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1 Introduction 

This note is a review of some of the most salient points of electric network theory. In it we do not 
prove any of the assertions that are made. We deal only with passive, linear network elements. 

2 Network Primitives 

Electric network theory deals with two primitive quantities, which we will refer to as: 

1. Potential (or voltage), and 

2. Current. 

Current is the actual flow of charged carriers, while difference in potential is the force that 
causes that flow. As we will see, potential is a single- valued function that may be uniquely defined 
over the nodes of a network. Current, on the other hand, flows through the branches of the network. 
Figure 1 shows the basic notion of a branch, in which a voltage is defined across the branch and a 
current is defined to flow through the branch. A network is a collection of such elements, connected 
together by wires. 

i + v − 

Figure 1: Basic Circuit Element 

Network topology is the interconnection of its elements. That, plus the constraints on voltage 
and current imposed by the elements themselves, determines the performance of the network, 
described by the distribution of voltages and currents throughout the network. 

Two important concepts must be described initially. These are of “loop” and “node”. 
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1. A loop in the network is any closed path through two or more elements of the network. Any 
non-trivial network will have at least one such loop. 
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Figure 2: This is a loop 

2. a node is a point at which two or more elements are interconnected. 
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Figure 3: This is a node 

The two fundamental laws of network theory are known as Kirchoff’s Voltage Law (KVL), and 
Kirchoff’s Current Law (KCL). These laws describe the topology of the network, and arise directly 
from the fundmantal laws of electromagnetics. They are simply stated as: 

•	 Kirchoff’s Voltage Law states that, around any loop of a network, the sum of all voltages, 
taken in the same direction, is zero: 

vk = 0 (1) 
loop 

•	 Kirchoff’s Current Law states that, at any node of a network, the sum of all currents entering 
the node is zero: 

ik = 0 (2) 
node 

1Note that KVL is a discrete version of Faraday’s Law, valid to the extent that no time-varying 
flux links the loop. KCL is just conservation of current, allowing for no accumulation of charge at 
the node. 
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Network elements affect voltages and currents in one of three ways: 

1. Voltage sources constrain the potential difference across their terminals to be of some fixed 
value (the value of the source). 

2. Current sources constrain the current through the branch to be of some fixed value. 

3. All other elements impose some sort of relationship, either linear or nonlinear, between voltage 
across and current through the branch. 
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− 

Voltage Current 
Source Source 

Figure 4: Notation for voltage and current sources 

Voltage and current sources can be either independent or dependent. Independent sources have 
values which are, as the name implies, independent of other variables in a circuit. Dependent 
sources have values which depend on some other variable in a circuit. A common example of a 
dependent source is the equivalent current source used for modeling the collector junction in a 
transistor. Typically, this is modeled as a current dependent current source, in which collector 
current is taken to be directly dependent on emitter current. Such dependent sources must be 
handled with some care, for certain tricks we will be discussing below do not work with them. 

For the present time, we will consider, in addition to voltage and current sources, only impedance 

elements, which impose a linear relationship between voltage and current. The most common of 
these is the resistance, which imposes the relationship which is often referred to as Ohm’s law: 

vr = Rir (3) 
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Figure 5: Resistance Circuit Element


A bit later on in this note, we will extend this notion of impedance to other elements, but for 
the moment the resistance will serve our purposes. 
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3 Examples: Voltage and Current Dividers 

Figure 6 may be used as an example to show how we use all of this. See that it has one loop and 
three nodes. Around the loop, KVL is: 

Vs − v1 − v2 = 0 

At the upper right- hand node, we have, by KCL: 

i1 − i2 = 0 

The constitutive relations imposed by the resistances are: 

v1 = R1i1 

v2 = R2i2 

Combining these, we find that: 
Vs = (R1 + R2)i1 

We may solve for the voltage across, say, R2, to obtain the so-called voltage divider relationship: 

R2 
v2 = Vs (4) 

R1 + R2 
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Figure 6: Voltage Divider 

A second example is illustrated by Figure 7. Here, KCL at the top node yields: 

Is − i1 − i2 = 0 

And KVL, written around the loop that has the two resistances, is: 

R1i1 − R2i2 = 0 

Combining these together, we have the current divider relationship: 

R1
i2 = Is (5) 

R1 + R2 

Once we have derived the voltage and current divider relationships, we can use them as part of 
our “intellectual toolkit”, because they will always be true. 
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Figure 7: Current Divider 

Node Voltages and Reference 

One of the consequences of KVL is that every node in a network will have a potential which is 
uniquely specified with respect to some other node. Thus, if we take one of the nodes in the network 
to be a reference, or datum, each of the other nodes will have a unique potential. The voltage across 
any network branch is then the difference between the potentials at the nodes to which the element 
is connected. The potential of a node is the sum of voltages encountered when traversing some 
path between that node and the datum node. Note that any path will do. If KVL is satisfied, all 
paths between each pair of nodes will yield the same potential. 

A commonly used electric circuit is the Wheatstone Bridge, shown in its simplest form in 
Figure 8. The output voltage is found simply from the input voltage as just the difference between 
two voltage dividers: 

R2 R4 
vo = vs − 

R1 + R2 R3 + R4 

This circuit is used in situations in which one or more resistors varies with, say temperature or 
mechanical strain. The bridge can be balanced so that the output voltage is zero by adjusting one 
of the other resistors. Then relatively small variations in the sensing element can result in relatively 
big differences in the output voltage. If, for example R2 is the sensing element, R4 can be adjusted 
to balance the bridge. 

Serial and Parallel Combinations 

There are a number of techniques for handling network problems, and we will not be able to 
investigate each of them in depth. We will, however, look into a few techniques for analysis which 
involve progressive simplification of the network. To start, we consider how one might handle series 
and parallel combinations of elements. A pair of elements is in series if the same current flows 
through both of them. If these elements are resistors and if the detail of voltage division between 
them is not required, it is possible to lump the two together as a single resistance. This is illustrated 
in Figure 9. The voltage across the current source is: 

vs = v1 + v2 = isR1 + isR2 = is(R1 + R2) 

The equivalent resistance for the series combination is then: 

Rseries = R1 + R2 (6) 
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Figure 8: Wheatstone Bridge
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Figure 9: Series Resistance Combination 

Similarly, resistance elements connected in parallel can be lumped if it is not necessary to know 
the details of division of current between them. Figure 10 shows this combination. 

Here, current i is simply: 
v v 1 1 

i = + = v + 
R1 R2 R1 R2 

The equivalent resistance for the parallel combination is then: 

1 R1R2
Rpar = 

1 1 = (7) 
+ R1 + R2R1 R2 

Because of the importance of parallel connection of resistances (and of other impedances), a special 
symbolic form is used for parallel construction. This is: 

R1R2
R1||R2 = (8) 

R1 + R2 

As an example, consider the circuit shown in Figure 11, part (a). Here, we have four, resistors 
arranged in an odd way to form a two- terminal network. To find the equivalent resistance of this 
thing, we can do a series of series-parallel combinations. 

The two resistors on the right can be combined as a series combination to form a single, two 
ohm resistor as shown in part (b). Then the equivalent resistor, which is in parallel with one of the 
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Figure 10: Parallel Resistance Combination 

2 1

two ohm resistors can be combined to form a single combination part(c). That is in series with the 
remaining resistor, leaving us with an equivalent input resistance of R = 3Ω. 

Loop and Node Equations 

There are two well- developed formal ways of solving for the potentials and currents in networks, 
often referred to as loop and node equation methods. They are closely related, using KCL and 
KVL together with element constraints to build sets of equations which may then be solved for 
potentials and currents. 

•	 In the node equation method, KCL is written at each node of the network, with currents 
expressed in terms of the node potentials. KVL is satisfied because the node potentials are 
unique. 

•	 In the loop equation method, KVL is written about a collection of closed paths in the network. 
“Loop currents” are defined, and made to satisfy KCL, and the branch voltages are expressed 
in terms of them. 

The two methods are equivalent and a choice between them is usually a matter of personal prefer­
ence. The node equation method is probably more widely used, and lends itself well to computer 
analysis. 

To illustrate how these methods work, consider the network of Figure 12. 
This network has three nodes. We are going to write KCL for each of the nodes, but note that 

only two explicit equations are required. If KCL is satisfied at two of the nodes, it is automatically 
satisfied at the third. Usually the datum node is the one for which we do not write the expression. 
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Figure 12: Sample Network 

KCL written for the two upper nodes of the network is: 

V V − v2 
+ = 0 (9) −i1 + 

R1 R2 

v2 − V v2
−I + + = 0 (10) 

R2 R3 

These two expressions are easily solved for the two unknowns, i1 and v2: 

R3 R2R3 
v2 = V + I 

R2 + R3 R2 + R3 

R1 + R2 + R3 R3
i1 = V − I 

R1(R2 + R3) R2 + R3 
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Figure 13: Sample Network Showing Loops 

The loop equation method is similar. We need the same number of independent expressions 
(two), so we need to take two independent loops. For this, take as the loops as is shown in 
Figure 13: 

1. The loop that includes the voltage source and R1. 

2. The loop that includes R1, R2, and R3. 

It is also necessary to define loop currents, which we will denote as ia and ib. These are the currents 
circulating around the two loops. Note that where the loops intersect, the actual branch current 
will be the sum of or difference between loop currents. For this example, assume the loop currents 
are defined to be circulating counter-clockwise in the two loops. The two loop equations are: 

V + R1(ia − ib) = 0 (11) 

R1(ib − ia) + R2ib + R3(ib − I) = 0 (12) 

These are equally easily solved for the two unknowns, in this case the two loop currents ia and ib. 
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7 Linearity and Superposition 

An extraordinarily powerful notion of network theory is linearity. This property has two essential 
elements, stated as follows: 

1. For any single input x yielding output y, the response to an input kx is ky for any value of k. 

2. If, in a multi-input network the input x1 by itself yields output y1 and a second input x2 by 
itself yields y2, then the combination of inputs x1 and x2 yields the output y = y1 + y2. 

This is important to us at the present moment for two reasons: 

1. It tells us that the solution to certain problems involving networks with multiple inputs is 
actually easier than we might expect: if a network is linear, we may solve for the output with 
each separate input, then add the outputs. This is called superposition. 

2. It also tells us that, for networks that are linear, it is not necessary to actually consider the 
value of the inputs in calculating response. What is important is a system function, or a ratio 
of output to input. 

Superposition is an important principle when dealing with linear networks, and can be used 
to make analysis easier. If a network has multiple independent sources, it is possible to find the 
response to each source separately, then add up all of the responses to find total response. Note 
that this can only be done with independent sources! 

Consider, for example, the example circuit shown in Figure 12. If we are only interested in the 
output voltage v2, we may find the response to the voltage source first, then the response to the 
current source, then the total response is the sum of the two. To find the response to the voltage 
source, we must “turn off” the current source. This is done by assuming that it is not there. (After 
all, a current source with zero current is just an open circuit!). The resulting network is as in 
Figure 14. 

R2 

2v 
V 

+ 

− 
R 

3 
v 

+ 

− 

Figure 14: Superposition Fragment: Voltage Source 

Note that the resistance R1 does not appear here. This is because a resistance in parallel with 
a voltage source is just a voltage source, unless one is interested in current in the resistance. The 
output voltage is just: 

R3 
v2v = V 

R2 + R3 

Next, we “turn off” the voltage source and “turn on” the current source. Note that a voltage source 
that has been turned off is a short circuit, because that implies zero voltage. The network is as 
shown in Figure 15 
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Figure 15: Superposition Fragment: Current Source 

The response to this is: 
v2i = IR2||R3 

The total response is then just: 

R3 R2R3 
v2 = v2v + v2i = V + I 

R2 + R3 R2 + R3 

Thevenin and Norton Equivalent Circuits 

A particularly important ramification of the property of linearity is expressed in the notion of 
equivalent circuits. To wit: if we are considering the response of a network at any given terminal 

pair, that is a pair of nodes that have been brought out to the outside world, it follows from the 
properties of linearity that, if the network is linear, the output at a single terminal pair (either 
voltage or current) is the sum of two components: 

1. The response that would exist if the excitation at the terminal pair were zero and 

2. The response forced at the terminal pair by the exciting voltage or current. 

This notion may be expressed with either voltage or current as the response. These yield the 
Thevenin and Norton equivalent networks, which are exactly equivalent. At any terminal pair, the 
properties of a linear network may be expressed in terms of either Thevenin or Norton equivalents. 
The Thevenin equivalent circuit is shown in Figure 16, while the Norton equivalent circuit is shown 
in Figure 17. 
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Figure 16: Thevenin Equivalent Network 
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Figure 17: Norton Equivalent Network 

The Thevenin and Norton equivalent networks have the same impedance. Further, the equiva­
lent sources are related by the simple relationship: 

VTh = ReqIN (13) 

The Thevenin Equivalent Voltage, the source internal to the Thevenin equivalent network, is 
the same as the open circuit voltage, which is the voltage that would appear at the terminals of 
the equivalent circuit were it to be open circuited. Similarly, the Norton Equivalent Current is the 
same as minus the short circuit current. 

To consider how we might use these equivalent networks, consider what would happen if the 
Wheatstone bridge were connected by some resistance across its output, as shown in Figure 18 
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Figure 18: Wheatstone Bridge With Output Resistance 

The analysis of this situation is simplified substantially if one recognizes that each side of the 
bridge can be expressed as either a Thevenin or Norton equivalent network. We may proceed to 
solve the problem by finding the equivalent networks for each side, then paste them together to 
form the whole solution. So: consider the equivalent network for the left-hand side of the network, 
formed by the elements V , R1 and R2. This is shown in Figure 19. 
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Figure 19: Construction of Equivalent Circuit 

Where, here, the components of the equivalent circuit are: 

R2 
vThl = V 

R1 + R2 

Reql = R1||R2 

Similarly, the right side of the network is found to have an equivalent source and resistance: 

R4 
vThr = V 

R3 + R4 

Reqr = R3||R4 

And the whole thing behaves as the equivalent circuit shown in Figure 20 

RTh l R5 R Th r 

+	 + 

VTh l	 VTh r 
−− 

Figure 20: Equivalent Circuit 

This is, of course, easily solved for the current through, and hence the voltage across, the 
resistance R5, which was desired in the first place: 

R5 R2	 R5 
v5 = (vThl − vThr)	 = V − fracR4R3 + R4

R5 + reql + reqr R1 + R2	 R5 + R1||R2 + R3||R4 

Two Port Networks 

So far, we have dealt with a number of networks which may be said to be one port or single-terminal­
pair circuits. That is, the important action occurs at a single terminal pair, and is characterized 
by an impedance and by either a open circuit voltage or a short circuit current, thus forming either 
a Thevenin or Norton equivalent circuit. A second, and for us very important, class of electrical 
network has two (or sometimes more) terminal pairs. We will consider formally here the two port 

network, illustrated schematically in Figure 21. 
There are a number of ways of characterizing this type of network. For the time being, consider 

that it is passive, so that there is no output without some input and there are no dependent sources. 

12
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Figure 21: Two-Port Network 

Then we may characterize the network in terms of the currents at its terminals in terms of the 
voltages, or, conversely, we may describe the voltages in terms of the currents at the terminals. 
These two ways of describing the network are said to be the admittance or impedance parameters. 
These may be written in the following way: 

The impedance parameter point of view would yield, for a resistive network, the following 
relationship between voltages and currents: 

v1 R11 R12 i1 = (14) 
v2 R21 R22 i2 

Similarly, the admittance parameter point of view would yield a similar relationship: 

i1 G11 G12 v1 = (15) 
i2 G21 G22 v2 

These two relationships are, of course, the inverses of each other. That is: 
� � � �

−1 
G11 G12 R11 R12 = (16) 
G21 G22 R21 R22 

If the networks are linear and passive (i.e. there are no dependent sources inside), they also 
exhibit the property of reciprocity. In a reciprocal network, the transfer impedance or transfer 

admittance is the same in both directions. That is: 

R12 = R21


G12 = G21 (17)


It is often useful to express two- port networks in terms of T or Π networks, shown in Figures 22 
and 23. 

Sometimes it is useful to cascade two-port networks, as is shown in Figure 24. The resulting 
combination is itself a two-port. Suppose we have a pair of networks characterized by impedance 
parameters: 

v1 R11 R12 i1 = 
v2 R12 R22 i2 
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Figure 22: T- Equivalent Network


G − G 
12G

11 12G − G 22 12 

Figure 23: Π-Equivalent Network 

v3 R33 R34 i3 = 
v4 R34 R44 i4 

By noting that v2 = v3 and i3 = −i2, it is possible to show, with a little manipulation, that: 

v1 R11 
� R14 i1 = 

v4 R14 R44 
� i4 

where 
R2 

R� 12 = 11 R11 − 
R22 + R33 

R2 

R� 34 = 44 R44 − 
R22 + R33 

R12R34 
R14 = 

R22 + R33 

10 Inductive and Capacitive Circuit Elements 

So far, we have dealt with circuit elements which have no memory and which, therefore, are 
characterized by instantaneous behavior. The expressions which are used to calculate what these 
elements are doing are algebraic (and for most elements are linear too). As it turns out, much of 
the circuitry we will be studying can be so characterized, with complex parameters. 

However, we take a quick diversion to discuss briefly the transient behavior of circuits containing 
capacitors and inductors. 
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Figure 24: Cascade of Two-Port Networks 

ic vc il vl 

C L 

Figure 25: Capacitance and Inductance 

Symbols for capacitive and inductive circuit elements are shown in Figure 25. They are char­
acterized by the relationships between voltage and current: 

ic = C 
dvc 

dt 
v� = L 

di� 

dt 
(18) 

Note that, while these elements are linear, since time derivatives are involved in their char­
acterization, expressions describing their behavior in networks will become ordinary differential 
equations. 

10.1 Simple Case: R-C 

r 

C R 

+ 

v 

− 

ic i 

Figure 26: Simple Case: R-C 

Figure 26 shows a simple connection of a resistance and a capacitance. This circuit has only 
two nodes, so there is a single voltage v across both elements. The two elements produce the 
constraints: 

v 
ir = 

R 
dv 

ic = 
dt 
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and, since ir = −ic, 
dv 1 

+ v = 0 
dt RC 

Now, we know that this sort of first-order, linear equation is solved by: 

t 
v ∼ e −RC 

(To confirm this, just substitute the exponential into the differential equation.) Then, if we have 
some initial condition, say v(t = 0) = V0, then 

t 
v = V0e 

−
RC 

This was a trivial case, since we don’t describe how that initial condition might have taken 
place. But consider a closely related problem, illustrated in Figure 27. 

10.2 Simple Case with Drive 

R


− 

C vc 

+ 

− 

v s 

+ 

Figure 27: RC Circuit with Drive 

The analysis of this circuit is accomplished by noting that it contains a single loop, and adding 
up the voltages around the loop we find: 

dvc
RC + vc = vs

dt 

Now, assume that the voltage source is a step: 

vs = Vsu−1(t) 

We should define the step function with some care, since it is of quite a lot of use. The step is 
one of a hierarchy of singularity functions. It is defined as: 

0 t < 0 
u−1(t) = (19) 

1 t > 0 

Now, remembering that differential equations have particular and homogeneous solutions, and 
that for t > 0 a particular solution which solves the differential equation is: 

vcp = V 

16 



� � 

� � 

� � 

Of course this does not satisfy the initial condition which is that the capacitance be uncharged: 
vc(t = 0+) = 0. Again, remember that the whole solution is the sum of the particular and a 
homogeneous solution, and that the homogeneous solution is the un-driven case. To satisfy the 
initial condition, the homogeneous solution must be: 

t 
cch = −V e −RC 

So that the total solution is simply: 
t 

vc = V 1 − e −RC 

Next, suppose vs = u−1(t)V cosωt. We know the homogeneous solution must be of the same 
form, but the particular solution is a bit more complicated. In later chapters we will learn how to 
make the process of extracting the particular solution easier, but for the time being, let’s assume 
that with a sinusoidal drive we will get a sinusoidal response of the same frequency. Thus we will 
guess 

vcp = Vcp cos (ωt − φ) 

The time derivative is 
dvcp 

= ωVcp sin (ωt − φ)
dt 

so that we can find an algebraic equation for the particular solution: 

V cos ωt = Vcp (cos (ωt − φ) + ωRC sin (ωt − φ)) 

Note the trigonometric identities: 

cos (ωt − φ) = cos φ cos ωt + sinφ sinωt 

sin (ωt − φ) = − sinφ cos ωt + cos φ sinωt 

Since the sine and cosine terms are orthogonal, we can equate coefficients of sine and cosine to 
get: 

V = Vcp [cos φ + ωRC sinφ] 

0 = Vcp [sinφ + ωRC cos φ] 

The second of these can be solved for the phase angle: 

φ = tan−1 ωRC 

and squaring both equations and adding: 

V 2 = Vcp 
2 1 + (ωRC)2 

so that the particular solution is: 

V 
vcp = � cos (ωt − φ) 

1 + (ωRC)2 

Finally, if the capacitor is initially uncharged (vc(t = 0+) = 0), we can add in the homogeneous 
solution (we already know the form of this), and find the total solution to be: 

V t 
vcp = � cos (ωt − φ) − cos φe−RC 

1 + (ωRC)2 

This is shown in Figure 28
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Figure 28: Output Voltage for RC Example 

10.3 Second-Order System Example 

R1 R2 

v s 

+ 

− 

vo 

− 

+ 

L Li 

i 
1 

2 

Figure 29: Two-Inductor Circuit 

Figure 29 shows a network with two inductances and two resistances. Assume that this is 
driven by a voltage step: vs = Vsu−1(t). Note that, with two inductances, we will require two 
initial conditions to complete the solution. 

The steady state (particular) solution is vo = 0. There will, of course, be current flowing in 
each of the inductances, but if excitation is constant there will be no time derivative of current so 
that voltage across each of the inductances will eventually fall to zero. 

