) =V -M = ~Mycos pd (47)
T
Now, if we let the magnetic scalar potential be the sum of particular and homogeneous parts:
Y =1vp+ iy (48)

where V29, = 0, then:
1
V%4, = ~ My cos pf (49)
r

We can find a suitable solution to the particular part of this in the region of magnetization by
trying:

Yy = Cr7 cos pb (50)
Carrying out the Laplacian on this:
1
Vzwp =Cr? (72 — p2) cos pf = ;Mo cos pl (51)
which works if v = 1, in which case:
M()T
Yy = T, cos pf (52)
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Of course this solution holds only for the region of the magnets: R; < r < Rs, and is zero for the

regions outside of the magnets.

A suitable homogeneous solution satisfies Laplace’s equation, V21, = 0, and is in general of the

form:

p, = ArP cos p + Br~? cos pf

Then we may write a trial total solution for the flux density as:

Ri<7“<R1 lb:
R1<7“<R2 lb:

Ro<r<Rs =

(A17P 4+ Bir~P) cos pb

M,
(Agrp + Bor P + ] 07’2) cos pf
- D
(Asr? + Bsr~P) cos pf

(53)

(54)
(55)
(56)

The boundary conditions at the inner and outer (assumed infinitely permeable) boundaries at
r = R; and r = R, require that the azimuthal field vanish, or %’ = 0, leading to:

By =
B =

At the magnet inner and outer radii,
Hy
B,
These become, at r = Rjy:
—pAr (RY™ = RPR;7)
—pAi (R + RPRTT)
and at r = Ro:
s (B RRg)
—pAs (R + RZR;"™)
Some small-time manipulation of these y
Ay (R}~ RPR,”)
RV + RPR;P

A (
Ay (R~
(

—RP A
_REPA3

Hy and B, must be continuous. These are:

_ _loy
r 00

= U (_?;ﬁ + M )
= —p (ARl + BRTTY) - plj‘_ﬂ;?
= —p (AR = BRP) - 1]\_4(;2 + My
o )
= —p(AR - BRT ) - 1]\_4(]’92 + My
ields:

= AR} + BB + Rig ]\_42)2

= AR - BB 4 R

= ARy + BaRy” + Roy ]\_40 5

= AR}~ BaRy” + pRyy {4;2
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Taking sums and differences of the first and second and then third and fourth of these we obtain:

2ARY = 2A;RY+ RiMos Lt pp2 (69)
2A1RPRY = —2ByR;” + RlMo_pl2 (70)
2A3RY = 2A,RE + RyMy 11 tp (71)
2A3R¥PR;? = —2ByR;" + RgMolp__iﬁ (72)

and then multiplying through by appropriate factors (R and R} and then taking sums and differ-
ences of these,

My p+1
(A= A3 RERS = (RuR) — Rolt) 200 (73)
e My
(4R — A,RP)RPRy” = (RiR;” — RoRy )7]’ - (74)

Dividing through by the appropriate groups:

Rle — RQRzl) Mo 1+p
A — A3 = —
o R'RD 21— p? (75)

RlRQ_p—RgR;p%p— 1

AR — AsR%? =
and then, by multiplying the top equation by R?” and subtracting:
RlRp — RQRp Mo 1+p RlR_p — RQR_p My p—1
A R2p R2p — 2 10 R2p o 2 1 o 77
1( ) ( RURY 2 1-p%) " RPR;? 2 1—p? (77)

This is readily solved for the field coefficients A; and As:

A _z(Rgiw_O ) (55 (R -m7) R+ 5 (R - R7)) ()
M, - - 1
A= _2(R§P—OR?p) (1i (R =Ry RY - (R§+p—Ri+p)> (79)

Now, noting that the scalar potential is, in region 1 (radii less than the magnet),
¢ = A (r” — RPr™P) cos pf r < Ry

Y = A3(rP — R¥r~P) cos pf r > Ry
and noting that p(p +1)/(p?> —1) =p/(p — 1) and p(p — 1)/(p? — 1) = p/(p + 1), magnetic field is:
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r << R1 (80)

H, = 5 (Rgiw_o Rf”) (pf : (R}—P _ R;—P) R¥ 4 # (Ré“’ _ R}“’)) (Tp—l n R?Pr—p—l) cos pf
r > Ry (81)
H, = 5 (Rziw_o R?p) (pﬁ 1 (R%p _ R%*P) RZ?P + ]% (R;er _ R%er)) (Tp—l n Rgpr—p—l) cos pl

The case of p =1 appears to be a bit troublesome here, but is easily handled by noting that:

. P 1— 1— Ry

Now: there are a number of special cases to consider.
For the iron-free case, R; — 0 and Ry — oo, this becomes, simply, for r < Rj:
M, _ _
Ho=="L_ (R% P _ R, p) P~ cos pf (82)
Note that for the case of p = 1, the limit of this is

M, R
H, = %logﬁjcose

and for r > Ras:
My p +1 1\ —
H, = = oi1 (Rg — R} )7‘ (P*+D) cos ph

For the case of a machine with iron boundaries and windings in slots, we are interested in the
fields at the boundaries. In such a case, usually, either R; = R; or R; = Ry. The fields are:
at the outer boundary: r = Rj:

RE1 D p+1 p+1 D 2 pl-p 1—p
Hr = M() gp — RZQP <p—|— 1 (R2 - Rl ) + ijz (Rl - R2 )) COSp(g

or at the inner boundary: r = R;:

R‘f_l p p+1 p+1 p 2p 1-p 1-p
Hr = M() gp — R2p <p—|— 1 <R2 - Rl ) + ]ﬁRS (Rl - R2 )) COSp(g
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