The initial conditions may be found by inspection. Right after t = 0 (note we use t = 0+ for 
this), output voltage must be: 

vo(t = 0+) = Vs 

This must be so since current cannot be made to flow instantaneously in either inductance, so that 
there is no current in either resistance. 
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The second initial condition is the rate of change of voltage right after the instant of the voltage 
step. To find this, note that output voltage is equal to the source voltage minus the voltage drops 
across each of the two resistances. 

vo = vs − R2i2 − R1(i1 + i2) 

If we differentiate this with respect to time and note that the time derivative of a constant (after 
the step the input voltage is constant) is zero: 

dvo di2 di1
(t = 0+) = −(R1 + R2) − R1

dt dt dt 

Now, since right after the instant of the step both inductances have the source voltage Vs across 
them: 

di1 di2 Vs
|t=0+ = |t=0+ = 

dt dt L 

the rate of change of voltage at t = 0+ is: 

dvo 2R1 + R2
|t=0+ = − Vs

dt L 

Now, we can find the homogeneous solution using the loop method. Setting the source to zero, 
assume a current ia in the left-hand loop and ib in the right-hand loop. KVL around these two 
loops yields: 

d 
(ia − ib) = 0R1ia + L 

dt 
dib dia

R2ib + 2L − L = 0 
dt dt 

With a little manipulation, these become: 

dia
L + 2R1ia + R2ib = 0 

dt 
dib

L + R1ia + R2ib = 0 
dt 

Assume that solutions are of the form Iest, and this set of simultaneous equations becomes: 

(sL + 2R1) R2 Ia 0 
= 

R1 (sL + R2) Ib 0 

We need to solve this for s (to find values of s for which this set is true, and that is simply the 
solution of the “characteristic equation” 

(sL + 2R1) (sL + R2) − R1R2 = 0 

which is the same as: 
2R1 + R2 R1 R22 s + s + = 0 

L L L 

19




Now, for the sake of “nice numbers”, assume that R1 = 2R, R2 = 3R. The characteristic 
equation is: 

R 
� 

R 
�2 

s + 6 = 0s 2 + 7 
L L 

which factors nicely into (s + R )(s + 6R ) = 0, or the two values of s are s = −R and s = −6R .
L L	 L L 

Since the particular solution to this one is zero, we have a total solution which is: 

vo = Ae−

The initial conditions are: 

R

L
t + Be−6

R

L
t 

vo|t=0+ = A + B =	 Vs 

dvo R R 
|t=0+ = − (A + 6B) = −7 Vs

dt L	 L 

The solution to that pair of expressions is: 

Vs 6Vs
A = − B = 

5 5 

and this is shown in Figure 30. 

Two Inductor Example 

V
o 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

−0.2 
0	 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

t 

Figure 30: Output Voltage for Two Inductor Example 
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6.061 Introduction to Power Systems

Class Notes Chapter 2


AC Power Flow in Linear Networks ∗


J.L. Kirtley Jr. 

1 Introduction 

Electric power systems usually involve sinusoidally varying (or nearly so) voltages and currents. 
That is, voltage and current are functions of time that are nearly pure sine waves at fixed frequency. 
In North America, most ships at sea and eastern Japan that frequency is 60 Hz. In most of the 
rest of the world it is 50 Hz. Normal power system operation is at this fixed frequency, which is 
why we study how systems operate in this mode. We will deal with transients later. 

This note deals with alternating voltages and currents and with associated energy flows. The 
focus is on sinusoidal steady state conditions, in which virtually all quantities of interest may be 
represented by single, complex numbers. 

Accordingly, this section opens with a review of complex numbers and with representation of 
voltage and current as complex amplitudes with complex exponential time dependence. The dis­
cussion proceeds, through impedance, to describe a pictorial representation of complex amplitudes, 
called phasors. Power is then defined and, in sinusoidal steady state, reduced to complex form. 
Finally, flow of power through impedances and a conservation law are discussed. 

Secondarily, this section of the notes deals with transmission lines that have interesting behavior, 
both in the time and frequency domails. 

2 Complex Exponential Notation 

Start by recognizing a geometric interpretation for a complex number. If we plot the real part on 
the horizontal (x) axis and the imaginary part on the vertical (y) axis, then the complex number 
z = x+jy (where j = 

√
−1) represents a vector as shown in Figure 1. Note that this vector may be 

represented not only by its real and imaginary components, but also by a magnitude and a phase 

∗
 c�2007 James L. Kirtley Jr. 
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Figure 1: Representation of the complex number z = x + jy 

·

Figure 2: Representation of ejφ 

angle: 

|z| = x2 +	 y2 (1) 
y

φ = arctan(	 ) (2) 
x 

The basis for complex exponential notation is the celebrated Euler Relation: 

ejφ = cos(φ) + j sin(φ)	 (3) 

which has a representation as shown in Figure 2. 
Now, a comparison of Figures 1 and 2 makes it clear that, with definitions (1) and (2), 

z = x + jy = |z|ejφ	 (4) 

It is straightforward, using (3) to show that: 

ejφ + e−jφ 

cos(φ) = (5)
2 

sin(φ) = 
ejφ − e−jφ	

(6)
2j 

(7) 
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Figure 3: Representation Of A Complex Number And Its Conjugate 

The complex exponential is a tremendously useful type of function. Note that the product of 
two numbers expressed as exponenentials is the same as the exponential of the sums of the two 
exponents: 

ea  eb  = ea +b (8) 

Note that it is also true that the reciprocal of a number in exponential notation is just the exponential 
of the negative of the exponent: 

1 
= e−a (9) 

ea 

Then, if we have two numbers z1 = |z j
1|e φ1 and z2 = |z j

2|e φ2 , then the product of the two numbers 
is: 

z1z2 = |z1||z  
2|ej(φ1+φ2) (10) 

and the ratio of the two numbers is: 

z1 = 
|z1|ej(φ1−φ2) (11) 

z2 |z2| 
The complex conjugate of a number z = x + jy is given by: 

z∗ = x − jy (12) 

The sum of a complex number and its conjugate is real: 

z + z∗ = 2Re(z) = 2x (13) 

while the difference is imaginary: 

z − z∗ = 2jIm(z) = 2jy (14) 

where we have used the two symbols Re(·) and Im(·) to represent the operators which extract the
real and imaginary parts of the complex number. 

The complex conjugate of a complex number z = |z|ejφ may also be written as: 

z∗ = |z|e−jφ (15) 

so that the product of a complex number and its conjugate is real: 

zz∗ = |z|ejφ|z|e−jφ = |z|2 (16) 

3 



3 Sinusoidal Time Functions 

A sinusoidal function of time might be written in at least two ways: 

f(t) = A cos(ωt + φ) (17) 

f(t) = B cos(ωt) + C sin(ωt) (18) 

A third way of writing this time function is as the sum of two complex exponentials: 

f(t) = Xejωt + X∗e−jωt (19) 

Note that the form of equation 19, in which complex conjugates are added together, guarantees 
that the resulting function is real. 

Now, to relate equation 19 with the other forms of the sinusoidal function, equations 17 and 18, 
see that X may be expressed as: 

X = |X|ejψ (20) 

Then equation 19 becomes: 

f(t) = X ejψejωt + X ∗e−jψe−jωt (21) | |
j(ψ+ωt) 

| |
∗e−j(ψ+ωt)= X e + X (22) | | | |

= 2 X cos(ωt + ψ) (23) | |

Then, the coefficients in equation 17 are related to those of equation 19 by: 

A |X | = 
2 

(24) 

ψ = φ (25) 

Alternatively, we could write 
X = x + jy (26) 

in which the real and imaginary parts of X are: 

x = X cos(ψ) (27) | |
y = X sin(ψ) (28) | |

Then the time function is written: 

f(t) = x(ejωt + e−jωt) + jy(ejωt e−jωt) (29) −
= 2x cos(ωt) − 2y sin(ωt) (30) 

Thus: 

A = 2x (31) 

B = −2y (32) 

A B 
X =

2 
− j 

2 
(33) 
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It is also possible to write equation 19 in the form: 

f(t) = Re(2Xejωt) (34) 

While both expressions (19 and 34) are equivalent, it is advantageous to use one or the other of 
them, according to circumstances. The first notation (equation 19) is the full representation of that 
sinusoidal signal and may be used under any circumstances. It is, however, cumbersome, so that 
the somewhat more compact version(equation 34) is usually used. Chiefly when nonlinear products 
such as power are involved, it is necessary to be somewhat cautions in its use, however, as we will 
see later on. 

Impedance 

Because it is so easy to differentiate a complex exponential time signal, such a way of representing 
time signals has real advantages in electric circuits with all kinds of linear elements. In Section 1 of 
these notes, we introduced the linear resistance element, in which voltage and current are linearly 
related. We must now consider two other elements, inductances and capacitances. The inductance 

⊃⊃
⊃⊃L C 

Figure 4: Inductance and Capacitance Elements 

produces a relationship between voltage and current which is: 

diL 
vL = L (35)

dt 

If voltage and current are sinusoidal functions of time: 

v = V ejωt + V ∗e−jωt 

i = Iejωt + I∗e−jωt 

Then the relationship between voltage and current is given simply by: 

V = jωLI (36) 

This is a particularly simple form, and as can be seen is directly analogous to resistance. We can 
generalize our view of resistance to complex impedance (or simply impedance), in which inductances 
have impedance which is: 

ZL = jωL (37) 

The capacitance element is similarly defined. A capacitance has a voltage-current relationship: 

dvC
i = C (38)

dt 
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Thus the impedance of a capacitance is: 

1 
ZC = (39)

jωC 

The extension to resistive network behavior is now obvious. For problems in sinusoidal steady 

state, in which all excitations are sinusoidal, we may use all of the tricks of linear, resistive network 
analysis. However, we use complex impedance in place of resistance. 

The inverse of impedance is admittance: 

1 
Y = 

Z 

Series and parallel combinations of admittances and impedances are, of course, just like those 
of conductances and resistances. For two elements in series or in parallel: 
Series: 

Z = Z1 + Z2 (40) 

Y 1Y 2Y = (41)
Y 1 + Y 2 

Parallel: 

Z1Z2Z = (42)
Z1 + Z2 

Y = Y 1 + Y 2 (43) 

4.1 Example 

Suppose we are to find the voltage v(t) in the network of Figure 5, in which i(t) = I cos(ωt). The 

Figure 5: Complex Impedance Network 

excitation may be written as: 

i(t) = 
I
ejωt + 

I
e−jωt = Re Iejωt 

2 2 

Now, the complex impedance of the parallel combination of R and L is: 

RjωL 
R||jωL = 

R + jωL 

So that, if v(t) is represented by: 
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5 

v(t) = 
V
ejωt + 

V
e−jωt 

2 2 

= Re V ejωt 

Then 
RjωL 

V = I 
R + jωL 

Now: the impedance Z may be represented by a magnitude and phase angle: 

Z = Z ejφ | |
ωLR |Z| = � 

(ωL)2 + R2 

π ωL 
φ =

2 
− arctan 

R 

Then, using relations developed here, v(t) may be written as: 

ωLI 
v(t) = � cos(ωt + φ) 

� �2 
1 + ωL 

R 

Note that this expression represents only the sinusoidal steady state solution, and therefore does 
not represent any starting transients. 

System Functions and Frequency Response 

If we are interested in the behavior of a linear system such as the circuits we have been discussing, 
we often speak of the system function. This is the (usually complex) ratio between output and input 

of the system. System functions can express driving point behavior (impedance or its reciprocal, 
admittance) or transfer behavior. We speak of voltage or current transfer ratios and of transfer 
impedance (output voltage related to input current) and transfer admittance (output current related 
to input voltage). 

The system function may be expressed in a number of ways, often as a Laplace Transform. Such 
is beyond the scope of this subject. However, it is important to understand one way of expressing 
linear system behavior, in the form of frequency response. The frequency response of a system is 
the complex number that relates output of the system to input as a function of frequency. Usually 
it is expressed as a pair of numbers, magnitude and phase angle. Thus 

H(jω) = |H(jω)|ejφ(jω) 

Subjects in Signals and Systems or Network Theory often spend some time on how to obtain 
and plot the frequency response of a network in ways which are both useful and easy. For our 
purposes, a straightforward, perhaps even “brute force” approach will do. Consider, for example, 
the circuit shown in Figure 6. 
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Figure 6: Example Circuit for Frequency Response 

This is just a voltage divider between an inductance and a resistance. We seek to find, and 
then plot, the transfer ratio Vout/Vin of this network. A very little analysis yields an expression for 
the transfer function, which is: 

Vout(jω) R 1 
= = 

Vin(jω) R + jωL 1 + jω L 
R 

The magnitude and angle of this function can be extracted in a number of ways. For the pur­
pose of these notes, we have done the mathematics using MATLAB. The specific instructions for 
producing the frequency response plot are shown in Figure 7. Funamentally what is done is to 
compute the system function for a number of frequencies (note that we use a way of computing 
specific frequencies which produces a uniform spacing on a logarithmic scale, and then plotting the 
magnitude (also on a logarithmic scale) and angle of that system function against frequency. 

6 Phasors 

Phasors are not weapons. They are a handy geometric trick which help us understand the nature 
of sinusoidal steady state signals and systems. To start, consider the basis for complex exponential 
time notation, the function ejωt. At any instant of time, this is a complex number: at time t = 0 
it is equal to 1, at time ωt = π 

2 it is equal to j, and so forth. We may describe this function 
as a vector, of length unity, rotating about the origin of the complex number plane, with angular 
velocity ω. It has, of course, both real and imaginary parts, which are just the projections of the 
vector onto the real and imaginary axes. 

Now consider a sinusoidally varying signal x(t), which may be represented by: 

x(t) = 
X jωt X∗ 

e−jωt e + 
2 2 

This is the sum of two numbers, complex conjugates, which are, as functions of time, rotating in 
opposite directions in the complex plane. The sum of the two is, of course, real. This is the same 
time function as: 

x(t) = Re Xejωt (44) 

where the real part operator Re( ) simply takes the projection of the function on the real axis. ·
It might be helpful at this point to remember one of the features of complex arithmetic. Mul­

tiplication of two complex numbers results in a third complex number which has: 
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L=1e-3; % Set Parameter Values 
R=1000; 
e=3:.05:7; % This is a way of producing evenly 
f=10 .^ e; % spaced points on a logarithmic chart 
om=2*pi .* f; % Frequency in radians per second 
H = 1 ./ (1 + j*L/R .* om); % This is the frequency response 
subplot(211); 
loglog(f, abs(H)) % Plot of magnitude 
xlabel(’Frequency, Hz’); 
ylabel(’Magnitude’); 
grid 
subplot(212); 
semilogx(f, angle(H)) % Plot of angle 
xlabel(’Frequency, Hz’) 
ylabel(’Angle’) 
grid 
title(’Frequency Response of L-R’)

print(’freq.ps’)


Figure 7: MATLAB Program freq.m 

1. a magnitude which is the product of the magnitudes of the two numbers begin multiplied and, 

2. an angle which is the sum of the angles of the two numbers being multiplied. 

Thus, multiplying a number by ejωt, which has a magnitude of unity and an angle which is increasing 
with time at the rate ω, simply has the effect of setting that number spinning around the origin of 
the complex plane. 

It is therefore relatively easy to represent sinusoidally varying signals with just their complex 
amplitudes, understanding that they also include ejωt, which provides time variation. The complex 

amplitude includes not only the magnitude of the signal, but also a phase angle. Usually the phase 
angle by itself is of little use, and must be related to some time reference. That is, as we will see, 
it is the difference between phase angles that is important in most cases. 

Impedances and admittances are also complex numbers, so that phasors can be used to visualize 
the relationship between voltages and currents in a network. The key here is that multiplication and 
division of complex numbers is the same as multiplication or division of magnitudes and addition 
or subtraction of angles. 

6.1 Example 

Consider the simple network shown in Figure 9, and suppose that the current source is sinusoidal: 

i = Re Iejωt 

The impedance of the R-L combination is a complex number: 
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Figure 8: Frequency Response 

Z = R + jωL = 1 + j2 

Now: the impedance may be represented in the complex plane as shown in Figure 10. 
Voltage v is given by: 

v = Re V ejωt 

where: 
V = ZI 

Then the relationship between voltage and current is as shown in Figure 11. Note that the phase 
angle between voltage and current is the same as the phase angle of the impedance. 

Note that KVL may be represented graphically in the fashion of Figure 12. 

Energy and Power 

For any terminal pair with voltage and current defined as shown in Figure 13, power flow into the 
element is: 

p = vi (45) 
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Figure 9: Example Circuit 

Im(Z) 

2 Z 

�	 Re(Z) 
1 

Figure 10: Complex Impedance 

Power is expressed in Watts (W), and one Watt is the product of one Volt and one Ampere. 
Energy transferred over an interval of time t0 to t1 is the integral of power: 

t1 

w = v(t)i(t)dt	 (46) 
t0 

Energy is expressed in Joules, and one Joule is one Watt- Second. A Joule is also a Newton-Meter 
(force times distance), and therefore a Watt is a Newton-Meter per Second. 

Consider the behavior of the three types of linear, passive elements we have encountered: 

• Resistance: v = Ri, Instantaneous power is: 

2 

p = Ri2 = 
v

(47)
R 

Im( )·
V 

� �I Re( )·

Figure 11: Voltage and Current 
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Figure 13: Definition for Power 

•	  Inductance: v = L di
dt

, Instantaneous power is: 

di 1 di2 

p = iL = L	 (48)
dt 2 dt 

The quantity wL = 1
2 

 Li2 may be interpreted as energy stored in the inductance, so that 

p = dwL . We will need to refine this definition later, when we consider electromechanical 
dt 

interactions or nonlinear elements, but it will do for now. 

•	 Capacitance: i = C dv 
dt

, Instantaneous power is: 

 dv 1 dv2

p = vC = C	 (49)
dt 2 dt 

The quantity wC = 1 
2

 Cv2 may similarly be interpreted as energy stored in the capacitance. 

Next, consider the power input to each of these three elements under sinusoidal steady state 
conditions: 

• Resistance: if i = I cos(ωt + θ), then 

p =	 RI2 cos 2(ωt + θ) 
 RI2

= [1 + cos 2(ωt + θ)]	 (50)
2 
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Thus, average power into the resistance is: 

P =
1 
RI2 (51) 

2 

• Inductance: if i = I cos(ωt + θ), then voltage is v = −ωLI sin(ωt + θ), and power is: 

p = −ωLI2 cos(ωt + θ) sin(ωt + θ) 

ωLI2 

= sin 2(ωt + θ) (52) − 
2 

Average power into the inductance is zero. Instantaneous energy stored in the inductance is 

wL =
1 
LI2 cos 2(ωt + θ)

2 

and that has an average value: 

< wL >=
1 
LI2 (53) 

4 

• Capacitance: if v = V cos(ωt + φ), then i = −ωCV sin(ωt + φ), and power is: 

ωCV 2 

p = sin 2(ωt + φ) (54) − 
2


which has zero time average. Energy stored in the capacitance is:


wC =
1 
CV 2 cos 2(ωt + φ)

2 

which has time average: 

< wC >=
1 
CV 2 (55) 

4 

Now, consider power flow into a set of terminals in a situation in which both voltage and current 
are sinusoidal and have the same frequency, but possibly different phase angles: 

v(t) = V cos(ωt + φ) 

i(t) = I sin(ωt + θ) 

It is necessary to revert to the original form of complex notation, as in equation 19, to compute 
power. 

v(t) =
1 
V ejωt + V ∗e−jωt (56) 

2 

i(t) =
1 
Iejωt + I∗e−jωt (57) 

2 

Instantaneous power is the product of voltage and current: 

p =
1 
V I∗ + V ∗I + V Iej2ωt + V ∗I∗e−j2ωt (58) 

4 
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This is directly equivalent to: 

p =
1 
Re V I∗ + V Iej2ωt (59) 

2 

This is, in turn, expressible as: 

1 
p =

2
|V ||I | [cos(φ − θ) + cos(2ωt + φ + θ)] (60) 

From this, we extract “real power”, or time- average power: 

1 1 
P =

2 
Re [V I∗] =

2
|V ||I| cos(φ − θ) (61) 

The ratio between real power and apparent power Pa 

is simply: 
power factor = cosψ = 

=
 1
2 |V ||I | is called the power factor, and


cos(φ − θ) (62)


The power factor angle ψ = φ − θ is the relative phase shift between voltage and current. 
This expression for time- average power suggests a definition for something we might call complex 

power: 
1 

P + jQ = V I∗ (63) 
2 

in which average power P is the real part. The magnitude of this complex quantity is the apparent 

power. The imaginary part is called reactive power. It has importance which will be discussed later. 
Different units are used for real, reactive and apparent power, in order to gain some distinction 

between quantities. Usually we will express real power in watts (W) (or kW, MW,...). Apparent 

power is expressed in volt-amperes (VA), and reactive power is expressed in volt-amperes-reactive 

(VAR’s). 
To obtain some more feeling for reactive power, expand the time- varying part of the expression 

for instantaneous power: 
1 

pvarying =
2
|V ||I | cos(2ωt + φ + θ) 

Now, using the trig identity cos(x + y) = cos x cos y − sinx sin y, and assigning x = 2ωt + 2φ and 
y = −ψ = θ − φ, we have: 

1 
pvarying = V I [cos 2(ωt + φ) + sinψ sin 2(ωt + φ)] 

2
| || |

Thus, total instantaneous power is: 

1 1 
p = V I cosψ [1 + cos 2(ωt + φ)] + V I sinψ sin 2(ωt + φ) (64) 

2
| || |

2
| || |

Now, if we note expressions for P and Q, we can re-write this as: 

p = P [1 + cos 2(ωt + φ)] +Q sin 2(ωt + φ) (65) 

Thus, real power P represents not only time average power but also the pulsations that go with 
time average power. Reactive power Q represents energy exchange with zero average value. 
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7.1 RMS Amplitude 

Note that, in all of the expressions for power used so far, a factor of 1
2 

�� 
�� 

appears. This is, of course, 
because the average value of the product of two sinusoids of the same frequency has a value of half 
of the products of their peak amplitudes multiplied by the cosine of the relative phase angle. It has 
become common to use a different measure of voltage amplitude, which is called root-mean-square 

or simply RMS. The proper definition for the RMS value of a waveform is somewhat complex, 
but boils down to that value which, if it were DC, would dissipate the same power in a resistor. 
It is possible to define RMS for any periodic waveform. However, since we will be dealing with 
sinusoids, the definition is even easier. Clearly, since power dissipated in a resistor is, in terms of 
peak amplitudes: 

1 V 2 

P = 
| |

2 R 
then the RMS amplitude must be: 

VRMS = 
|V | √

2
(66) 

Then, 
V 2 

P = RMS 

R 
As we will see, RMS amplitudes are the default for most situations: when a circuit is described as 
“120 Volts A√C”, the designation virtually always means 120 Volts, RMS. The peak amplitude of 
this is |V | = 2 · 120 ≈ 170 volts. Often you will see sinusoidal waveforms expressed in the form: 

v = 
√

2VRMS cos(ωt) 

in which VRMS is obviously the RMS amplitude. 

7.2 Example 

Consider the simple network of Figure 14. We will calculate the instantaneous power flow into that 
network in terms we have been discussing. Assume that the voltage source has RMS amplitude 

+ <
> v <
> R

⊃
X − <

⊃⊃

Figure 14: Example Circuit 

of 120 volts and R and X are both 100 Ω. Then: 

v(t) = 170 cos ωt 

The admittance of this network is: 
1 j

Y = 
100 

−
100 
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Figure 15: Power Flow For Example Circuit 

so that the complex amplitude of current is: 

I = 1.7 − j1.7 

And then complex power is: 
1 

P + jQ = 170(1.7 + j1.7) 
2

Real and reactive power are, respectively: P = 144 W, Q = 144 VAR. This gives a power factor 

angle of ψ = arctan(1) = 45◦. Then, instantaneous power is: 

p = 144 [1 + cos 2(ωt − 45◦)] + 144 sin 2(ωt − 45◦) 

This is illustrated in Figure 15. 

A Conservation Law 

It is possible to show that complex power is conserved in the same way as we expect time average 
power to be conserved. Consider a network with a collection of terminals and with a collection of 
internal branches. Instantaneous power flow into the network is: 

pin = vi 
terminals 

Note that this expression holds for voltage and current expressed over any complete set of terminals. 
That is, if it is possible to delineate the terminals of the network into a set of pairs, the voltages 
might correspond to voltages across the pair, while currents would flow between the terminals of 
each pair. Alternatively, the voltages might correspond to single node-to-datum voltage, while 

16







currents would then be single input node currents. Since power can go only into network elements, 
it follows that the sum of internal branch powers must be equal to the sum of terminal powers: 

term

� 

vi = 67) 
inals bra

� 

vi (
nches 

If this is true for instantaneous power, it is also true for complex power: 

term

� 

V I = V I (68) 
inals bra

� 

nches 

Now, if the network is made up of resistances, capacitances and inductances, 

� 

V I = V I + V I + V I (69) 
terminals resi

� 

stances indu

� 

ctances capa

� 

citances 

For these individual elements: 

• Resistances: V I∗ = R|  I|2

• Inductances: V I∗ = jωL|I |2 

•  Capacitances: V I∗ = −jωC|V |2

Then equation 69 becomes: 

� 

V I = 
� 

R|I |2  
� 

I|2 + j ωL| − j ωC V 2 (70) 
terminals resistances inductances capa

� 

citances 

| |

Then, identifying individual terms: 

� 

V I = 2(P + jQ) Total Complex Power into Network 
terminals 
� 

| | 2 R I = 2 
� 

< pr > Power Dissipated in Resistors 
resistances 

j 
� 

ωL|I |2 = 4ω 
� 

< wL > Energy Stored in Inductances 
inductances 

j 
� 

ωC|V |2 = 4ω 
� 

< wC > Energy Stored in Capacitances 
capacitances 

So, for any RLC network: 

P + jQ = 



� 

< pr > +2jω  

� 

< wL > − 
� 

< wC > (71) 
resistors inductors capacitors 

 

 

9 Power Flow Through An Impedance 

Consider the situation shown in Figure 16. This actually represents a number of important situ­
ations in power systems, where the impedance Z might represent a transmission line, transformer 
or motor winding. Of interest to us is the flow of power through the impedance. Current is given 
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Figure 16: Power Flow Example 

by: 
V 

il = 1 − V 2 (72) 
Z 

Then, complex power flow out of the left- hand voltage source is: 

1 
� 

V ∗ 1 − V 2
∗

 
� 

P + jQ = V 1 (73) 
2 Z∗ 

Now, the complex amplitudes may be expressed as: 

V  
1 = |V 1|ejθ (74) 

V jθ+δ
2 = |V 2|e (75) 

where δ is the relative phase angle between the two voltage sources. Complex power at the terminals 
of the voltage source V 1 is now given by: 

|V |2  
 1 V

P + jQ = 
| 1||V −

2Z∗ − 2|e jδ 

(76) 
2Z∗

This is describable as a circle in the complex plane, with its origin at 

|V 1|2 

2Z∗ 

and its radius equal to: 
|V 1||V 2|

2|Z|
Now suppose the impedance through which we are passing power is describable as a simple 

inductance as shown in Figure 17. This is perhaps the simplest of transmission line models which 
represents only the inductive impedance of the line. Line inductance arises because currents in the 
line produce magnetic fields, and this is a fair model for most lines which are fairly ’short’. More 
on that in the next section. This line has the impedance 

Z = jωL = jXL 

Now, switching to RMS amplitudes, so that V s = 
√

2V 1 and V r = 
√

2V 2, Then real and 
reactive power flow are: 

 ∗  
|V 2 
s V

Ps + jQs = V sI = j
| −  sV r

∗ 
 

Xl 

Pr + jQr = V rI
∗ = j 

|  V− r|2 − V ∗ sV r 
Xl 
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I L 

V s V r 

Figure 17: Simplest Transmission Line Model 

Now if we assume that the voltages are of the form: 

V s = Vse
jφ 

V r = Vre
jθ 

and that the relative phase angle between them is φ − θ = δ and doing a little trig: 

VsVr sin δ 
Ps = 

XL 

Qs = 
V 2 
s − VsVr cos δ 

XL 

Pr = − VsVr sin δ 
XL 

Qr = 
V 2 
r − VsVr cos δ 

XL 

A picture of this locus is referred to as a power circle diagram, because of its shape. Figure 18 
shows the construction of a sending end power circle diagram for equal sending-end and receiving-
end voltages and a purely reactive impedance. 

P 

Q 

δ 

V2 

X 

Figure 18: Power Circle, Equal Voltages 

As a check, consider the reactive power consumed by the line itself: we expect that Qs +Qr = 
QL, and so: 

Qs + Qr = 
Vs 

2 + Vr 
2 − 2VsVr cos δ 
XL 
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Note that the voltage across the line element itself is found using the law of cosines (see Figure 19:


δ 

V 

V 

V 

s 

l 

r 

Figure 19: Illustration of the Law of Cosines 

VL 
2 = Vs 

2 + Vr 
2 − 2VsVr cos δ


and, indeed,

V 2 

QL = L 

XL 

10 Compensated Line 

L 

V Vs r 
C Cs r 

Figure 20: Transmission Line Model 

Perhaps a more commonly used model for a transmission line is as shown in Figure 20. This 
represents not only the fact that most transmission lines have, in addition to series inductance, 
parallel capacitance but also the fact that many transmission lines are shunt compensated. This 
may be represented as a two-port network with the admittance parameters, using XL = jωL and 

−jXC = 
ωC , : 

1 1 
Y = ss jXL 

−
jXC1 

1 
Y = Y = sr rs jXL 

1 1 
Y = rr jXL 

−
jXC2 

It is fairly clear that, for voltage sources at both ends, real and reactive power flow are: 

VsVr sin δ 
Ps = 

XL 
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Q 2 1 1 VsVr cos δ 
s = Vs 

� 

XL 
−
XC1 

� 

− 
XL 

VsVr sin δ 
Pr = − 

XL 

2 
� 

1 1 
� 

VsVr cos δ 
Qr = Vs XL 

−
XC2 

− 
XL 

Q 

1 

X
C 

P 

δ 

V 
2 1 

X
L 

Figure 21: Power Circle, Equal Voltages, Compensation Offset 

The power circle for this sort of line is similar to that of the simpler model, but the center is 
offset to smaller reactive component, as shown in Figure 21. 

An interesting feature of transmission lines is illustrated by what might happen were the re­
ceiving line to be open: in that case: 

1 
V = Vr s 1 − ω2LC 

Depending on the values of frequency, inductance and capacitance this could be arbitrarily 
large, and this is a potential problem, particularly for longer lines, as we will discuss in the next 
section. 

11 Transmission Lines 

A transmission line is really a long, continuous thing. It has inductance which is really inductance 
per unit length multiplied by the line length, but it also has a continuous capacitance. We might 
attempt to represent a long transmission line as a series of relatively ’short’ sections each represented 
by an inductance and a capacitance. These ’lumped parameter’ models for lines are actually 
used in many system studies, particularly in physical analog models called ’Transmission System 
Simulators’. (We built one of these at MIT in the 1970’s). After the next section you might 
contemplate the definition of ’short’ for our purposes here, but generally each lumped parameter 
capacitance and resistance pair would represent a few to a few tens of miles. 

11.1 Telegrapher’s Equations 

Peering at the model presented in Figure 22, one might divine that a proper representation of 
voltage and current, both of which are functions of time and distance along the line, might be: 
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L L L L 

C C C C 

� 

Figure 22: Transmission Line Lumped Parameter Model 

∂v ∂i 
= −Ll

∂x ∂t 
∂i ∂v 

= −Cl
∂x ∂t 

These are known as the “Telegrapher’s Equations” and represent the fact that inductance 
presents voltage drop along the line in proportion to rate of change of current and that capacitance 
presents a change in current along the line in proportion to rate of change of voltage. 

It is not difficult to eliminate either voltage or current from these to produce a wave equation. 
For example, take the cross-derivatives and substitute the second of these equations into the first 
to get: 

∂2v ∂2v 
= LlCl

∂x2 ∂t2 

Now: this equation is solved by arbitrary functions which are of the form: 

v(x, t) = v(x ± ut) 

where the wave velocity is: 
1 

u = √
LlCl 

So now we can see that the voltage on the line is the sum of some waveform going in the 
’positive’ direction and something else going in the ’negative’ direction: 

v(x, t) = v+(x − ut) + v−(x + ut) 

The same will be true of current, and substituting back into either of the telegrapher’s equations 
yields: 

1 
i(x, t) = 

Llu 
(v+(x − ut) − v−(x + ut)) 

the product of inductance times wave velocity has the units of impedance: 

Ll
Llu = = Z0

Cl 

This is often referred to as the ’characteristic impedance’ of the transmission line. This is also a 
commonly used term: transmission cables are often referred to by their characteristic impedances. 
For coaxial wires 50 to 72 ohms are common values. For high tension transmission lines somewhat 
higher values are to be expected. 
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11.2 Surges on Transmission Lines 

Consider the situation shown in Figure 23. Here the left-hand end of the line is driven by a current 
source with a pulse (illustrated is a square pulse). This is actually not too far from the situation 
that transmission lines experience with lightning, which is usually representable as a current source, 
typically of magnitude between 20 and 100 kA and duration of about 1µS. (Actually, it is not a 
square pulse but that is not important here). 

What will happen, if the pulse is short enough, is that it will launch a traveling wave in which 
v+ = Z0i+ and i+ is the current that was imposed. When this pulse reaches the far, or load end of 
the line, we have the situation in which at that point: 

v(t) = v+ + v− 

i(t) = 
v

Z
+

0 
− V
Z
− 

0 

and, of coures, v = Ri. 
The ’reflected’, or negative going wave will have magnitude: 

v = v+− 

R
Z

R
Z

0 

0 

− 1


+ 1


In the extreme case of an open circuit, the magnitude of the voltage pulse at the end of the 
transmission line is exactly twice that of the propagating pulse. In the case of a short circuit, of 
course, the magnitude of the voltage is zero, the current in the short is double the current of the 
pulse itself, and the pulse is reflected, but going in the reverse direction with a polarity the opposite 
of the forward-going pulse. This is illustrated in cartoon form in Figure 23. 

RI 
s 

v 

i i 

v 

v 

i 

R > Z 

R < Z 

0 

0 

Figure 23: Pulse Propagation on a Transmission Line 

11.3 Sinusoidal Steady State 

Now, consider a transmission line operating in the sinusoidal steady state. As suggested by Fig­
ure 24, it is driven by a voltage source at one end and is loaded by a resistive load at the other. 
Consistent with the voltage and currents that we know can exist on such a line, we know they will 
be of this form: 
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� 

V 
s 

R 

Figure 24: Transmission Line in Simple Configuration 

v(x, t) = Re V +e
j(ωt−kx) + V ej(ωt+kx) 

−

i(x, t) = Re	
V + ej(ωt−kx) V − ej(ωt+kx) 

Z0 
−
Z0 

Where the phase velocity is u = ω
k = √

L
1 
lCl 

.


At the termination end of the line, at x = ℓ


V V +e
−jkℓ + V ejkℓ 

R = = Z0 
−

I V +e−jkℓ ejkℓ − V −

This may be solved for the ratio of ’reverse’ to ’forward’ amplitude: 

V +e
−2jkℓ Z

R 
0 
− 1 

V = − R	 + 1 
Z0 

Since at the ’sending’ end: 

Vs = V + + V − 

With a little manipulation it can be determined that 
�� � � �� 

e−jkℓ 
Z
R 
0 

+ 1 + 
Z
R 
0 
− 1 

V r = Vs � � � � 

Z
R 
0 

+ 1 + e−2jkℓ 
Z
R 
0 
− 1 

Further manipulation yields: 

R 

V r = Vs R 
Z0 

cos kℓ + j sin kℓ 
Z0 

This might be made a bit more comprehensible when turned into a magnitude: 

R
Vr Z0|
Vs 

| = � 

R cos kℓ 
�2 

+ (sin kℓ)2 
Z0 

If the line is loaded with a resistance equivalent to the ’surge impedance’ (so-called ’surge 
impedance loading’, the receiving end voltage is the same as the sending end voltage. If it is more 
heavily loaded, the receiving end voltage is less than the sending end and if it is less heavily loaded 
the receiving end voltage is greater. 
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6.061 Introduction to Power Systems 
Class Notes Chapter 3 
Polyphase Networks ∗ 

J.L. Kirtley Jr. 

1 Introduction 

Most electric power applications employ three phases. That is, three separate power carrying 
circuite, with voltages and currents staggered symmetrically in time are used. Two major reasons 
for the use of three phase power are economical use of conductors and nearly constant power flow. 

Systems with more than one phase are generally termed polyphase. Three phase systems are 
the most common, but there are situations in which a different number of phases may be used. 
Two phase systems have a simplicity that makes them useful for teaching vehicles and for certain 
servomechanisms. This is why two phase machines show up in laboratories and textbooks. Sys­
tems with a relatively large number of phases are used for certain specialized applications such as 
controlled rectifiers for aluminum smelters. Six phase systems have been proposed for very high 
power transmission applications. 

Polyphase systems are qualitatively different from single phase systems. In some sense, polyphase 
systems are more complex, but often much easier to analyze. This little paradox will become ob­
vious during the discussion of electric machines. It is interesting to note that physical conversion 
between polyphase systems of different phase number is always possible. 

This chapter starts with an elementary discussion of polyphase networks and demonstrates 
some of their basic features. It ends with a short discussion of per-unit systems and power system 
representation. 

2 Two Phases 

The two-phase system is the simplest of all polyphase systems to describe. Consider a pair of 
voltage sources sitting side by side with: 

v1 = V cosωt (1) 

v2 = V sinωt (2) 

∗ c�2003 James L. Kirtley Jr. 
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�� 

�� 

�� 

+ �� 

� � 
i1 i2 

+ 

+ + v2v1 v2 
− 

v1 Z − Z 

− − 

jv1 = Re 
� 

ωt V e
� 

(3) 
� 

jωtv2 = Re −  jV e
� 

(4) 

= 
� 

)Re j(ωt π 

V e −
2 

� 

(5) 

� V1 

� 

Suppose this system of sources is connected to al “balanced load”, as shown in Figure 1. To 
compute the power flows in the system, it is convenient to re-write the voltages in complex form: 

Figure 1: Two-Phase System 

V2 

Figure 2: Phasor Diagram for Two-Phase Source


If each source is connected to a load with impedance:


Z = Z ejψ
| |

then the complex amplitudes of currents are: 

V 
−jψ I1 = e |Z|

V 
−jψ −j π 

I2 = e e 2 

|Z| 
Each of the two phase networks has the same value for real and reactive power: 

P + jQ = 
|V |2 

ejψ (6) 
2 Z| | 
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� � 

� � 

3 

or: 

P = 
|V |2 

cosψ (7) 
2 Z| | 

Q = 
|V |2 

sinψ (8) 
2 Z| | 

The relationship between “complex power” and instantaneous power flow was worked out in 
Chapter 2 of these notes. For a system with voltage of the form: 

v = Re V ejφejωt 

instantaneous power is given by: 

p = P [1 + cos 2(ωt + φ)] +Q sin 2(ωt + φ) 

For the case under consideration here, φ = 0 for phase 1 and φ = π 
2 for phase 2. Thus: −

p1 = 
|V |2 

cosψ [1 + cos 2ωt] +
|V |2 

sinψ sin 2ωt 
2 Z 2 Z| | | | 

p2 = 
|V |2 

cosψ [1 + cos(2ωt − π)] +
|V |2 

sinψ sin(2ωt − π)
2 Z 2 Z| | | | 

Note that the time-varying parts of these two expressions have opposite signs. Added together, 
they give instantaneous power: 

p = p1 + p2 = 
|V |2 

cosψ |Z| 
At least one of the advantages of polyphase power networks is now apparent. The use of a 

balanced polyphase system avoids the power flow pulsations due to ac voltage and current, and 
even the pulsations due to reactive energy flow. This has obvious benefits when dealing with 
motors and generators or, in fact, any type of source or load which would like to see constant 
power. 

Three Phase Systems 

Now consider the arrangement of three voltage sources illustrated in Figure 3. 
The three phase voltages are: 

va = V cosωt = Re V ejωt (9) 

)vb = V cos(ωt − 2
3 
π ) = Re 

� 

V ej(ωt−
2

3 

π 
� 

(10) 

vc = V cos(ωt + 23 
π 

� 

2π 
� 

) = Re V ej(ωt+ 3 
) (11) 

These three phase voltages are illustrated in the time domain in Figure 4 and as complex 
phasors in Figure 5. Note the symmetrical spacing in time of the voltages. As in earlier examples, 
the instantaneous voltages may be visualized by imagining Figure 5 spinning counterclockwise with 
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+ 
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�� �� ��+ vc 
vb+ + + 

�� 
V ej 

2
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V e−j 

2

3�� 
V va 

− − − 
π π 

− − − 

Figure 3: Three- Phase Voltage Source
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Figure 4: Three Phase Voltages


angular velocity ω. The instantaneous voltages are just projections of the vectors of this “pinwheel” 
onto the horizontal axis. 

Consider connecting these three voltage sources to three identical loads, each with complex 
impedance Z, as shown in Figure 6. 

If voltages are as given by (9 - 11), then currents in the three phases are: 

V 
ia = Re ejωt (12) 

Z 
V j(ωt− 2

e 3 

π 

ib = Re ) (13) 
Z

V j(ωt+ 2

e 3 

π 

ic = Re ) (14) 
Z 
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�

Vc 
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Figure 5: Phasor Diagram: Three Phase Voltages 

Figure 6: Three- Phase Source Connected To Balanced Load 

Complex power in each of the three phases is: 

P + jQ = 
|V |2 

(cosψ + j sinψ) (15)
2 Z| | 

Then, remembering the time phase of the three sources, it is possible to write the values of instan­
taneous power in the three phases: 

pa = 
|V |2 {cosψ [1 + cos 2ωt] + sinψ sin 2ωt} (16)
2 Z|

2

|
� � � � 

pb = 
|V |

cosψ 1 + cos(2ωt − 2π 2π 
|

2

|
� � 

) 

� 

+ sinψ sin(2ωt − 
� 

) (17)
2 Z 3 3 

pc = 
|V |

cosψ 1 + cos(2ωt +
2π 2π 

) + sinψ sin(2ωt + ) (18)
2 Z 3 3| | 

The sum of these three expressions is total instantaneous power, which is constant: 

3 V 2 

p = pa + pb + pc = 
| |

cosψ (19)
2 Z| | 
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Z 
vb ib + vb 
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−


Z

vc ic + vc 
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−
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��
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It is useful, in dealing with three phase systems, to remember that 

2π 2π 
cosx + cos(x − ) + cos(x + ) = 0 

3 3 

regardless of the value of x. 
Now consider the current in the neutral wire, in in Figure 6. This current is given by: 

V 
in = ia + ib + ic = Re e
jωt +
 e
j(ωt−

2π 2π) j(ωt++ ) =
 0 (20)
3 3e

Z


This shows the most important advantage of three-phase systems over two-phase systems: a 
wire with no current in it does not have to be very large. In fact, the neutral connection may 
be eliminated completely in many cases. The network shown in Figure 7 will work as well as the 
network in Figure 6 in most cases in which the voltages and load impedances are balanced. 

va ia 
− +

va −


Figure 7: Ungrounded Three-Phase Source and Load 

There is a fundamental difference between grounded and undgrounded systems if perfectly 
balanced conditions are not maintained. In effect, the ground wire provides isolation between the 
phases by fixing the neutral voltage a the star point to be zero. If the load impedances are not 
equal the load is said to be unbalanced. If the system is grounded there will be current in the 
neutral. If an unbalanced load is not grounded, the star point voltage will not be zero, and the 
voltages will be different in the three phases at the load, even if the voltage sources all have the 
same magnitude. 

Line-Line Voltages 

A balanced three-phase set of voltages has a well defined set of line-line voltages. If the line-to­
neutral voltages are given by (9 - 11), then line-line voltages are: 

−j 2
3 

π jωt vab = va − vb = Re V
 1 −
 e
 (21)
e


−j 2π j 2π jωt (22) Re V
 3 3 

− 1 ejωt (23) 

vbc = vb − vc =
 −
e
 e
 e


j 2
3 

π 

Re V
vca = vc − va = e


6


4 



      

and these reduce to:


j π jωt vab = Re

√�

3V e 6 e
� 

(24)


= 

√�

3  −j
π 
2 
jωt	vbc Re V e e

� 

(25) 

= 

√�

3 j 5π
6 

jωt	vca Re V e e
� 

(26) 

The phasor relationship of line-to-neutral and line-to-line voltages is shown in Figure 8. Two things 
should be noted about this relationship: 

•	 The line-t√o-line voltage set has a magnitude that is larger than the line-ground voltage by a 
factor of 3. 

•	 Line-to-line voltages are phase shifted by 30◦ ahead of line-to-neutral voltages. 

Clearly, line-to-line voltages themselves form a three-phase set just as do line-to-neutral voltages. 
Power system components (sources, transformer windings, loads, etc.) may be connected either 
between lines and neutral or between lines. The former connection of often called wye, the latter 
is called delta, for obvious reasons.

Vca 

Vc 

Va 

Vab 
Vb 

V
bc 

V
bc 

VabVca 

Va 

Vb 

Vc 

Figure 8: Line-Neutral and Line-Line Voltages 

It should be noted that the wye connection is at least potentially a four-terminal connection, 
while the delta connection is inherently three-terminal. The difference is the availability of a neutral 
point. Under balanced operating conditions this is unimportant, but the difference is apparent and 
important under unbalanced conditions. 

4.1 Example: Wye and Delta Connected Loads 

Loads may be connected in either line-to-neutral or line-to-line configuration. An example of the 
use of this flexibility is in a fairly commonly used distribution system with a line-to-neutral voltage 
of 120 V, RMS. In this system the line-to-line voltage is 208 V, RMS. Single phase loads may be 
connected either line-to-line or line-to-neutral. 
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Figure 9: Wye And Delta Connected Voltage Sources 
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Figure 10: Wye And Delta Connected Impedances 

Suppose it is necessary to build a resistive heater to deliver 6 kW, to be made of three elements 
which may be connected in either wye or delta. Each of the three elements must dissipate 2000 W. 
Thus, since P = V

R 
2 

, the wye connected resistors would be: 

1202 

Ry = = 7.2Ω 
2000 

while the delta connected resistors would be: 

2082 

RΔ = = 21.6Ω 
2000 

As is suggested by this example, wye and delta connected impedances are often directly equiv­
alent. In fact, ungrounded connections are three-terminal networks which may be represented in 
two ways. The two networks shown in Figure 10, combinations of three passive impedances, are 
directly equivalent and identical in their terminal behavior if the relationships between elements 
are as given in (27 - 32). 

Zab 
ZaZb + ZbZ + Z Zc c a = (27) 

Zc 
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ZaZb + ZbZc + Z Za Zbc = c (28) 
Za 

ZaZb + ZbZ
c = c + ZcZaZ a (29) 

Zb 
ZabZ a Za = c (30) 

Zab + Zbc + Zca 

ZabZbc Zb = (31) 
Zab + Zbc + Zca 

Zb Zca Z = c
c (32) 

� � 

� � 

� � 

Zab + Zbc + Zca 

A special case of the wye-delta equivalence is that of balanced loads, in which: 

Za = Zb = Zc = Zy 

and 
Zab = Zbc = Zca = ZΔ 

in which case: 
ZΔ = 3Zy 

4.2 Example: Use of Wye-Delta for Unbalanced Loads 

The unbalanced load shown in Figure 11 is connected to a balanced voltage source. The problem 
is to determine the line currents. Note that his load is ungrounded (if it were grounded, this would 
be a trivial problem). The voltages are given by: 

va = V cosωt 
2π 

vb = V cos(ωt − )
3 
2π 

vc = V cos(ωt + )
3 

To solve this problem, convert both the source and load to delta equivalent connections, as 
shown in Figure 12. The values of the three resistors are: 

2 + 4 + 2 
rab = rca = = 4 

2 

2 + 4 + 2 
rbc = = 8 

1


The complex amplitudes of the equivalent voltage sources are:


V 
√

3e
−j 2
3 

j π 
6 

π 

V ab = V a − V b = V 1 − e
 =


V 
√

3e

π 
2

−j 2
3 

j 2
3 

π π
−jV bc = V b − V c = V −
 e
 =
e


V 
√

3e
j 
5

6 

πj 2
3 

π − 1
V ca = V c − V a = V =
e
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Figure 11: Unbalanced Load 

Ib 

Ia 

Ic 

R = 4ab

R = 4 ca 

R = 8bcVbc 

Vca Vab 

- + 

-

+ -

+ 

Figure 12: Delta Equivalent
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Currents in each of the equivalent resistors are: 

V ab V bc V caI1 = I2 = I3 = 
rcarab rbc 

The line curents are then just the difference between current in the legs of the delta: 

π 5π 3
j
e

√
3V 

j
e6 6

Ia = I1 − I3 V
−
=
 =
4 4 4 
j π 

6e
√

3V 
−j π 

8 
2 −
 3 1
eIb = I2 − I1 

8

+ j V 

4
4 = −=


5π π 3 1j
e

√
3V 

−j
6 2eIc = I3 − I2 =
 −


8 
− j 

4 
V
4 −
=
 8 

These are shown in Figure 13. 

Im( )·
1V4

33V �
� V8 4−

Re( )·

1V4−

Figure 13: Line Currents 

Transformers 

Transformers are essential parts of most power systems. Their role is to convert electrical energy 
at one voltage to some other voltage. We will deal with transformers as electromagnetic elements 
later on in this subject, but for now it will be sufficient to use a simplified model for the transformer 
which we will call the ideal transformer. This is a two-port circuit element, shown in Figure 14. 

i1 i2� N1 : N2 
�

+ + 

v1 v2 

− ⊃⊃
⊃⊃

⊂⊂
⊂⊂

− 

Figure 14: Ideal Transformer


The ideal transformer as a network element constrains its terminal variables in the following 
way: 
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I�1 
N1 : N2 

I�2 

+ 

V 1 
− ⊃⊃

⊃⊃
⊂⊂
⊂⊂ Z 

v1 v2 
= (33)

N1 N2 

N1i1 = −N2i2 (34) 

As it turns out, this is not a terribly bad model for the behavior of a real transformer under 
most circumstances. Of course, we will be interested in fine points of transformer behavior and 
behavior under pathological operating conditions, and so will eventually want a better model. For 
now, it is sufficient to note just a few things about how the transformer works. 

1. In normal operation, we select a transformer turns ratio N1 so that the desired voltages
N2 

appear at the proper terminals. For example, to convert 13.8 kV distribution voltage to the 
120/240 volt level suitable for residential or commercial single phase service, we would use a 
transformer with turns ratio of 13800 = 57.5. To split the low voltage in half, a center tap on240 
the low voltage winding would be used. 

2. The transformer, at least in its ideal form, does not consume, produce nor store energy. Note 
that, according to (33) and (34), the sum of power flows into a transformer is identically zero: 

p1 + p2 = v1i1 + v2i2 = 0 (35) 

3. The transformer also tends to transform impedances. To show how this is, look at Figure 15. 
Here, some impedance is connected to one side of an ideal transformer. See that it is possible 
to find an equivalent impedance viewed from the other side of the transformer. 

Figure 15: Impedance Transformation 

Noting that 
N1

I2 = −
N2 

I1 

and that 
V 2 = −ZI2 

Then the ratio between input voltage and current is: 

V 1 = 
N1 

N2 
V 2 = 

� 

N1 

N2 

�2 

I1 (36) 
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6 Three-Phase Transformers 

A three-phase transformer is simply three single phase transformers. The complication in these 
things is that there are a number of ways of winding them, and a number of ways of interconnecting 
them. We will have more to say about windings later. For now, consider interconnections. On 
either “side” of a transformer connection (i.e. the high voltage and low voltage sides), it is possible 
to connect transformer windings either line to neutral (wye), or line to line (delta). Thus we may 
speak of transformer connections being wye-wye, delta-delta, wye-delta, or delta-wye. 

Ignoring certain complications that we will have more to say about shortly, connection of trans­
formers in either wye-wye or delta-delta is reasonably easy to understand. Each of the line-to-neutral 
(in the case of wye-wye), or line-to-line (in the case of delta-delta) voltages is transformed by one 
of the three transformers. On the other hand, the interconnections of a wye-delta or delta-wye 
transformer are a little more complex. Figure 16 shows a delta-wye connection, in what might be 
called “wiring diagram” form. A more schematic (and more common) form of the same picture is 
shown in Figure 17. In that picture, winding elements that appear parallel are wound on the same 
core segment, and so constitute a single phase transformer. 

Xc Hc Xb Hb Xa Ha 

Figure 16: Delta-Wye Transformer Connection 

Now: assume that NΔ and NY are numbers of turns. If the individual transformers are consid­
ered to be ideal, the following voltage and current constraints exist: 

NY 
vaY = 

NΔ 
(vaΔ − vbΔ) (37) 

vbY = 
NY 

NΔ 
(vbΔ − vcΔ) (38) 

vcY = 
NY 

NΔ 
(vcΔ − vaΔ) (39) 

iaΔ = 
NY 

NΔ 
(iaY − icY ) (40) 

ibΔ = 
NY 

NΔ 
(ibY − iaY ) (41) 

icΔ = 
NY 

NΔ 
(icY − ibY ) (42) 
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Figure 17: Schematic of Delta-Wye Transformer Connection 

where each of the voltages are line-neutral and the currents are in the lines at the transformer 
terminals. 

Now, consider what happens if a Δ − Y transformer is connected to a balanced three- phase 
voltage source, so that: 

vaΔ = Re V ejωt 

)vbΔ = Re V ej(ωt−
2

3 

π 

)vcΔ = Re V ej(ωt+
2

3 

π 

Then, complex amplitudes on the wye side are: 

= 1 −	
NΔ 

V e 6V aY 
NY V e −j 

2

3 

π 

= 
√

3 
NY j π 

NΔ 

= NY V e 3 e 3 = 
√

3 
NY −j π 

V e 2V bY NΔ 

−j 2π − j 2π 

NΔ 

NY j 5π 

= NY V ej 
2

3 

π − 1 = 
√

3 
NΔ 

V e 6V cY NΔ 

Two observations should be made here: 

•	 The ratio of voltages (that is, the ratio of either line-line or line-neutral) is different from the 
turns ratio by a factor of 

√
3. 

•	 All wye side voltages are shifted in phase by 30◦ with respect to the delta side voltages. 

6.1 Example 

Suppose we have the following problem to solve: 
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A balanced three- phase wye-connected resistor is connected to the Δ side of a Y − Δ 
transformer with a nominal voltage ratio of 

vΔ 
= N 

vY 

What is the impedance looking into the wye side of the transformer, assuming drive 
with a balanced source? 

The situation is shown in Figure 18. 

NY 

NY 

NY 

N 

N 

N R R 

R 

Figure 18: Example


It is important to remember the relationship between the voltage ratio and the turns ratio,

which is: 

vΔ 

vY 
= N = 

NΔ √
3NY 

so that: 
Nδ N 
NY 

= √
3 

Next, the Y − Δ equivalent transform for the load makes the picture look like figure 19 
In this situation, each transformer secondary winding is conected directly across one of the three 

resistors. Currents in the resistors are given by: 

vabΔ
i1 = 

3R 
vbcΔ

i2 = 
3R 
vcaΔ

i3 = 
3R 

Line currents are:


iaΔ = 

ibΔ = 

icΔ = 

i1 − i3 = vabΔ−vcaΔ 

3R 

i2 − i1 = vbcΔ−vabΔ 

3R 

i3 − i2 = vcaΔ−vbcΔ 

3R 

= i1Δ − i3Δ 

= i2Δ − i1Δ 

= i3Δ − i2Δ 
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NΔ NΔ 
vabΔ = vaY iaY = i1Δ 

NY NY 

NΔ NΔ
vbcΔ = vbY ibY = i2Δ 

NY NY 

NΔ NΔ 
vcaΔ = vcY icY = i3Δ 

NY NY 

� �2NΔ 1 
iaY = vaY 

NY 3R 
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−
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− 

v
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3 
3R 
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3R 

1 

Figure 19: Equivalent Situation 

Solving for currents in the legs of the transformer Δ, subtract, for example, the second expression 
from the first: 

2i1Δ − i2Δ − i3Δ =
2vabΔ − vbcΔ − vcaΔ 

3R 
Now, taking advantage of the fact that the system is balanced: 

i1Δ + i2Δ + i3Δ = 0 

vabΔ + vbcΔ + vcaΔ = 0 

to find: 

vabΔ
i1Δ = 

3R 
vbcΔ

i2Δ = 
3R 
vcaΔ

i3Δ = 
3R 

Finally, the ideal transformer relations give: 

so that:




1 
= 

�

Δ 
�2N

ibY vbY 
NY 3R 

� �2NΔ 1 
icY = vcY 

NY 3R 

The apparent resistance (that is, apparent were it to be connected in wye) at the wye terminals 
of the transformer is: 

� �2NY
Req = 3R 

NΔ 

Expressed in terms of voltage ratio, this is: 

� �2 N
= 

�

v

Δ 

�2
Y

Req = 3R √ R
3 v

It is important to note that this solution took the long way around. Taken consistently (uni­
formly on a line-neutral or uniformly on a line-line basis), impedances transform across transformers 
by the square of the voltage ratio, no matter what connection is used. 

7 Polyphase Lines and Single-Phase Equivalents 

By now, one might suspect that a balanced polyphase system may be regarded simply as three 
single-phase systems, even though the three phases are physically interconnected. This feeling is 
reinforced by the equivalence between wye and delta connected sources and impedances. One more 
step is required to show that single phase equivalence is indeed useful, and this concerns situations 
in which the phases have mutual coupling. 

In speaking of lines, we mean such system elements as transmission or distribution lines: over­
head wires, cables or even in-plant buswork. Such elements have impedance, so that there is some 
voltage drop between the sending and receiving ends of the line. This impedance is more than just 
conductor resistance: the conductors have both self and mutual inductance, because currents in 
the conductors make magnetic flux which, in turn, is linked by all conductors of the line. 

A schematic view of a line is shown in Figure 20. Actually, only the inductance components of 
line impedance are shown, since they are the most interesting parts of line impedance. Working in 
complex amplitudes, it is possible to write the voltage drops for the three phases by: 

V a1 − V a2 = jωLIa + jωM (Ib + Ic) (43) 

V b1 − V b2 = jωLIb + jωM (Ia + Ic) (44) 

V c1 − V c2 = jωLIc + jωM (Ia + Ib) (45) 

If the currents form a balanced set: 
Ia + Ib + Ic = 0 (46) 

Then the voltage drops are simply: 

V a1 − V a2 = jω (L −M) Ia 

V b1 − V b2 = jω (L −M) Ib 

V c1 − V c2 = jω (L −M) Ic 
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Figure 20: Schematic Of A Balanced Three-Phase Line With Mutual Coupling 
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Figure 21: Example 

In this case, an apparent inductance, suitable for the balanced case, has been defined: 

L1 = L −M (47) 

which describes the behavior of one phase in terms of its own current. It is most important to note 
that this inductance is a valid description of the line only if (46) holds, which it does, of course, in 
the balanced case. 

7.1 Example 

To show how the analytical techniques which come from the network simplification resulting from 
single phase equivalents and wye-delta transformations, consider the following problem: 

A three-phase resistive load is connected to a balanced three-phase source through a 
transformer connected in delta-wye and a polyphase line, as shown in Figure 21. The 
problem is to calculate power dissipated in the load resistors. The three- phase voltage 
source has: 

jωt va = Re 
√

2VRMSe

j(ωt− 2π 
� 

)vb = Re 
√

2VRMSe 3 

j(ωt+ 2π 
� 

)vc = Re 
√

2VRMSe 3 
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This problem is worked by a succession of simple transformations. First, the delta connected 
resistive load is converted to its equivalent wye with RY = R 

3 . 
Next, since the problem is balanced, the self- and mutual inductances of the line are directly 

equivalent to self inductances in each phase of L1 = L −M . 
Now, the transformer secondary is facing an impedance in each phase of: 

ZY s = jωL1 + RY 

The delta-wye transformer has a voltage ratio of: 

vp NΔ 
= 

vs 
√

3NY 

so that, on the primary side of the transformer, the line and load impedance is: 

Zp = jωLeq + Req 

where the equivalent elements are: 

1 
� �2NΔ 

(L −M)Leq = 
3 NY 

1 
� 

NΔ 
�2 R 

Req = 
3 NY 3 

Magnitude of current flowing in each phase of the source is: 

√
2VRMS |I| = � 

)2 + R2(ωLeq eq 

Dissipation in one phase is: 

1 2P1 = 
2
|I| Req 
V 2 RMSReq = 

(ωLeq)
2 + Req 

2 

And, of course, total power dissipated is just three times the single phase dissipation. 

Introduction To Per-Unit Systems 

Strictly speaking, per-unit systems are nothing more than normalizations of voltage, current, 
impedance and power. These normalizations of system parameters because they provide sim­
plifications in many network calculations. As we will discover, while certain ordinary parameters 
have very wide ranges of value, the equivalent per-unit parameters fall in a much narrower range. 
This helps in understanding how certain types of system behave. 
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Figure 22: Example 

8.1 Normalization Of Voltage And Current 

The basis for the per-unit system of notation is the expression of voltage and current as fractions 
of base levels. Thus the first step in setting up a per-unit normalization is to pick base voltage and 
current. 

Consider the simple situation shown in Figure 22. For this network, the complex amplitudes 
of voltage and current are: 

V = IZ (48) 

We start by defining two base quantities, VB for voltage and IB for current. In many cases, these 
will be chosen to be nominal or rated values. For generating plants, for example, it is common to 
use the rated voltage and rated current of the generator as base quantities. In other situations, 
such as system stability studies, it is common to use a standard, system wide base system. 

The per-unit voltage and current are then simply: 

V 
v = (49) 

VB 

I 
i = (50) 

IB 

Applying (49) and (50) to (48), we find: 

v = iz (51) 

where the per-unit impedance is: 
IB 

z = Z (52) 
VB 

This leads to a definition for a base impedance for the system: 

VB
ZB = (53) 

IB 

Of course there is also a base power, which for a single phase system is: 

PB = VBIB (54) 

as long as VB and IB are expressed in RMS. It is interesting to note that, as long as normalization is 
carried out in a consistent way, there is no ambiguity in per-unit notation. That is, peak quantities 
normalized to peak base quantities will be the same, in per-unit, as RMS quantities normalized to 
RMS bases. This advantage is even more striking in polyphase systems, as we are about to see. 
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8.2 Three Phase Systems 

When describing polyphase systems, we have the choice of using either line-line or line-neutral 
voltage and line current or current in delta equivalent loads. In order to keep straight analysis in 
ordinary variable, it is necessary to carry along information about which of these quantities is being 
used. There is no such problem with per-unit notation. 

We may use as base quantities either line to neutral voltage VBl−g or line to line voltage VBl−l. 
Taking the base current to be line current IBl, we may express base power as: 

PB = 3VBl−gIBl (55) 

Because line-line voltage is, under normal operation, 
√

3 times line-neutral voltage, an equivalent 
statement is: 

PB = 
√

3VBl−lIBl (56) 

If base impedance is expressed by line-neutral voltage and line current (This is the common 
convention, but is not required), 

VBl−g
ZB = (57)

IBl 

Then, base impedance is, written in terms of base power: 

V 2 V 2PB Bl−g Bl−lZB =
3I2 = 3 

PB 
= 

PB 
(58) 

B 

Note that a single per-unit voltage applied equally well to line-line, line-neutral, peak and RMS 
quantities. For a given situation, each of these quantities will have a different ordinary value, but 
there is only one per-unit value. 

8.3 Networks With Transformers 

One of the most important advantages of the use of per-unit systems arises in the analysis of 
networks with transformers. Properly applied, a per-unit normalization will cause nearly all ideal 
transformers to dissapear from the per-unit network, thus greatly simplifying analysis. 

To show how this comes about, consider the ideal transformer as shown in Figure 23. The 

�I1 
1 : N �I2 

+ + 

V 1 V 2 
− ⊃⊃

⊃⊃
⊂⊂
⊂⊂

− 

Figure 23: Ideal Transformer With Voltage And Current Conventions Noted 

ideal transformer imposes the constraints that: 

V 2 = NV 1 
1 

I2 = 
N 
I1 
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Normalized to base quantities on the two sides of the transformer, the per-unit voltage and 
current are: 

V 1 v1 = 
VB1 

I1i1 = 
IB1 

V 2 v2 = 
VB2 

I2i2 = 
IB2 

Now: note that if the base quantities are related to each other as if they had been processed by the 
transformer: 

VB2 =	 NVB1 (59) 

IB1 
(60) IB2 = 

N 

then v1 = v2 and i1 = i2, as if the ideal transformer were not there (that is, consisted of an ideal 
wire). 

Expressions (59) and (60) reflect a general rule in setting up per-unit normalizations for systems 
with transformers. Each segment of the system should have the same base power. Base voltages 
transform according to transformer voltage ratios. For three-phase systems, of course, the voltage 
ratios may differ from the physical turns ratios by a factor of 

√
3 if delta-wye or wye-delta connections 

are used. It is, however, the voltage ratio that must be used in setting base voltages. 

8.4 Transforming From One Base To Another 

Very often data such as transformer leakage inductance is given in per-unit terms, on some base 
(perhaps the units rating), while in order to do a system study it is necessary to express the same 
data in per-unit in some other base (perhaps a unified system base). It is always possible to do this 
by the two step process of converting the per-unit data to its ordinary form, then re-normalizing it 
in the new base. However, it is easier to just convert it to the new base in the following way. 

Note that impedance in Ohms (ordinary units) is given by: 

Z = z1ZB1 = z2ZB2	 (61) 

Here, of course, z1 and z2 are the same per-unit impedance expressed in different bases. This could 
be written as: 

V 2 V 2 B1 B2 z1 = z2	 (62) 
PB1 PB2 

This yields a convenient rule for converting from one base system to another:


PB1 
� 

VB2 
�2 

z1 = z2 (63) 
PB2 VB1 
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Figure 24: One-Line Diagram Of Faulted System 

8.5 Example: Fault Study 

To illustrate some of the concepts with which we have been dealing, we will do a short circuit analysis 
of a simple power system. This system is illustrated, in one-line diagram form, in Figure 24. 

A one-line diagram is a way of conveying a lot of information about a power system without 
becoming cluttered with repetitive pieces of data. Drawing all three phases of a system would 
involve quite a lot of repetition that is not needed for most studies. Further, the three phases can 
be re-constructed from the one-line diagram if necessary. It is usual to use special symbols for 
different components of the network. For our network, we have the following pieces of data: 

Symbol Component Base P Base V Impedance 
(MVA) (kV) (per-unit) 

G1 Generator 200 13.8 j.18 
T1 Transformer 200 13.8/138 j.12 
L1 Trans. Line 100 138 .02 + j.05 
T2 Transformer 50 138/34.5 j.08 

A three-phase fault is assumed to occur on the 34.5 kV side of the transformer T2. This is 
a symmetrical situation, so that only one phase must be represented. The per-unit impedance 
diagram is shown in Figure 25. It is necessary to proceed now to determine the value of the 
components in this circuit. 

Figure 25: Impedance Diagram For Fault Example 

First, it is necessary to establish a uniform base an per-unit value for each of the system 
components. Somewhat arbitrarily, we choose as the base segment the transmission line. Thus all 
of the parameters must be put into a base power of 100 MVA and voltage bases of 138 kV on the 
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• At the generator |If | = 11, 595A 

• On the transmission line |If | = 1159A 

• At the fault |If | = 4633A 

line, 13.8 kV at the generator, and 34.5 kV at the fault. Using (62): 

100 xg =	 200 × .18 = .09per-unit 
100 xT 1 =	 200 × .12 = .06per-unit 
100 xT 2 = 50 × .08 = .16per-unit 

rl = = .02per-unit 

xl = = .05per-unit 

Total impedance is: 

z = j (xg + xT 1 + xl + xT 2) + rl 

= j.36 + .02per-unit 

|z| = .361per-unit 

Now, if eg is equal to one per-unit (generator internal voltage equal to base voltage), then the 
per-unit current is: 

1 |i| = 
.361 

= .277per-unit 

This may be translated back into ordinary units by getting base current levels. These are: 

•	 On the base at the generator:


100MVA

IB = √

3 × 13.8kV 
= 4.18kA 

On the line base: •	
100MVA 

IB = √
3 × 138kV 

= 418A


On the base at the fault:
•	
100MVA 

IB = √
3 × 34.5kV 

= 1.67kA 

Then the actual fault currents are: 
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Introduction To Symmetrical Components ∗


J.L. Kirtley Jr. 

1 Introduction 

Installment 3 of these notes dealt primarily with networks that are balanced, in which the three 
voltages (and three currents) are identical but for exact 120◦ phase shifts. Unbalanced conditions 
may arise from unequal voltage sources or loads. It is possible to analyze some simple types 
of unbalanced networks using straightforward solution techniques and wye-delta transformations. 
However, power networks can be come quite complex and many situations would be very difficult 
to handle using ordinary network analysis. For this reason, a technique which has come to be called 
symmetrical components has been developed. 

Symmetrical components, in addition to being a powerful analytical tool, is also conceptually 
useful. The symmetrical components themselves, which are obtained from a transformation of the 
ordinary line voltages and currents, are useful in their own right. Symmetrical components have 
become accepted as one way of describing the properties of many types of network elements such 
as transmission lines, motors and generators. 

2 The Symmetrical Component Transformation 

The basis for this analytical technique is a transformation of the three voltages and three currents 
into a second set of voltages and currents. This second set is known as the symmetrical components. 

Working in complex amplitudes: 

va = Re V ae
jωt (1) 

vb = Re V be
j(ωt− 2

3 
π ) (2) 
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vc = Re V ce
j(ωt+ 2

3 
π ) (3) 

1


c



 	  

The transformation is defined as: 
⎡

V 1

⎤ ⎡ 

1 a a2 
 1 

⎤ ⎡

V a
2 

⎤ 

⎢

V
⎥ ⎢ ⎥ 

⎣	 2 = 1 a a (4) 
3 

⎢ 

V b 
V

⎥ 

0 

⎦ ⎣ 

1 1 1 
⎦ ⎣ 

V c 

⎦ 

where the complex number a is: 

j 2π 1
√

3	
a = e 3 = − + j (5) 

2 2

2 a = ej 4π  
3 = e −j 2π 1

√
3	

 3 = − 
2 
− j (6) 

2
a3 = 1 (7)

This transformation may be used for both voltage and current, and works for variables in 
ordinary form as well as variables that have been normalized and are in per-unit form. The inverse 
of this transformation is: 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

V a 1 1 1 V 1 
⎢ ⎥ ⎢ 2 ⎥ ⎢ ⎥ 

⎣	
V b ⎦ 

= 
⎣ 

a a 1 
⎦ ⎣ 

V 2 ⎦ 
(8) 

V a a2 1 V 0c 

The three component variables V 1, V 2, V 0 are called, respectively, positive sequence, negative 
sequence and zero sequence. They are called symmetrical components because, taken separately, 
they transform into symmetrical sets of voltages. The properties of these components can be 
demonstrated by tranforming each one back into phase variables. 

Consider first the positive sequence component taken by itself: 

V 1 = V	 (9) 

V 2 = 0	 (10) 

V 0 = 0	 (11) 

yields: 

V a = V or va = V cos ωt (12) 

2π 
V = a 2V or vb = V cos(ωt − )	 (13) b 3 

2π 
V c = aV or vc = V cos(ωt + )	 (14) 

3 

This is the familiar balanced set of voltages: Phase b lags phase a by 120◦, phase c lags phase 
b and phase a lags phase c. 

The same transformation carried out on a negative sequence voltage: 

V 1 = 0	 (15) 

V 2 = V	 (16) 

V 0 = 0	 (17) 
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yields: 

V a = V or va = V cos ωt (18) 

2π 
V b = aV or vb = V cos(ωt + ) (19)

3 
2π 

V = a 2V or vc = V cos(ωt − ) (20)c 3 

This is called negative sequence because the sequence of voltages is reversed: phase b now leads 
phase a rather than lagging. Note that the negative sequence set is still balanced in the sense 
that the phase components still have the same magnitude and are separated by 120◦ . The only 
difference between positive and negative sequence is the phase rotation. This is shown in Figure 1. 

Vc Vb 

� �Va � �Va 

Vb 
�� Vc 

��
Positive Sequence Negative Sequence 

Figure 1: Phasor Diagram: Three Phase Voltages 

The third symmetrical component is zero sequence. If: 

V 1 = 0 (21) 

V 2 = 0 (22) 

V 0 = V (23) 

Then: 

V a = V or va = V cos ωt (24) 

V b = V or vb = V cos ωt (25) 

V c = V or vc = V cos ωt (26) 

That is, all three phases are varying together. 
Positive and negative sequence sets contain those parts of the three-phase excitation that rep­

resent balanced normal and reverse phase sequence. Zero sequence is required to make up the 
difference between the total phase variables and the two rotating components. 

The great utility of symmetrical components is that, for most types of network elements, the 
symmetrical components are independent of each other. In particular, balanced impedances and ro­
tating machines will draw only positive sequence currents in response to positive sequence voltages. 
It is thus possible to describe a network in terms of sub-networks, one for each of the symmetrical 

3




3 

components. These are called sequence networks. A completely balanced network will have three 
entirely separate sequence networks. If a network is unbalanced at a particular spot, the sequence 
networks will be interconnected at that spot. The key to use of symmetrical components in handling 
unbalanced situations is in learning how to formulate those interconnections. 

Sequence Impedances 

Many different types of network elements exhibit different behavior to the different symmetrical 
components. For example, as we will see shortly, transmission lines have one impedance for positive 
and negative sequence, but an entirely different impedance to zero sequence. Rotating machines 
have different impedances to all three 

Positive Sequence Negative Sequence 

Figure 2: Sequence Connections For A Line-To-Line Fault 

sequences. 
To illustrate the independence of symmetrical components in balanced networks, consider the 

transmission line illustrated back in Figure 20 of Installment 3 of these notes. The expressions for 
voltage drop in the lines may be written as a single vector expression: 

V ph1 − V ph2 = jωL
ph 

Iph	 (27) 

where	
⎡ ⎤ 

V a 
⎢ ⎥

V ph = 
⎣	

V b ⎦ 
(28) 

V c 
⎡ ⎤ 

Ia 
⎢ ⎥

Iph = 
⎣	

Ib ⎦ 
(29) 

Ic 
⎡ ⎤ 

L M	 M 
⎢ ⎥

L 
ph 

= 
⎣	

M L M 
⎦ 

(30) 
M M L 

Note that the symmetrical component transformation (4) may be written in compact form:


V s = TV p (31) 
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where 
⎡

1 a a2 
1  

⎤ 

T = 
⎢ 

1 a2 a 
⎥

(32) 
3 

⎣ 

1 1 1 
⎦ 

and V s is the vector of sequence voltages: 
⎡

V 1 

⎤ 

V s = 
⎢

V 2 (33) 
⎣ 

V

⎥

0 

⎦ 

Rewriting (27) using the inverse of (31): 

T−1V s1 − T−1V −1
s2 = jωL T I (34) 

ph s 

Then transforming to get sequence voltages: 

V s1 − 1V −

s2 = jωTL T Is (35) 
ph 

The sequence inductance matrix is defined by carrying out the operation indicated: 

L = TL T−1 (36) 
s ph 

which is: 
⎡

L − M 0 0 
⎤ 

L = 
s

⎢

0 L − M 0 (37) 
 ⎣ 

0 0 L + 2M 

⎥

⎦ 

Thus the coupled set of expressions which described the transmission line in phase variables becomes 
an uncoupled set of expressions in the symmetrical components: 

V 11 − V 12 = jω(L − M)I1 (38) 

V 21 − V 22 = jω(L − M)I2 (39) 

V 01 − V 02 = jω(L + 2M)I0 (40) 

The positive, negative and zero sequence impedances of the balanced transmission line are then: 

Z1 = Z2 = jω(L − M) (41) 

Z0 = jω(L + 2M) (42) 

So, in analysis of networks with transmission lines, it is now possible to replace the lines with three 
independent, single- phase networks. 

Consider next a balanced three-phase load with its neutral connected to ground through an 
impedance as shown in Figure 3. 

The symmetrical component voltage-current relationship for this network is found simply, by 
assuming positive, negative and zero sequence currents and finding the corresponding voltages. If 
this is done, it is found that the symmetrical components are independent, and that the voltage-
current relationships are: 

V 1 = ZI1 (43) 

V 2 = ZI2 (44) 

V 0 = (Z + 3Zg)I0 (45) 
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a 

bc 

Z 

Z Z 

Z 
g 

Figure 3: Balanced Load With Neutral Impedance 

Unbalanced Sources 

Consider the network shown in Figure 4. A balanced three-phase resistor is fed by a balanced 
line (with mutual coupling between phases). Assume that only one phase of the voltage source is 
working, so that: 

V a = V (46) 

V b = 0 (47) 

V c = 0 (48) 

The objective of this example is to find currents in the three phases. 

L 

Va 

Vb 

Vc 

R 

R 

R 
MM 

ML 

L 
+ 

+ 

-
-+ 

-

Figure 4: Balanced Load, Balanced Line, Unbalanced Source 

To start, note that the unbalanced voltage source has the following set of symmetrical compo­
nents: 

V 
V 1 = 

3 
(49) 

V 
V 2 = 

3 
(50) 

V 
V 0 = 

3 
(51) 
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Figure 5: Sequence Networks 

Currents are: 

V 
I1 = 

3(jω(L − M) + R) 

V 
I2 = 

3(jω(L − M) + R) 

I0 = 0 

Phase currents may now be re-assembled: 

I
a = I1 + I2 + I0 
2Ib = a
 I1 + aI2 + I0 

2I
c =
 aI1 + a
 I2 + I0 

or: 

2V 
I
a = 

3(jω(L − M) + R) 
 (a2 + a)V 

Ib = 
3(jω(L − M) + R) 
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Next, the network facing the source consists of the line, with impedances: 

Z1 = jω(L − M) (52) 

Z2 = jω(L − M) (53) 

Z0 = jω(L + 2M) (54) 

and the three- phase resistor has impedances: 

Z1 = R (55) 

Z2 = R (56) 

Z0 = (57) ∞ 

Note that the impedance to zero sequence is infinite because the neutral is not connected back 
to the neutral of the voltage source. Thus the sum of line currents must always be zero and this 
in turn precludes any zero sequence current. The problem is thus described by the networks which 
appear in Figure 5. 

jω(L − M) jω(L − M) jω(L + 2M) R 

�� ∧ ∧ ∧ 
∨ ∨ 

∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 
<
>

<
>

< 

<
>

<
>

<�� 
+ 
− 

V 
3 

+ V + V
R
 R
3 − 3− 

Positive Negative Zero 
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6 

−V 
= 

3(jω(L − M) + R) 

(a + a2)V 
I = c 3(jω(L − M) + R) 

−V 
= 

3(jω(L − M) + R) 

(Note that we have used a2 + a = −1). 

Rotating Machines 

Some network elements are more readily represented by sequence networks than by ordinary phase 
networks. This is the case, for example, for synchronous machines. synchronous motors and 
generators produce a positive sequence internal voltage and have terminal impedance. For reasons 
which are beyond the scope of these notes, the impedance to positive sequence currents is not the 
same as the impedance to negative or to zero sequence currents. A phase-by-phase representation 
will not, in many situations, be adequate, but a sequence network representation will. Such a 
representation is three Thevenin equivalent circuits, as shown in Figure 6 

�� 
�� 

+ 
− 

E1 

∩∩∩∩ 
jX1 

V 1 

+ 

− 

�I1 
∩∩∩∩ 
jX2 

V 2 

+ 

− 

�I2 
∩∩∩∩ 
jX0 

V 0 

+ 

− 

�I0 

Positive Negative Zero 

Figure 6: Sequence Networks For A Synchronous Machine 

Transformers 

Transformers provide some interesting features in setting up sequence networks. The first of these 
arises from the fact that wye-delta or delta-wye transformer connections produce phase shifts from 
primary to secondary. Depending on connection, this phase shift may be either plus or minus 30◦ 

from primary to secondary for positive sequence voltages and currents. It is straightforward to 
show that negative sequence shifts in the opposite direction from positive. Thus if the connection 
advances positive sequence across the transformer, it retards negative sequence. This does not 
turn out to affect the setting up of sequence networks, but does affect the re-construction of phase 
currents and voltages. 

A second important feature of transformers arises because delta and ungrounded wye connec­
tions are open circuits to zero sequence at their terminals. A delta connected winding, on the 
other hand, will provide a short circuit to zero sequence currents induced from a wye connected 
winding. Thus the zero sequence network of a transformer may take one of several forms. Figures 7 
through 9 show the zero sequence networks for various transformer connections. 
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Xl 
∩∩∩∩ 

Figure 7: Zero Sequence Network: Wye-Wye Connection, Both Sides Grounded 

Xl ⊃⊃
⊃⊃

Figure 8: Zero Sequence Network: Wye-Delta Connection, Wye Side (Left) Grounded 

7 Unbalanced Faults 

A very common application of symmetrical components is in calculating currents arising from 
unblanced short circuits. For three-phase systems, the possible unbalanced faults are: 

1. Single line-ground, 

2. Double line-ground, 

3. Line-line. 

These are considered separately. 

7.1 Single Line-To-Ground Fault 

The situation is as shown in Figure 10 
The system in this case consists of networks connected to the line on which the fault occurs. 

The point of fault itself consists of a set of terminals (which we might call “a,b,c”). The fault sets, 

Figure 9: Zero Sequence Network: Wye-Delta Connection, Ungrounded or Delta-Delta 
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Point Of Fault


Network Network 

Figure 10: Schematic Picture Of A Single Line-To-Ground Fault


at this point on the system: 

V a = 0 

Ib = 0 

Ic = 0 

Now: using the inverse of the symmetrical component transformation, we see that: 

V 1 + V 2 + V 0 = 0 (58) 

And using the transformation itself: 

1 
I1 = I2 = I0 = I (59)

3 a 

Together, these two expressions describe the sequence network connection shown in Figure 11. 
This connection has all three sequence networks connected in series. 

7.2 Double Line-To-Ground Fault 

If the fault involves phases b, c, and ground, the “terminal” relationship at the point of the fault 
is: 

V b = 0 

V = 0c 

I = 0a 

Then, using the sequence transformation: 

1 
V 1 = V 2 = V 0 = aV

3 

Combining the inverse transformation:


Ia = I1 + I2 + I0 = 0 

These describe a situation in which all three sequence networks are connected in parallel, as 
shown in Figure 12. 
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Sequence 
Positive 

I I 

Sequence 
Negative 

I1 2 0+ + 

Sequence 
Zero 

+ 

V1 V2 V0 
- - -

� � 

I1 + 
Positive 

Sequence V1 
-

I 2 
+ 

Negative 
Sequence V2 

-

I 
0 + 

Zero 
Sequence 

V0 
-

Figure 11: Sequence Connection For A Single-Line-To-Ground Fault


Figure 12: Sequence Connection For A Double-Line-To-Ground Fault 

7.3 Line-Line Fault 

If phases b and c are shorted together but not grounded, 

V b = V c 

Ib = −Ic 

Ia = 0 

Expressing these in terms of the symmetrical components: 

V 1 = V 2 
1 2 = a + a V b3 

I0 = Ia + Ib + Ic 

= 0 

Ia = I1 + I2 

11 



= 0 

These expressions describe a parallel connection of the positive and negative sequence networks, 
as shown in Figure 13. 

V2Sequence 
Negative 

-

+ 
I
2 

Sequence 
Positive 

I
1 

V1 
-

+ 

Figure 13: Sequence Connection For A Line-To-Line Fault 

7.4 Example Of Fault Calculations 

In this example, the objective is to determine maximum current through the breaker B due to a 
fault at the location shown in Figure 14. All three types of unbalanced fault, as well as the balanced 
fault are to be considered. This is the sort of calculation that has to be done whenever a line is 
installed or modified, so that protective relaying can be set properly. 

T1 T2 
L1 L

2 

Fault 

Figure 14: One-Line Diagram For Example Fault


Parameters of the system are: 

System Base Voltage 138 kV 
System Base Power 100 MVA 
Transformer T1 Leakage Reactance .1 per-unit 
Transformer T2 Leakage Reactance .1 per-unit 
Line L1 Positive And Negative Sequence Reactance j.05 per-unit 
Line L1 Zero Sequence Impedance j.1 per-unit 
Line L2 Positive And Negative Sequence Reactance j.02 per-unit 
Line L2 Zero Sequence Impedance j.1 per-unit 
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The fence-like symbols at either end of the figure represent “infinite buses”, or positive sequence 
voltage sources. 

The first step in this is to find the sequence networks. These are shown in Figure 15. Note that 
they are exactly like what we would expect to have drawn for equivalent single phase networks. 
Only the positive sequence network has sources, because the infinite bus supplies only positive 
sequence voltage. The zero sequence network is open at the right hand side because of the delta­
wye transformer connection there. 

j.1 I�1B j.05 j.02 j.1 
∩∩∩∩ ∩∩∩∩ ∩∩∩∩ ∩∩∩∩ �� 

+ +
1 Fault 1 

Positive Sequence 
j.1 I�1B j.05 j.02 j.1 

∩∩∩∩ ∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 

Fault 

�� − �� − 

Negative Sequence 
j.1 I�0B j.1 j.1 

∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 

Fault 

Zero Sequence 

Figure 15: Sequence Networks 

7.4.1 Symmetrical Fault 

For a symmetrical (three-phase) fault, only the positive sequence network is involved. The fault 
shorts the network at its position, so that the current is: 

1 
i1 = 

j.15 
= −j6.67per − unit 

7.4.2 Single Line-Ground Fault 

For this situation, the three networks are in series and the situation is as shown in Figure 16 
The current i shown in Figure 16 is a total current, and is given by: 

1 
i = = 

2 × (j.15||j.12) + j.2 
−j3.0 
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i1B 5 � 
⊃⊃⊃j.1

⊃⊃⊃j.12 
⊃ ⊃

�
+ 

� 
�− � 1 i2B � 

⊃
j.15 

⊃⊃ ⊃⊃ ⊃j.12 
⊃ ⊃

i0B � j.2 
⊃⊃⊃⊃

Figure 16: Completed Network For Single Line-Ground Fault 

Then the sequence currents at the breaker are: 

i1B = i2B 

j.12 
= i ×

j.12 + j.15 
= −j1.33 

i0B = i 

= −j3.0 

The phase currents are re-constructed using: 

ia = i1B + i2B + i0B 

ib = a 2i1B + ai2B + i0B 

ic = ai1B + a 2i2B + i0B 

These are: 

i = −j5.66 per-unita 

ib = −j1.67 per-unit 

i = −j1.67 per-unitc 

7.4.3 Double Line-Ground Fault 

For the double line-ground fault, the networks are in parallel, as shown in Figure 17. 
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⊃⊃

�i 

        

To start, find the source current i: 

1 
i = 

j(.15||.12) + j(.15||.12||.2)

= −j8.57 

Then the sequence currents at the breaker are: 

j.12 
i1B = i ×

j.12 + j.15 
= −j3.81 

j.12 j
i2B = −i

|| .2 ×
j.12||j.2 + j.15 

= j2.86 

j.12
i0B = i

||j.15 ×
j.2 + j.12||j.15 

= j2.14 

Reconstructed phase currents are: 

ia = j1.19

1 
√

3 
ib = i0B − (i1B + i22 B) − j(i1B − i2B )2 

= j2.67 − 5.87 

1 
√

3 
ic = i0B − (i1B + i2B) + j(i12 2 B − i2B )

= j2.67 + 5.87 

|ia| = 1.19 per-unit

|ib| = 6.43 per-unit 

|ic| = 6.43 per-unit

15 

Figure 17: Completed Network For Double Line-Ground Fault



7.4.4 Line-Line Fault 

The situation is even easier here, as shown in Figure 18 

i1B � 
⊃

j.15 
⊃⊃ ⊃⊃ ⊃j.12 i

⊃ ⊃ 2B � 
⊃⊃⊃j.15 

⊃⊃⊃j.12
⊃ ⊃

�
+ 

� 
− 

1
i � �� 

Figure 18: Completed Network For Line-Line Fault 

The source current i is: 

1 
i = 

2 × j(.15||.12) 

= −j7.50 

and then: 

i1B = −i2B 

j.12 
= i 

j.12 + j.15 
= −j3.33 

Phase currents are: 

ia = 0

1 
√

3 
ib = − (i1B + i2B) − j (i1B i

2
− 2B)

2
|ib| = 5.77 per-unit

|ic| = 5.77 per-unit 

7.4.5 Conversion To Amperes 

Base current is: 

PB
IB = √ = 418.4A


3VBl−l 

Then current amplitudes are, in Amperes, RMS:
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Phase A Phase B Phase C

Three-Phase Fault 2791 2791 2791

Single Line-Ground, φa 2368 699 699

Double Line-Ground, φb,φc 498 2690 2690

Line-Line,φb,φc 0 2414 2414
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Introduction To Load Flow ∗


J.L. Kirtley Jr. 

1 Introduction 

Even though electric power networks are composed of components which are (or can be approxi­
mated to be) linear, electric power flow, real and reactive, is a nonlinear quantity. The calculation 
of load flow in a network is the solution to a set of nonlinear equations. The purpose of this note 
is to describe how network load flows may be calculated. 

This is only an elementary treatment of this problem: there is still quite a bit of activity in the 
professional literature concerning load flow algorithms. The reason for this is that electric utility 
networks are often quite large, having thousands of buses, so that the amount of computational 
effort required for a solution is substantial. A lot of effort goes into doing the calculation efficiently. 
This discussion, and the little computer program at the end of this note, uses the crudest possible 
algorithm for this purpose. However, for the relatively simple problems we will be doing, it should 
work just fine. 

2 Power Flow 

Power flow in a network is determined by the voltage at each bus of the network and the impedances 
of the lines between buses. Power flow into and out of each of the buses that are network terminals 
is the sum of power flows of all of the lines connected to that bus. The load flow problem consists 
of finding the set of voltages: magnitude and angle, which, together with the network impedances, 
produces the load flows that are known to be correct at the system terminals. To start, we view 
the power system as being a collection of buses, connected together by lines. At each of the buses, 
which we may regard as nodes, we may connect equipment which will supply power to or remove 
power from the system. (Note: in speaking of power here, we are really referring to complex power, 
with both real and reactive components). If we have made a connection to a given system node 
(say with a generator), the complex power flow into the network at node k is: 

Sk = Pk + jQk = VkI 
∗ 
k (1) 
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3 Bus Admittance 

Now, if the network itself is linear, interconnections between buses and between buses and ground 
can all be summarized in a multiport bus impedance matrix or its inverse, the bus admittance 
matrix. As it turns out, the admittance matrix is easy to formulate. 

The network consists of a number Nb of buses and another number N� of lines. Each of the 
lines will have some (generally complex) impedance Z. We form the line admittance matrix by 
placing the admittance (reciprocal of impedance) of each line on the appropriate spot on the main 
diagonal of an N� × N� matrix: 

 

Interconnections between buses is described by the bus incidence matrix. This matrix, which
has N� columns and Nb rows, has two entries for each line, corresponding to the buses at each end. 
A “direction” should be established for each line, and the entry for that line, at location (nb, n�) in 
the node incidencd matrix, is a 1 for the “sending” end and a −1 at the “receiving” end. Actually, 
it is not important which end is which. The bus incidence matrix for the network described by 
Figure 1 below is: 

⎡	 ⎤ 
1 0 0 0 

⎢ 0 0 0 1 ⎥ 
⎢	 ⎥ 
⎢	 ⎥

NI = ⎢ −1 1 1 0 ⎥ 
⎢	 ⎥ 
⎣	 0 0 −1 −1 ⎦ 

0 −1 0 0 

It is not difficult to show that the bus admittance matrix is given by the easily computed 
expression: 

Y = NI Y� NI� (3) 

The elements of the bus admittance matrix, the self– and mutual– admittances, are all of the 
following form: 

Ik 
(4) Yjk = 

Vj 

with all other voltages equal to zero. 
Thus an alternative way to estimate the bus admittance matrix is to: 

•	 Assume that all nodes (buses) are shorted to ground, 

•	 Assume that one node is unshorted and connected to a voltage source, 

•	 Calculate all node currents resulting from that one source. 

•	 Do this for each node. 

We may observe: 
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•	 Reciprocity holds: 
Yjk = Ykj (5) 

•	 Driving point admittance Ykk is just the sum of all admittances of lines connected to bus k, 
including any fixed impedances connected from that bus to ground. 

•	 Mutual admittance Yjk is minus the sum of the admittances of all lines connected directly 
between buses j and k. Usually there is only one such line. 

Network currents are then given by: 

I = Y V	 (6) 

Where I is the vector of bus currents (that is, those currents entering the network at its buses. V 

represents the bus voltages and Y is the bus admittance matrix. We will have more to say about 
estimating the bus admittance matrix in another section. For the moment, note that an individual 
bus current is given by: 

N 

Ik = YjkVj (7) 
j=1 

where N is the number of buses in the network. Then complex power flow at a node is: 

N 

Sk = Vk Y ∗	 (8) jkVj 
∗ 

j=1 

Now, the typical load flow problem involves buses with different constraints. It is possible to 
specify six quantities at each bus: voltage magnitude and angle, current magnitude and angle, real 
and reactive power. These are, of course, inter–related so that any two of these are specified by the 
other four, and the network itself provides two more constraints. Thus it is necessary to, in setting 
up a load flow problem, specify two of these six quantities. Typical combinations are: 

•	 Generator Bus: Real power and terminal voltage magnitude are specified. 

•	 Load Bus: Real and reactive power are specified. 

•	 Fixed Impedance: A fixed, linear impedance connected to a bus constrains the relationship 
between voltage and current. Because it constrains both magnitude and angle, such an 
impedance constitutes two constraints. 

•	 Infinite Bus: This is a voltage source, of constant magnitude and phase angle. 

The load flow problem consists of solving [8] as constrained by the terminal relationships. 
One bus in a load flow problem is assigned to be the “slack bus” or “swing bus”. This bus, 

which is taken to be an “infinite bus”, since it does not have real nor reactive power constrained, 
accommodates real power dissipated and reactive power stored in network lines. This bus is nec­
essary because these losses are not known a priori. Further, one phase angle needs to be specified, 
to serve as an origin for all of the others. 
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4 Gauss–Seidel Iterative Technique 

This is one of many techniques for solving the nonlinear load flow problem. It should be pointed out 
that this solution technique, while straightforward to use and easy to understand, has a tendency 
to use a lot of computation, particularly in working large problems. It is also quite capable of 
converging on incorrect solutions (that is a problem with nonlinear systems). As with other iterative 
techniques, it is often difficult to tell when the correct solution has been reached. Despite these 
shortcomings, Gauss–Seidel can be used to get a good feel for load flow problems without excessive 
numerical analysis baggage. 

Suppose we have an initial estimate (ok: guess) for network voltages. We may partition [8] as: 

Sk = Vk Y ∗ j + VkY ∗ (9) jkV ∗ kkVk 
∗ 

j �=k 

Noting that Sk = Pk + jQk, we can solve for Vk 
∗ and, taking the complex conjugate of that, we 

have an expression for Vk in terms of all of the voltages of the network, Pk and Qk: 

⎛ ⎞ 
1 Pk − jQk � 

Vk = ⎝ 
V∗ 

− YjkVj
⎠ (10) 

Ykk k j �=k 

Expression [10] is a better estimate of Vk than we started with. The solution to the set of nonlinear 
equations consists of carrying out this expression, repeatedly, for all of the buses of the network. 

An iterative procedure in which a correction for each of the voltages of the network is computed 
in one step, and the corrections applied all at once is called Gaussian Iteration. If, on the other 
hand, the improved variables are used immediately, the procedure is called Gauss–Seidel Iteration. 

Note that [10] uses as its constraints P and Q for the bus in question. Thus it is useable directly 
for load type buses. For other types of bus constraints, modifications are required. We consider 
only two of many possible sets of constraints. 

For generator buses, usually the real power and terminal voltage magnitude are specified. At 
each time step it is necessary to come out with a terminal voltage of specified magnitude: voltage 
phase angle and reactive power Q are the unknowns. One way of handling this situation is to: 

1. Generate an estimate for reactive power Q, then 

2. Use [10] to generate an estimate for terminal voltage, and finally, 

3. Holding voltage phase angle constant, adjust magnitude to the constraint. 

At any point in the iteration, reactive power is: 

⎧ ⎫ 
⎨ N 

⎬ 
= Im Y ∗ (11) Qk Vk jkVj 

∗ 

⎩ ⎭ 
j=1 

It should be noted that there are other ways of doing this calculation. Generally they are 
more work to set up but often converge more quickly. Newton’s method and variations are good 
examples. 
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For buses loaded by constant impedance, it is sufficient to lump the load impedance into the 
network. That is, the load admittance goes directly in parallel with the driving point admittance at 
the node in question. 

These three bus constraint types, generator, load and constant impedance are sufficient for 
handling most problems of practical importance. 

5 Example: Simple–Minded Program 

Attached to this note is a MATLAB script which will set up carry out the Gauss–Seidel procedure 
for networks with the simple constraints described here. The script is self-explanatory and carries 
out the load flow described by the simple example below. 

Note that, as with many nonlinear equation solvers, success sometimes requires having an initial 
guess for the solution which is reasonably close to the final solution. 

6 Example 

Consider the system shown in Figure 1. This simple system has five buses (numbered 1 through 5) 
and four lines. Two of the buses are connected to generators, two to loads and bus 5 is the “swing 
bus”, represented as an “infinite bus”, or voltage supply. 

For the purpose of this excercise, assume that the line impedances are: 

Z0 = .05 + j.1 

Z1 = .05 + j.05 

Z2 = .15 + j.2 

Z3 = .04 + j.12 

(12) 

We also specify real power and voltage magnitude for the generators and real and reactive power 
for the loads: 

• Bus 1: Real power is 1, voltage is 1.05 per–unit 

• Bus 2: Real power is 1, voltage is 1.00 per–unit 

• Bus 3: Real power is -.9 per–unit, reactive power is 0. 

• Bus 4: Real power is -1, reactive power is -.2 per–unit. 

Note that load power is taken to be negative, for this simple–minded program assumes all power 
is measured into the network. 

5




�
Bus 1 Bus 3 Bus 5


Z1 Z2G1 
� 

� 

� 

∞ 

Bus 2 Bus 4 Z3 P1 + jQ1 
Z4G2 

� 
P2 + jQ2  

Figure 1: Sample System 
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% Simple-Minded Load Flow Example

% First, impedances

Z1=.05+j*.1;

Z2=.05+j*.05;

Z3=.15+j*.2;

Z4=.04+j*.12;

% This is the node-incidence Matrix

NI=[1 0 0 0;0 0 0 1;-1 1 1 0;0 0 -1 -1;0 -1 0 0];

% This is the vector of "known" voltage magnitudes

VNM = [1.05 1 0 0 1]’;

% And the vector of known voltage angles

VNA = [0 0 0 0 0]’;

% and this is the "key" to which are actually known

KNM = [1 1 0 0 1]’;

KNA = [0 0 0 0 1]’;

% and which are to be manipulated by the system

KUM = 1 - KNM;

KUA = 1 - KNA;

% Here are the known loads (positive is INTO network

% Use zeros for unknowns

P=[1 1 -.9 -1 0]’;

Q=[0 0 0 -.2 0]’;

% and here are the corresponding vectors to indicate

% which elements should be checked in error checking

PC = [1 1 1 1 0]’;

QC = [0 0 1 1 0]’;

Check = KNM + KNA + PC + QC;

% Unknown P and Q vectors

PU = 1 - PC;

QU = 1 - QC;

fprintf(’Here is the line admittance matrix:\n’);

Y=[1/Z1 0 0 0;0 1/Z2 0 0;0 0 1/Z3 0;0 0 0 1/Z4]

% Construct Node-Admittance Matrix

fprintf(’And here is the bus admittance matrix\n’)

YN=NI*Y*NI’

% Now: here are some starting voltage magnitudes and angles

VM = [1.05 1 .993 .949 1]’;

VA = [.0965 .146 .00713 .0261 0]’;

% Here starts a loop

Error = 1;

Tol=1e-10;

N = length(VNM);

% Construct a candidate voltage from what we have so far

VMAG = VNM .* KNM + VM .* KUM;

VANG = VNA .* KNA + VA .* KUA;
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V = VMAG .* exp(j .* VANG);

% and calculate power to start

I = (YN*V);

PI = real(V .* conj(I));

QI = imag(V .* conj(I));

%pause

while(Error>Tol);

for i=1:N, % Run through all of the buses


% What we do depends on what bus!

if	 (KUM(i) == 1) & (KUA(i) == 1), % don’t know voltage magnitude or angle


pvc= (P(i)-j*Q(i))/conj(V(i));

for n=1:N,


if n ~=i, pvc = pvc - (YN(i,n) * V(n)); end

end

V(i) = pvc/YN(i,i);


elseif (KUM(i) == 0) & (KUA(i) == 1), % know magnitude but not angle

% first must generate an estimate for Q

Qn = imag(V(i) * conj(YN(i,:)*V));

pvc= (P(i)-j*Qn)/conj(V(i));

for n=1:N,


if n ~=i, pvc = pvc - (YN(i,n) * V(n)); end

end

pv=pvc/YN(i,i);

V(i) = VM(i) * exp(j*angle(pv));


end % probably should have more cases

end % one shot through voltage list: check error

% Now calculate currents indicated by this voltage expression

I = (YN*V);

% For error checking purposes, compute indicated power

PI = real(V .* conj(I));

QI = imag(V .* conj(I));

% Now we find out how close we are to desired conditions

PERR = (P-PI) .* PC;

QERR = (Q-QI) .* QC;

Error = sum(abs(PERR) .^2 + abs(QERR) .^2);

end

fprintf(’Here are the voltages\n’)

V

fprintf(’Real Power\n’)

P

fprintf(’Reactive Power\n’)

Q
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Magnetic Circuit Analog to Electric Circuits ∗


J.L. Kirtley Jr. 

1 Introduction 

In this chapter we describe an equivalence between electric and magnetic circuits and in turn a 
method of describing and analyzing magnetic field systems which can be described in magnetic 
circuit fashion. As it turns out, the equivalence is a fair approximation to reality and may be used 
with some confidence. 

Magnetic circuits are those parts of devices that employ magnetic flux to either induce voltage or 
produce force. Such devices include transformers, motors, generators and other actuators (including 
things such as solenoid actuators and loudspeakers). In such devices it is necessary to produce 
and guide magnetic flux. This is usually done with pieces of ferromagnetic material (which has 
permeability very much larger than free space). In this sense, magnetic circuits are like electric 
circuits in which conductive material such as aluminum or copper has high electric conductivity 
and are used to guide electric current. 

The analogies between electric and magnetic circuits are two: the electric circuit quantity of 
current is analogous to magnetic circuit quantity flux. (Both of these quantities are ’solenoidal’ in 
the sense that they have no divergence). The electric circuit quantity of voltage, or electomotive 
force (EMF) is analogous to the magnetic circuit quantity of magnetomotive force (MMF). EMF 
is the integral of electric field E� , MMF is the integral of magnetic field H� . 

2 Electric Circuits and Kirchoff’s Laws 

2.1 Conservation of Charge and KCL 

To begin with, consider the law of Conservation of Charge: 

∗�2003 James L. Kirtley Jr. 

d 
�

qdv = 0� J� · d�a = 
dt vol 

1


c



�� 

�

� 

�� 

�

This assumes, of course, that there is no accumulation of charge anywhere in the system. This 
is not a wonderful assumption for any systems with capacitor plates, but if one considers capacitors 
to be circuit elements so that both plates of a capacitor are part of any given element the right 
hand side of this expression really is zero. 

Thsn, if we note current to be the integral of current density: Over some area, a fraction of the 
whole area around a node: 

ik = Ak J
� · d�a 

then we have: 
ik = 0 

k 

2.2 Faraday’s Law 

: 

d 
�� 

E� · d�� = − B� · d�a 
dt 

The left-hand integral may be taken to be a number of sub-integrals, each denoted by a discrete 
fractional integral: 

� bk 

vk = E� · d� 
ak 

If we assume that there are no substantive flux linkages among the circuit elements: 

B� = 0 

then we have KVL: 

vk = 0 
k 

2.3 Ohm’s Law 

At this point it is probably appropriate to note that Ohm’s Law can be used to derive the consti­
tutive relationship for a resistor. Suppose we have a conductive element similar to the rectangular 
solid shown in Figure 1. Assume current is confined in this element and flowing perpendicular to 
the flat end shown in the figure. Current density is 

I 
Jx = 

hw 

where I is to total current and h and w are height and width of the conductor, respectively. 
Electric field along the length of the element is: 

Jx
Ex = 

σ 
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where σ is the electrical conductivity of the material. Voltage developed is: 

Jx 
vk = Exd� = l 

σ 

Which leads us to an expression for element resistance: 

v l 
R = = 

I hwσ 

w 

l 

x 

I 

h 

− 

+ 

V 

Figure 1: Simple circuit element 

3 Magnetic Circuits 

As it turns out, magnetic circuits are very similar and are governed by laws that are not at all 
different from those of electric circuits, with only one minor difference. 

3.1 Conservation of Flux: Gauss’ Law 

To start, Gauss’ law is: 

� B� · d�a = 0 

This reflects that notion that there are no sources of flux: this is a truely sinusoidal quantity. 
It neither begins nor ends but just goes in circles. 

If we note a fraction of the surface around a node and call it surface k, the flux through that 
surface is: 

Φk = 

�� 

Ak B
� · d�a 

If we take the sum of all partial fluxes through a surface surrounding a note we come to the 
analog of KCL: 

Φk = 0 
k 
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3.2 MMF: Ampere’s Law 

Ampere’s Law is simply stated as: 

H� · d� = J� · d�a 

The integral of current density J� is current, quantified in the SI system as Amperes. As it is 
generally carried in wires which might number, say , N , it is often quantified as: 

J� · d�a = NI 

For this we will often use the term MagnetoMotive Force or MMF, which gets the symbol F . If 
we use that symbol to denote the integral of magnetic field over a magnetic circuit element: 

� bk 

Fk = H� · d��
ak 

Then, if we take enough of these subintegrals to cover the loop around a group of elements, we 
have 

Fk = NI 
k 

Note that this is not exactly the same as KVL, as it has a source term on the right. 

3.3 Magnetic Circuit Element: Analogy to Ohm’s Law 

Magnetic circuits have an equivalent to resistance. It is the ratio of MMF to flux and has the 
symbol R. I direct comparison with the derivation of resistance, a magnetic circuit element is 
shown in Figure 2. 

w 

l 

x 

h 

− 

+ 

F 

Φ 

Figure 2: Magnetic circuit element


Assume that the material of this element has permeability µ > µ0, so that it has a constitutive 
relationship: 
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Bx = µHx


If flux density in the material is uniform, total flux through the element is:


Φ = hwBx = hwµHx 

And the MMF is simply the integral of magnetic field H from one end to the other: again we 
assume uniformity so that: 

F = �Hx


The reluctance of this element is then:


F � 
R = = 

Φ hwµ 

3.4 Magnetic Gaps 

In reality, magnetic circuits tend to be made up of very highly permeable elements (pieces of iron) 
and relatively small air-gaps. A sketch of such a gap is shown in Figure 3. 

µ 

µ 

w 

h 

g 

Figure 3: Gap between magnetic elements 

It is usually permissible to assume that iron elements have very high permeability (µ → ∞), so 
that there is negligible MMF drop. In this sense the iron elements serve in the same role as copper 
or aluminum wire in electric circuits. The gap, on the other hand, has reluctance: 

g
Rg = 

hwµ0 
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Fringing Field 

Figure 4: Gap details 

3.5 Boundary Conditions 

Shown in Figure 4 is the cross-section of a gap. It is assumed that the elements shown have some 
depth into the paper which is greater than the gap width g. If the permeability of the elements to 
the right and the left is very high, we say that magnetic flux is largely confined to those elements. 
Note that the boundary condition associated with Ampere’s Law dictates that the magnetic field 
intensity Ha in the air adjacent to the permeable material and parallel with the surface must be 
equal to the magnetic field intensity Hm just inside the magnetic material and parallel with the 
surface. If the material is very highly permeable (µ → ∞), that magnetic field must be nearly zero: 
Ha = Hm → 0. This means that magnetic field must be perpendicular to the surface of very highly 
permeable material. This is the case in the gap itself, where: 

Bg = Bm 

We should note, however, that there will be ’fringing’ fields in the region near the gap, so that our 
expression for the reluctance of the gap will not be quite correct. The accuracy of the expression 
which ignores fringing is best for really small gaps and generally over-estimates the reluctance. 

4 Faraday’s Law and Inductance 

Changing magnetic fields give rise to electric fields and consequently produce voltage. This is how 
inductance works. Consider the situation shown rather abstractly in Figure 5. 

Faraday’s Law is, in integral form: 

d 
�� 

E� · d� = − B� · �nda Area dt 

If the contour shown is highly conducting (say, if it is a wire), there is zero electric field over 
that part of the contour. Voltage across the terminals is: 

� b

Vab = E� · d�


a


and that is the whole of the integral above. Thus we may conclude that: 
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dl 

n 

b 

a 
i 

Figure 5: Loop for Faraday’s Law 

d 
�� 

Vab = − Area B
� · �nda 

dt 

Now, if we define flux linked by this contour to be: 

λ = −

�� 

Area B
� · �nda 

then voltage is, as we expect: 

dλ 
Vab = 

dt 

As it turns out, current flowing in the wire with sense shown by i in Figure 5 tends to produce 
flux with sense opposite to the normal vector shown in that figure, and so produces positive flux. 
Generally, in calculating inductance, one uses the ’right hand rule’ in determing the direction of 
flux linkage: if the fingers of your right hand follow the direction of the winding, from the positive 
terminal, positive flux is in the direction of your thumb. 

4.1 Example: Solenoid Actuator 

Shown in Figure 6 is a representation of a common solenoid actuator. When current is put through 
the coil a magnetic flux appears in the gaps and pulls the plunger to the left. We will examine the 
force and how to calculate it in later chapters. For now, however, we are concerned with magnetic 
fields in the device and with the calculation of inductance. Assume that the stator and plunger 
are both made of highly permeable materials (µ → ∞). If the coil carries current I in N turns in 
the sense shown, magnetic flux will cross the narrow air-gap to the right in the direction from the 
stator to the plunger and then return in the sense shown in the variable length gap of width x. It 
is clear that this is also positive sense flux for the coil. 

The magnetic circuit equivalent is shown in Figure 7. All of the flux produced crosses the 
variable width gap which has reluctance: 
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Plunger 

Figure 6: Cross-Section of Solenoid Actuator


F 

Φ 

g g 

x 

Figure 7: Magnetic Equivalent Circuit of Solenoid Actuator 

x 
Rx = 

µ0hD 

Half of the flux crosses each of the other two gaps, which are in parallel and have reluctance: 

g
Rg = 

µ0wD 

Total flux in the magnetic circuit is 

F 
Φ = 

Rx + 1
2 Rg 

And since λ = NΦ and F = NI, the inductance of this structure is: 

N2 N2 

L = = 
R Rx + 1

2 Rg 
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Electromagnetic Forces and Loss Mechanisms ∗
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1 Introduction 

This section of notes discusses some of the fundamental processes involved in electric machin­
ery. In the section on energy conversion processes we examine the two major ways of estimating 
electromagnetic forces: those involving thermodynamic arguments (conservation of energy) and 
field methods (Maxwell’s Stress Tensor). In between these two explications is a bit of description 
of electric machinery, primarily there to motivate the description of field based force calculating 
methods. 

The subsection of the notes dealing with losses is really about eddy currents in both linear and 
nonlinear materials and about semi-empirical ways of handling iron losses and exciting currents in 
machines. 

2 Energy Conversion Process: 

In a motor the energy conversion process can be thought of in simple terms. In “steady state”, 
electric power input to the machine is just the sum of electric power inputs to the different phase 
terminals: 

Pe = viii 
i 

Mechanical power is torque times speed: 

Pm = T Ω 

And the sum of the losses is the difference: 

Pd = Pe − Pm 

∗ c�2003 James L. Kirtley Jr. 
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Mechanical 

Electro-

Converter 
Mechanical Power OutElectric Power In 

Losses: Heat, Noise, Windage,... 

Figure 1: Energy Conversion Process 

It will sometimes be convenient to employ the fact that, in most machines, dissipation is small 
enough to approximate mechanical power with electrical power. In fact, there are many situations in 
which the loss mechanism is known well enough that it can be idealized away. The “thermodynamic” 
arguments for force density take advantage of this and employ a “conservative” or lossless energy 
conversion system. 

2.1 Energy Approach to Electromagnetic Forces: 

Magnetic Field 

System 

+ 
v 
-

f 

x 

Figure 2: Conservative Magnetic Field System 

To start, consider some electromechanical system which has two sets of “terminals”, electrical 
and mechanical, as shown in Figure 2. If the system stores energy in magnetic fields, the energy 
stored depends on the state of the system, defined by (in this case) two of the identifiable variables: 
flux (λ), current (i) and mechanical position (x). In fact, with only a little reflection, you should 
be able to convince yourself that this state is a single-valued function of two variables and that the 
energy stored is independent of how the system was brought to this state. 

Now, all electromechanical converters have loss mechanisms and so are not themselves conser­
vative. However, the magnetic field system that produces force is, in principle, conservative in the 
sense that its state and stored energy can be described by only two variables. The “history” of the 
system is not important. 

It is possible to chose the variables in such a way that electrical power into this conservative 

2




� 

� 

� 

system is: 
dλ 

P e = vi = i 
dt 

Similarly, mechanical power out of the system is: 

dx 
P m f e = 

dt 

The difference between these two is the rate of change of energy stored in the system: 

dWm 
= P e − P m 

dt 

It is then possible to compute the change in energy required to take the system from one state to 
another by: 

a 

Wm(a) −Wm(b) = idλ − f edx 
b 

where the two states of the system are described by a = (λa, xa) and b = (λb, xb) 
If the energy stored in the system is described by two state variables, λ and x, the total 

differential of stored energy is: 
∂Wm ∂Wm

dWm = dλ + dx 
∂λ ∂x 

and it is also: 
dWm = idλ − f edx 

So that we can make a direct equivalence between the derivatives and: 

∂Wm
f e = − 

∂x 

This generalizes in the case of multiple electrical terminals and/or multiple mechanical termi­
nals. For example, a situation with multiple electrical terminals will have: 

dWm = ikdλk − f edx 
k 

And the case of rotary, as opposed to linear, motion has in place of force f e and displacement 
x, torque T e and angular displacement θ. 

In many cases we might consider a system which is electricaly linear, in which case inductance 
is a function only of the mechanical position x. 

λ(x) = L(x)i 

In this case, assuming that the energy integral is carried out from λ = 0 (so that the part of the 
integral carried out over x is zero), 

λ 1 1 λ2 

Wm = λdλ = 
0 L(x) 2 L(x) 

This makes 
1 ∂ 1 

f e = −
2 
λ2 

∂x L(x) 
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Note that this is numerically equivalent to 

1 ∂ 
f e = −

2 
i2 

∂x 
L(x) 

This is true only in the case of a linear system. Note that substituting L(x)i = λ too early in the 
derivation produces erroneous results: in the case of a linear system it is a sign error, but in the 
case of a nonlinear system it is just wrong. 

2.1.1 Coenergy 

We often will describe systems in terms of inductance rather than its reciprocal, so that current, 
rather than flux, appears to be the relevant variable. It is convenient to derive a new energy 
variable, which we will call co-energy, by: 

W
 = λiii −Wmm 

i 

and in this case it is quite easy to show that the energy differential is (for a single mechanical 
variable) simply: 

dW
 = m 

k 

λkdik + f edx 

so that force produced is: 
∂Wmfe = 
∂x


Consider a simple electric machine example in which there is a single winding on a rotor (call 
it the field winding and a polyphase armature. Suppose the rotor is round so that we can describe 
the flux linkages as: 

λa = Laia + Labib + Labic + M cos(pθ)if


2π

λb = Labia + Laib + Labic + M cos(pθ − )if

3 
2π 

λc = Labia + Labib + Laic + M cos(pθ + )if
3 

2π 2π 
λf = M cos(pθ)ia + M cos(pθ − )ib + M cos(pθ + ) + Lf if

3 3 

Now, this system can be simply described in terms of coenergy. With multiple excitation it 
is important to exercise some care in taking the coenergy integral (to ensure that it is taken over 
a valid path in the multi-dimensional space). In our case there are actually five dimensions, but 
only four are important since we can position the rotor with all currents at zero so there is no 
contribution to coenergy from setting rotor position. Suppose the rotor is at some angle θ and that 
the four currents have values ia0, ib0, ic0 and if0. One of many correct path integrals to take would 
be: 

� ia0 

W
 = 

+ 

Laiadia 
0 
� ib0 

0 
(Labia0 + Laib) dib 

4 

m 



                 

The result is: 
  

� 
1 �

2 W m = La i
2
a0 + i2b0 + ico 

�

+ Lab (iaoib0 + iaoic0 + icoib0) 
2   �

2π 2π 1 
+ i i cos(pθ) + i 2 M f0 a0 b0 cos(pθ − ) + ic0 cos(pθ + )

�

+ Lf i
3 3 2 f0

� � 

�� � 

� � 

� � 

� ic0 

+ (Labia0 + Labib0 + Laic) dic 
0 
� if0 

� � 
2π 2π 

+ M cos(pθ)ia0 + M cos(pθ − )ib0 + M cos(pθ + )ic0 + Lf if dif 
0 3 3 

If there is no variation of the stator inductances with rotor position θ, (which would be the
case if the rotor were perfectly round), the terms that involve La and L(ab) contribute zero so that 
torque is given by: 

∂W � 2π 2π 
Te = m = −pMif0 ia0 sin(pθ) + ib0 sin(pθ − ) + ico sin(pθ + )

∂θ 3 3 

We will return to this type of machine in subsequent chapters. 

2.2 Continuum Energy Flow 

At this point, it is instructive to think of electromagnetic energy flow as described by Poynting’s 

Theorem: 

S� = E� H�× 
Energy flow S�, called Poynting’s Vector, describes electromagnetic power in terms of electric and 
magnetic fields. It is power density: power per unit area, with units in the SI system of units of 
watts per square meter. 

To calculate electromagnetic power into some volume of space, we can integrate Poyting’s Vector 
over the surface of that volume, and then using the divergence theorem: 

nda = Sdv P = − � S� · � − 
vol 

� · �

Now, the divergence of the Poynting Vector is, using a vector identity: 

� · S� = � · E� ×H� = H� · � × E� −E� · � × H�

∂B�
= −H� · 

∂t 
− E� · J�

The power crossing into a region of space is then: 

P = 

� 
E� J�+ H�

∂B�
dv 

vol 
· · 

∂t 

Now, in the absence of material motion, interpretation of the two terms in this equation is fairly 
simple. The first term describes dissipation: 

E� J� = E� 2σ = J� 2ρ· | | | | 
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� � 

The second term is interpreted as rate of change of magnetic stored energy. In the absence of 
hysteresis it is: 

∂Wm � ∂B�
= H 

∂t 
· 
∂t 

Note that in the case of free space, 

∂B� ∂H� ∂ 1 
H� · 

∂t 
= µ0H� · 

∂t 
= 
∂t 2

µ0|H� | 2 

which is straightforwardedly interpreted as rate of change of magnetic stored energy density: 

1 2Wm = 
2
µ0|H|

Some materials exhibit hysteretic behavior, in which stored energy is not a single valued function 
of either B� or H� , and we will consider that case anon. 

2.3 Material Motion 

In the presence of material motion �v, electric field E� � in a “moving” frame is related to electric field 
E� in a “stationary” frame and to magnetic field B� by: 

E� � = E� + �v B�× 

This is an experimental result obtained by observing charged particles moving in combined electric 
and magnetic fields. It is a relatavistic expression, so that the qualifiers “moving” and “stationary” 
are themselves relative. The electric fields are what would be observed in either frame. In MQS 
systems, the magnetic flux density B� is the same in both frames. 

The term relating to current density becomes: 

E� J� = E� � v B� J�· − � × · 

We can interpret E� � J� as dissipation, but the second term bears a little examination. Note · 
that it is in the form of a vector triple (scalar) product: 

−�v ×B� · J� = −�v · B� × J� = −�v · J�×B�

This is in the form of velocity times force density and represents power conversion from electro­
magnetic to mechanical form. This is consistent with the Lorentz force law (also experimentally 
observed): 

F� = J� B�× 
This last expression is yet another way of describing energy conversion processes in electric 

machinery, as the component of apparent electric field produced by material motion through a 
magnetic field, when reacted against by a current, produces energy conversion to mechanical form 
rather than dissipation. 
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2.4 Additional Issues in Energy Methods 

There are two more important and interesting issues to consider as we study the development 
of forces of electromagnetic origin and their calculation using energy methods. These concern 
situations which are not simply representable by lumped parameters and situations that involve 
permanent magnets. 

2.4.1 Coenergy in Continuous Media 

Consider a system with not just a multiplicity of circuits but a continuum of current-carrying paths. 
In that case we could identify the co-energy as: 

λ(�a)dJ�
·
 d�a
W
 =
m 
area 

where that area is chosen to cut all of the current carrying conductors. This area can be picked to 
be perpedicular to each of the current filaments since the divergence of current is zero. The flux λ 
is calculated over a path that coincides with each current filament (such paths exist since current 
has zero divergence). Then the flux is: 

λ(�a) = B� d�n· 

Now, if we use the vector potential A� for which the magnetic flux density is: 

B� = A�

the flux linked by any one of the current filaments is: 

λ(�a) = A� d��· 

where d�� is the path around the current filament. This implies directly that the coenergy is: 

A� d�d � J�
W
 d�a
=
 ·
 ·
m 
area J 

Now: it is possible to make d�� coincide with d�a and be parallel to the current filaments, so that: 

d �A� Jdv W
 =
 ·
m 
vol 

2.4.2 Permanent Magnets 

Permanent magnets are becoming an even more important element in electric machine systems. 
Often systems with permanent magnets are approached in a relatively ad-hoc way, made equivalent 
to a current that produces the same MMF as the magnet itself. 

The constitutive relationship for a permanent magnet relates the magnetic flux density B� to 
magnetic field H� and the property of the magnet itself, the magnetization M� . 

B� = µ0 H� + M�
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�×
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� � � � � � 

� � � � 

�×
�� � 

Now, the effect of the magnetization is to act as if there were a current (called an amperian current) 
with density: 

J�∗ = M�

Note that this amperian current “acts” just like ordinary current in making magnetic flux density. 
Magnetic co-energy is: 

W � m = 
vol 

Mdv A� · � × d �

Next, note the vector identity 

� · C� ×D� = D� · � × C� − C� · � ×D�

So that: 
� � 

d �W � = 
vol 

−� · A� × dM� dv + �×A� · Mdv m
vol


Then, noting that B� = A�: 

W � m = − A Md�s + B Mdv � � × d �
vol 

� · d �

m 

The first of these integrals (closed surface) vanishes if it is taken over a surface just outside the 
magnet, where M� is zero. Thus the magnetic co-energy in a system with only a permanent magnet 
source is 

� 
W � = B� Mdv d �


vol 
·


Adding current carrying coils to such a system is done in the obvious way. 

2.5 Electric Machine Description: 

Actually, this description shows a conventional induction motor. This is a very common type of 
electric machine and will serve as a reference point. Most other electric machines operate in a 
fashion which is the same as the induction machine or which differ in ways which are easy to 
reference to the induction machine. 

Consider the simplified machine drawing shown in Figure 3. Most (but not all!) machines we 
will be studying have essentially this morphology. The rotor of the machine is mounted on a shaft 
which is supported on some sort of bearing(s). Usually, but not always, the rotor is inside. I have 
drawn a rotor which is round, but this does not need to be the case. I have also indicated rotor 
conductors, but sometimes the rotor has permanent magnets either fastened to it or inside, and 
sometimes (as in Variable Reluctance Machines) it is just an oddly shaped piece of steel. The stator 
is, in this drawing, on the outside and has windings. With most of the machines we will be dealing 
with, the stator winding is the armature, or electrical power input element. (In DC and Universal 
motors this is reversed, with the armature contained on the rotor: we will deal with these later). 

In most electrical machines the rotor and the stator are made of highly magnetically permeable 
materials: steel or magnetic iron. In many common machines such as induction motors the rotor 
and stator are both made up of thin sheets of silicon steel. Punched into those sheets are slots 
which contain the rotor and stator conductors. 
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Shaft End Windings 
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Figure 3: Form of Electric Machine 

Figure 4 is a picture of part of an induction machine distorted so that the air-gap is straightened 
out (as if the machine had infinite radius). This is actually a convenient way of drawing the machine 
and, we will find, leads to useful methods of analysis. 

What is important to note for now is that the machine has an air gap g which is relatively 
small (that is, the gap dimension is much less than the machine radius r). The machine also has a 
physical length l. The electric machine works by producing a shear stress in the air-gap (with of 
course side effects such as production of “back voltage”). It is possible to define the average air-
gap shear stress, which we will refer to as τ . Total developed torque is force over the surface area 
times moment (which is rotor radius): 

T = 2πr2� < τ > 

Power transferred by this device is just torque times speed, which is the same as force times 
surface velocity, since surface velocity is u = rΩ: 

Pm = ΩT = 2πr� < τ > u 

If we note that active rotor volume is πr2�, the ratio of torque to volume is just: 

T 
= 2 < τ > 

Vr 

Now, determining what can be done in a volume of machine involves two things. First, it is 
clear that the volume we have calculated here is not the whole machine volume, since it does not 
include the stator. The actual estimate of total machine volume from the rotor volume is actually 
quite complex and detailed and we will leave that one for later. Second, we need to estimate the 
value of the useful average shear stress. Suppose both the radial flux density Br and the stator 
surface current density Kz are sinusoidal flux waves of the form: 

Br = 
√

2B0 cos (pθ − ωt) 
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Stator Core 

Stator Conductors 
In Slots 

Rotor Conductors 
In Slots 

Air Gap 

Figure 4: Windings in Slots 

Kz = 
√

2K0 cos (pθ − ωt) 

Note that this assumes these two quantities are exactly in phase, or oriented to ideally produce 
torque, so we are going to get an “optimistic” bound here. Then the average value of surface 
traction is: 

1 
� 2π 

< τ >= BrKzdθ = B0K0
2π 0 

This actually makes some sense in view of the empirically derived Lorentz Force Law: Given a 
(vector) current density and a (vector) flux density. In the absence of magnetic materials (those 
with permeability different from that of free space), the observed force on a conductor is: 

F� = J� B�× 

Where J� is the vector describing current density (A/m2) and B� is the magnetic flux density 
(T). This is actually enough to describe the forces we see in many machines, but since electric 
machines have permeable magnetic material and since magnetic fields produce forces on permeable 
material even in the absence of macroscopic currents it is necessary to observe how force appears 
on such material. A suitable empirical expression for force density is: 

F� = J�×B� − 1
2 

H� · H� �µ 

where H� is the magnetic field intensity and µ is the permeability. 
Now, note that current density is the curl of magnetic field intensity, so that: 

F� = �×H� × µH� −
2

1 
H� · H� �µ 

� � 1 � � 
= µ �×H� ×H� −

2 
H� · H� �µ 

And, since: 

H� H��×H� ×H� = H� · � H� −
2

1 � · 
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 Fk = µHiHk − δik 

�

H2

∂x n 
i 2 

n 

the Kroneker delta δ = 1 if i = k, 0 otherwise.


� � 

� � � � 

� � 

� � 

� � �� 
� 

� 

� � 
� 

force density is: 

� � 1 � � 1 � � 
F� = µ H� · � H� −

2
µ� H� · H� −

2 
H� · H� �µ 

� � 1 � � 
= µ H� · � H� −� µ H� · H�

2

This expression can be written by components: the component of force in the i’th dimension is: 

� ∂ ∂ 1 � 
Fi = µ Hk

∂xk 

Hi −
∂xi 2

µ Hk 
2 

k k 

Now, see that we can write the divergence of magnetic flux density as: 

B� = 
� ∂ 

µHk = 0� · 
k 
∂xk 

and 
� ∂ � ∂ � ∂ 

µ Hk
∂xk 

Hi = 
∂xk 

µHkHi −Hi 
∂xk 

µHk 

k k k 

but since the last term in that is zero, we can write force density as: 

∂ µ  

where we have used ik

Note that this force density is in the form of the divergence of a tensor:


∂ 
Fk = Tik 

∂xi 

or 
F� = T� · 

In this case, force on some object that can be surrounded by a closed surface can be found by 
using the divergence theorem: 

f� = � Tdv = T �nda · 
vol 

Fdv = 
vol 

� · 

or, if we note surface traction to be τi = k Tiknk , where n is the surface normal vector, then the 
total force in direction i is just: 

f� = τida = Tiknkda 
s k 

The interpretation of all of this is less difficult than the notation suggests. This field description 
of forces gives us a simple picture of surface traction, the force per unit area on a surface. If we just 
integrate this traction over the area of some body we get the whole force on the body. Note that 
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� � 

� � 

3 

this works if we integrate the traction over a surface that is itself in free space but which surrounds 

the body (because we can impose no force on free space). 
Note one more thing about this notation. Sometimes when subscripts are repeated as they are 

here the summation symbol is omitted. Thus we would write τi = k Tiknk = Tiknk. 
Now, if we go back to the case of a circular cylinder and are interested in torque, it is pretty 

clear that we can compute the circumferential force by noting that the normal vector to the cylinder 
is just the radial unit vector, and then the circumferential traction must simply be: 

τθ = µ0HrHθ 

Simply integrating this over the surface gives azimuthal force, and then multiplying by radius 
(moment arm) gives torque. The last step is to note that, if the rotor is made of highly permeable 
material, the azimuthal magnetic field is equal to surface current density. 

Tying the MST and Poynting Approaches Together 

y 

x 

Field RegionContour 

Figure 5: Illustrative Region of Space 

Now that the stage is set, consider energy flow and force transfer in a narrow region of space as 
illustrated by Figure 5. The upper and lower surfaces may support currents. Assume that all of the 

fields, electric and magnetic, are of the form of a traveling wave in the x- direction: Re ej(ωt−kx) . 

If we assume that form for the fields and also assume that there is no variation in the z- direction 
(equivalently, the problem is infinitely long in the z- direction), there can be no x- directed currents 
because the divergence of current is zero: � J� = 0. In a magnetostatic system this is true of · 
electric field E� too. Thus we will assume that current is confined to the z- direction and to the two 
surfaces illustrated in Figure 5, and thus the only important fields are: 

E� = �izRe Eze
j(ωt−kx) 

H� = �ixRe Hxe
j(ωt−kx) 

+ �iyRe Hye
j(ωt−kx) 

We may use Faraday’s Law (�× E� = −∂B� ) to establish the relationship between the electric 
∂t 

and magnetic field: the y- component of Faraday’s Law is: 

jkE = −jωµ0Hz y 

or 
ω 

E = z −
k
µ0Hy 
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The phase velocity uph = ω
k 

is a most important quantity. Note that, if one of the surfaces is 
moving (as it would be in, say, an induction machine), the frequency and hence the apparent phase 
velocity, will be shifted by the motion. We will use this fact shortly. 

Energy flow through the surface denoted by the dotted line in Figure 5 is the component of 
Poynting’s Vector in the negative y- direction. The relevant component is: 

Sy = 
� 
E� ×H�

� 

y 
= EzHx = − ω

k 
µ0HyHx 

Note that this expression contains the xy component of the Maxwell Stress Tensor Txy = 
µ0HxHy so that power flow downward through the surface is: 

ω 
S = −Sy = µ0HxHy = uphTxy 

k 

The average power flow is the same, in this case, for time and for space, and is: 

1 µ0 
< S >= Re {E H∗ 

x} = uph Re HyHx 
∗ 

2 z 2


We may choose to define a surface impedance:


E
Z = z 

s −Hx 

which becomes: 
H

Zs = −µ0uph 
y 

= −µ0uphR 
Hx 

where now we have defined the parameter R to be the ratio between y- and x- directed complex 
field amplitudes. Energy flow through that surface is now: 

1 1 
S = −

s 
Re {EzHx

∗ } =
2
Re |H |2Zx s 

Simple Description of a Linear Induction Motor 

g 
j(ω t - k x)

K e µ zs y 

x µ σ u 
s 

Figure 6: Simple Description of Linear Induction Motor 

The stage is now set for an almost trivial description of a linear induction motor. Consider the 
geometry described in Figure 6. Shown here is only the relative motion gap region. This is bounded 
by two regions of highly permeable material (e.g. iron), comprising the stator and shuttle. On the 
surface of the stator (the upper region) is a surface current: 

K� s = �izRe Kzse
j(ωt−kx) 
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The shuttle is, in this case, moving in the positive x- direction at some velocity u. It may also be 
described as an infinitely permeable region with the capability of supporting a surface current with 
surface conductivity σs, so that Kzr = σsEz. 

Note that Ampere’s Law gives us a boundary condition on magnetic field just below the upper 
surface of this problem: Hx = Kzs, so that, if we can establish the ratio between y- and x- directed 
fields at that location, 

< Txy >= 
µ0 

yHx 
∗ 

µ

2 
0 |Kzs| 2Re {R}Re H = 

2 

Note that the ratio of fields Hy/Hx = R is independent of reference frame (it doesn’t matter 
if we are looking at the fields from the shuttle or the stator), so that the shear stress described by 
Txy is also frame independent. Now, if the shuttle (lower surface) is moving relative to the upper 
surface, the velocity of the traveling wave relative to the shuttle is: 

ω 
us = uph − u = s 

k 

where we have now defined the dimensionless slip s to be the ratio between frequency seen by the 
shuttle to frequency seen by the stator. We may use this to describe energy flow as described by 
Poynting’s Theorem. Energy flow in the stator frame is: 

Supper = uphTxy 

In the frame of the shuttle, however, it is 

Slower = usTxy = sSupper 

Now, the interpretation of this is that energy flow out of the upper surface (Supper) consists of 
energy converted (mechanical power) plus energy dissipated in the shuttle (which is Slower here. 
The difference between these two power flows, calculated using Poynting’s Theorem, is power 
converted from electrical to mechanical form: 

Sconverted = Supper(1 − s) 

Now, to finish the problem, note that surface current in the shuttle is: 

K = E� σs = −usµ0σsHzr z y 

where the electric field E� is measured in the frame of the shuttle. z 

We assume here that the magnetic gap g is small enough that we may assume kg � 1. Ampere’s 
Law, taken around a contour that crosses the air-gap and has a normal in the z- direction, yields: 

∂Hx 
g = Kzs + Kzr 
∂x 

In complex amplitudes, this is: 

−jkgHy = Kzs + Kzr = Kzs − µ0usσsHy 
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or, solving for Hy. 
jKzs 1 

Hy = 
kg 1 + jµ usσs 

0 kg 

Average shear stress is 

  
 | |2

�

 
�

| | µ2 0usσs 
µ0 µ0 

< T >= Re 
�

H H
� K

= zs j µ0 K k
xy y x Re = zs g 

 
2 2 kg 1 + j µ0usσs 2 kg 

� �2µ0usσ
kg 1 + s

kg 

� � 

5 Surface Impedance of Uniform Conductors 

The objective of this section is to describe the calculation of the surface impedance presented by a 
layer of conductive material. Two problems are considered here. The first considers a layer of linear 

material backed up by an infinitely permeable surface. This is approximately the situation presented 
by, for example, surface mounted permanent magnets and is probably a decent approximation to 
the conduction mechanism that would be responsible for loss due to asynchronous harmonics in 
these machines. It is also appropriate for use in estimating losses in solid rotor induction machines 
and in the poles of turbogenerators. The second problem, which we do not work here but simply 
present the previously worked solution, concerns saturating ferromagnetic material. 

5.1 Linear Case 

The situation and coordinate system are shown in Figure 7. The conductive layer is of thicknes T 
and has conductivity σ and permeability µ0. To keep the mathematical expressions within bounds, 
we assume rectilinear geometry. This assumption will present errors which are small to the extent 
that curvature of the problem is small compared with the wavenumbers encountered. We presume 
that the situation is excited, as it would be in an electric machine, by a current sheet of the form 

Kz = Re Kej(ωt−kx) 

H x 

Permeable Surface 

Conductive Slab 

y 

x 

Figure 7: Axial View of Magnetic Field Problem 

In the conducting material, we must satisfy the diffusion equation: 

=�2H µ0σ
∂

∂t 
H 
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where the skin depth is:  �
2 

δ = 
ωµ0σ 

To obtain surface impedance, we use Faraday’s law: 

∂B �× E = −
∂t 

which gives: 
ω 

Ez = −µ0 H
k y

Now: the “surface current” is just 
Ks = −Hx 

so that the equivalent surface impedance is: 

E ω 
Z = z = jµ0 cothαT −Hx α 

In view of the boundary condition at the back surface of the material, taking that point to be 
y = 0, a general solution for the magnetic field in the material is: 

� � 
Hx = Re A sinhαyej(ωt−kx) 

� 
k 

� 

Hy = Re j A coshαyej(ωt−kx) 

α 

where the coefficient α satisfies: 
α2 = jωµ0σ + k2 

and note that the coefficients above are chosen so that H has no divergence. 
Note that if k is small (that is, if the wavelength of the excitation is large), this spatial coefficient 

α becomes 
1 + j

α = 
δ 

A pair of limits are interesting here. Assuming that the wavelength is long so that k is negligible, 
then if αT is small (i.e. thin material), 

ω 1 
Z jµ0 = →

α2T σT 

On the other hand as αT → ∞, 
1 + j

Z → 
σδ 

Next it is necessary to transfer this surface impedance across the air-gap of a machine. So, with 
reference to Figure 8, assume a new coordinate system in which the surface of impedance Zs is 
located at y = 0, and we wish to determine the impedance Z = −Ez/Hx at y = g. 

In the gap there is no current, so magnetic field can be expressed as the gradient of a scalar 
potential which obeys Laplace’s equation: 

H = −�ψ 
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and 
� 2ψ = 0 

Ignoring a common factor of ej(ωt−kx), we can express H in the gap as: 

  
H = 

�

−ky 
x jk ψ eky + ψ  

+ 
 

− 
e

 
H = −k

�

ψ eky 
 

−  −ky 

�

y ψ 
+ − 

e
�

At the surface of the rotor, 
Ez = −HxZs 

or     
−ωµ0 ψ 

+ 
− ψ 

− 
= jkZs ψ + ψ 

+ − 

and then, at the surface of the stator

�

, 

� � �

ψ ekg 
Ez ω ψ e−kg 

− + Z = = jµ
−

− 

0 
H k ψ ekg + ψ e−kg 

x + − 

� � 

Kz y 

x 

g

Surface Impedance Z s


Figure 8: Impedance across the air-gap 

A bit of manipulation is required to obtain: 

ω ekg (ωµ0 − jkZs) − e−kg (ωµ0 + jkZs)Z = jµ0 
k ekg (ωµ0 − jkZ ) + e−kg (ωµ0 + jkZ )s s

It is useful to note that, in the limit of Zs → ∞, this expression approaches the gap impedance 

ωµ0
Zg = j

k2g 

and, if the gap is small enough that kg 0, →

Z → Zg||Zs 
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6 Iron 

Electric machines employ ferromagnetic materials to carry magnetic flux from and to appropriate 
places within the machine. Such materials have properties which are interesting, useful and prob­
lematical, and the designers of electric machines must deal with this stuff. The purpose of this 
note is to introduce the most salient properties of the kinds of magnetic materials used in electric 
machines. 

We will be concerned here with materials which exhibit magnetization: flux density is something 
other than B� = µ0H� . Generally, we will speak of hard and soft magnetic materials. Hard materials 
are those in which the magnetization tends to be permanent, while soft materials are used in 
magnetic circuits of electric machines and transformers. Since they are related we will find ourselves 
talking about them either at the same time or in close proximity, even though their uses are widely 
disparite. 

6.1 Magnetization: 

It is possible to relate, in all materials, magnetic flux density to magnetic field intensity with a 
consitutive relationship of the form: 

B� = µ0 H� + M�

where magnetic field intensity H and magnetization M are the two important properties. Now, 
in linear magnetic material magnetization is a simple linear function of magnetic field: 

M� = χmH�

so that the flux density is also a linear function: 

B� = µ0 (1 + χm)H�

Note that in the most general case the magnetic susceptibility cm might be a tensor, leading 
to flux density being non-colinear with magnetic field intensity. But such a relationship would still 
be linear. Generally this sort of complexity does not have a major effect on electric machines. 

6.2 Saturation and Hysteresis 

In useful magnetic materials this nice relationship is not correct and we need to take a more general 
view. We will not deal with the microscopic picture here, except to note that the magnetization is 
due to the alignment of groups of magnetic dipoles, the groups often called domaines. There are 
only so many magnetic dipoles available in any given material, so that once the flux density is high 
enough the material is said to saturate, and the relationship between magnetic flux density and 
magnetic field intensity is nonlinear. 

Shown in Figure 9, for example, is a “saturation curve” for a magnetic sheet steel that is 
sometimes used in electric machinery. Note the magnetic field intensity is on a logarithmic scale. 
If this were plotted on linear coordinates the saturation would appear to be quite abrupt. 

At this point it is appropriate to note that the units used in magnetic field analysis are not 
always the same nor even consistent. In almost all systems the unit of flux is the weber (W), which 
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Figure 9: Saturation Curve: Commercial M-19 Silicon Iron 

is the same as a volt-second. In SI the unit of flux density is the tesla (T), but many people refer to 
the gauss (G), which has its origin in CGS. 10,000 G = 1 T. Now it gets worse, because there is an 
English system measure of flux density generally called kilo-lines per square inch. This is because 
in the English system the unit of flux is the line. 108 lines is equal to a weber. Thus a Tesla is 64.5 
kilolines per square inch. 

The SI and CGS units of flux density are easy to reconcile, but the units of magnetic field 
are a bit harder. In SI we generally measure H in amperes/meter (or ampere-turns per meter). 
Often, however, you will see magnetic field represented as Oersteds (Oe). One Oe is the same as 
the magnetic field required to produce one gauss in free space. So 79.577 A/m is one Oe. 

In most useful magnetic materials the magnetic domaines tend to be somewhat “sticky”, and a 
more-than-incremental magnetic field is required to get them to move. This leads to the property 
called “hysteresis”, both useful and problematical in many magnetic systems. 

Hysteresis loops take many forms; a generalized picture of one is shown in Figure 10. Salient 
features of the hysteresis curve are the remanent magnetization Br and the coercive field Hc. Note 
that the actual loop that will be traced out is a function of field amplitude and history. Thus there 
are many other “minor loops” that might be traced out by the B-H characteristic of a piece of 
material, depending on just what the fields and fluxes have done and are doing. 

Now, hysteresis is important for two reasons. First, it represents the mechanism for “trapping” 
magnetic flux in a piece of material to form a permanent magnet. We will have more to say about 
that anon. Second, hysteresis is a loss mechanism. To show this, consider some arbitrary chunk of 
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Figure 10: Hysteresis Curve Nomenclature 

material for which we can characterize an MMF and a flux: 

� d �F = NI = H ell · 
V 

Φ = dt = B� dA�
N Area 

· 

Energy input to the chunk of material over some period of time is


� d� d � d �w = V Idt = FdΦ = H � B A dt 
t 

· · 

Now, imagine carrying out the second (double) integral over a continuous set of surfaces which 
are perpendicular to the magnetic field H. (This IS possible!). The energy becomes: 

� d �w = H Bdvol dt 
t 

· 

and, done over a complete cycle of some input waveform, that is: 

w = Wmdvol 
vol 

Wm = H� dB�
t 

· 

That last expression simply expresses the area of the hysteresis loop for the particular cycle. 
Generally, for most electric machine applications we will use magnetic material characterized 

as “soft”, having as narrow a hysteresis loop (and therefore as low a hysteretic loss) as possible. At 
the other end of the spectrum are “hard” magnetic materials which are used to make permanent 
magnets. The terminology comes from steel, in which soft, annealed steel material tends to have 
narrow loops and hardened steel tends to have wider loops. However permanent magnet technology 
has advanced to the point where the coercive forces possible in even cheap ceramic magnets far 
exceed those of the hardest steels. 
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6.3 Conduction, Eddy Currents and Laminations: 

Steel, being a metal, is an electrical conductor. Thus when time varying magnetic fields pass 
through it they cause eddy currents to flow, and of course those produce dissipation. In fact, for 
almost all applications involving “soft” iron, eddy currents are the dominant source of loss. To 
reduce the eddy current loss, magnetic circuits of transformers and electric machines are almost 
invariably laminated, or made up of relatively thin sheets of steel. To further reduce losses the steel 
is alloyed with elements (often silicon) which poison the electrical conductivity. 

There are several approaches to estimating the loss due to eddy currents in steel sheets and in 
the surface of solid iron, and it is worthwhile to look at a few of them. It should be noted that this 
is a “hard” problem, since the behavior of the material itself is difficult to characterize. 

6.4 Complete Penetration Case 

t 

y 

x 
z 

Figure 11: Lamination Section for Loss Calculation 

Consider the problem of a stack of laminations. In particular, consider one sheet in the stack 
represented in Figure 11. It has thickness t and conductivity σ. Assume that the “skin depth” 
is much greater than the sheet thickness so that magnetic field penetrates the sheet completely. 
Further, assume that the applied magnetic flux density is parallel to the surface of the sheets: 

jωt B = �izRe 
√

2B0e

Now we can use Faraday’s law to determine the electric field and therefore current density in 
the sheet. If the problem is uniform in the x- and z- directions, 

∂Ex 

∂y 
= −jω0B0 

Note also that, unless there is some net transport current in the x- direction, E must be anti­
symmetric about the center of the sheet. Thus if we take the origin of y to be in the center, electric 
field and current are: 

E = −jωB0yx 

J = −jωB0σy x 

Local power dissipated is 

P (y) = ω2B0
2σy2 = 

|J |2 

σ 
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To find average power dissipated we integrate over the thickness of the lamination: 

� t � t 
2 2 2 2 1 

ω2B0
2t2σ< P >= P (y)dy = ω2B0

2σ y 2dy = 
t 0 t 0 12 

Pay attention to the orders of the various terms here: power is proportional to the square of 
flux density and to the square of frequency. It is also proportional to the square of the lamination 
thickness (this is average volume power dissipation). 

As an aside, consider a simple magnetic circuit made of this material, with some length � and 
area A, so that volume of material is �A. Flux lined by a coil of N turns would be: 

Λ = NΦ = NAB0 

and voltage is of course just V = jwL. Total power dissipated in this core would be: 

1 V 2 

ω2B0
2t2σ =Pc = A� 

12 Rc 

where the equivalent core resistance is now 

A 12N2 

Rc = 
� σt2 

6.5 Eddy Currents in Saturating Iron 

The same geometry holds for this pattern, although we consider only the one-dimensional problem 
(k 0). The problem was worked by McLean and his graduate student Agarwal [2] [1]. They →
assumed that the magnetic field at the surface of the flat slab of material was sinusoidal in time 
and of high enough amplitude to saturate the material. This is true if the material has high 
permeability and the magnetic field is strong. What happens is that the impressed magnetic field 
saturates a region of material near the surface, leading to a magnetic flux density parallel to the 
surface. The depth of the region affected changes with time, and there is a separating surface (in 
the flat problem this is a plane) that moves away from the top surface in response to the change 
in the magnetic field. An electric field is developed to move the surface, and that magnetic field 
drives eddy currents in the material. 

H 

B 

B 0 

Figure 12: Idealized Saturating Characteristic
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Assume that the material has a perfectly rectangular magnetization curve as shown in Figure 12, 
so that flux density in the x- direction is: 

Bx = B0sign(Hx) 

The flux per unit width (in the z- direction) is: 

−∞ 

Φ = Bxdy 
0 

and Faraday’s law becomes: 
∂Φ 

Ez = 
∂t 

while Ampere’s law in conjunction with Ohm’s law is: 

∂Hx 
= σEz

∂y 

Now, McLean suggested a solution to this set in which there is a “separating surface” at depth ζ 
below the surface, as shown in Figure 13 . At any given time: 

Hx 

Jz 

= 

= 

Hs(t) 

� 

1 + 
y 
ζ 

� 

σEz = 
Hs 

ζ 

y 

B 

B s 

s 

x 

Separating Surface 

Penetration 

Depth 

Figure 13: Separating Surface and Penetration Depth 

That is, in the region between the separating surface and the top of the material, electric field 
Ez is uniform and magnetic field Hx is a linear function of depth, falling from its impressed value at 
the surface to zero at the separating surface. Now: electric field is produced by the rate of change 
of flux which is: 

∂Φ ∂ζ 
Ez = = 2Bx

∂t ∂t 
Eliminating E, we have:


∂ζ Hs
2ζ = 
∂t σBx 
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and then, if the impressed magnetic field is sinusoidal, this becomes: 

dζ2 H0 

dt 
= sinωt
σB0 

| | 

This is easy to solve, assuming that ζ = 0 at t = 0, 

� 
2H0 ωt 

ζ sin = 
ωσB0 2 

Now: the surface always moves in the downward direction (as we have drawn it), so at each half 
cycle a new surface is created: the old one just stops moving at a maximum position, or penetration 
depth: 

2H0
δ = 

ωσB0 

This penetration depth is analogous to the “skin depth” of the linear theory. However, it is an 
absolute penetration depth. 

The resulting electric field is: 

2H0 ωt 
Ez = cos 0 < ωt < π 

σδ 2 

This may be Fourier analyzed: noting that if the impressed magnetic field is sinusoidal, only the 
time fundamental component of electric field is important, leading to: 

8 H0
Ez = (cosωt + 2 sinωt + . . .)

3π σδ 

Complex surface impedance is the ratio between the complex amplitude of electric and magnetic 
field, which becomes: 

E 8 1 
Z = z = (2 + j)s H 3π σδ x 

Thus, in practical applications, we can handle this surface much as we handle linear conductive 
surfaces, by establishing a skin depth and assuming that current flows within that skin depth of 
the surface. The resistance is modified by the factor of 3

16 
π 

and the “power factor” of this surface is 
about 89 % (as opposed to a linear surface where the “power factor” is about 71 %. 

Agarwal suggests using a value for B0 of about 75 % of the saturation flux density of the steel. 

Semi-Empirical Method of Handling Iron Loss 

Neither of the models described so far are fully satisfactory in describing the behavior of laminated 
iron, because losses are a combination of eddy current and hysteresis losses. The rather simple 
model employed for eddy currents is precise because of its assumption of abrupt saturation. The 
hysteresis model, while precise, would require an empirical determination of the size of the hysteresis 
loops anyway. So we must often resort to empirical loss data. Manufacturers of lamination steel 
sheets will publish data, usually in the form of curves, for many of their products. Here are a few 
ways of looking at the data. 
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A low frequency flux density vs. magnetic field (“saturation”) curve was shown in Figure 9. 
Included with that was a measure of the incremental permeability 

dB 
µ = 

dH 

In some machine applications either the “total” inductance (ratio of flux to MMF) or “incremental” 
inductance (slope of the flux to MMF curve) is required. In the limit of low frequency these numbers 
may be useful. 

For designing electric machines, however, a second way of looking at steel may be more useful. 
This is to measure the real and reactive power as a function of magnetic flux density and (sometimes) 
frequency. In principal, this data is immediately useful. In any well-designed electric machine the 
flux density in the core is distributed fairly uniformly and is not strongly affected by eddy currents, 
etc. in the core. Under such circumstances one can determine the flux density in each part of the 
core. With that information one can go to the published empirical data for real and reactive power 
and determine core loss and reactive power requirements. 

Figure 14: Real and Apparent Loss: M19, Fully Processed, 29 Ga 

Figure 14 shows core loss and “apparent” power per unit mass as a function of (RMS) induction 
for 29 gage, fully processed M-19 steel. The two left-hand curves are the ones we will find most 
useful. “P ” denotes real power while “Pa ” denotes “apparent power”. The use of this data is quite 
straightforward. If the flux density in a machine is estimated for each part of the machine and the 
mass of steel calculated, then with the help of this chart a total core loss and apparent power can 
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Table 1: Exponential Fit Parameters for Two Steel Sheets 
29 Ga, Fully Processed 
M-19 M-36 

Base Flux Density B0 1 T 1 T 
Base Frequency f0 60 Hz 60 Hz 
Base Power (w/lb) P0 0.59 0.67 
Flux Exponent �B 1.88 1.86 
Frequency Exponent �F 1.53 1.48 
Base Apparent Power 1 V A0 1.08 1.33 
Base Apparent Power 2 V A1 .0144 .0119 
Flux Exponent �0 1.70 2.01 
Flux Exponent �1 16.1 17.2 

be estimated. Then the effect of the core may be approximated with a pair of elements in parallel 
with the terminals, with: 

Rc = 
q|V |2 

P 

Xc = 
q|V |2 

Q 

Q = Pa 
2 − P 2 

Where q is the number of machine phases and V is phase voltage. Note that this picture is, strictly 
speaking, only valid for the voltage and frequency for which the flux density was calculated. But 
it will be approximately true for small excursions in either voltage or frequency and therefore 
useful for estimating voltage drop due to exciting current and such matters. In design program 
applications these parameters can be re-calculated repeatedly if necessary. 

“Looking up” this data is a it awkward for design studies, so it is often convenient to do a 
“curve fit” to the published data. There are a large number of possible ways of doing this. One 
method that has bee found to work reasonably well for silicon iron is an “exponential fit”: 

� ��B 
� ��FB f 

P ≈ P0 
B0 f0 

This fit is appropriate if the data appears on a log-log plot to lie in approximately straight lines. 
Figure 15 shows such a fit for the same steel sheet as the other figures. 

For “apparent power” the same sort of method can be used. It appears, however, that the simple 
exponential fit which works well for real power is inadequate, at least if relatively high inductions 
are to be used. This is because, as the steel saturates, the reactive component of exciting current 
rises rapidly. I have had some success with a “double exponential” fit: 

� ��0 
� ��1B B 

VA ≈ VA0 + VA1
B0 B0 

To first order the reactive component of exciting current will be linear in frequency. 
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Figure 15: Steel Sheet Core Loss Fit vs. Flux Density and Frequency 

In the disk that is to be distributed with these notes there are a number of data files representing 
properties of different types of nonoriented sheet steel. The format of each of the files is the same: 
two columns of numbers, the first is flux density in Tesla, RMS, 60 Hz. The second column is watts 
per pound or volt-amperes per pound. The materials are denoted by the file names, which are 
generally of the format: “M-Mtype-Proc-Data-Gage.prn”. The coding is relatively dense because 
of the short file name limit of MSDOS. Mtype is the number designator (as in M-19). Proc is “f” 
for fully processed and “s” for semiprocessed. Data is “p” for power, “pa” for apparent power. 
Gage is 29 (.014” thick), 26 (.0185” thick) or 24 (.025” thick). Example: m19fp29.prn designates 
loss in M-19 material, fully processed, 29 gage. 

Also on the disk are three curve fitting routines that appear to work with this data. (Not all of 
the routines work with all of the data!). They are: 

1. efit.m implements the single exponential fit of loss against flux density. Use: in MATLAB 
type 

efit <return>.


The program prompts


fit what (name.prn) ==>


Enter the file name for the material designator without the .prn extension. The program 
will think about the problem for a few seconds and put up a plot of its fit with points 
noting the actual data. Enter a <return> and a summary of the fit turns up, including the 
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fit parameters and an error indication. These programs use MATLAB’s fmins routine to 
minimize a mean-squared error as calculated by the auxiliary function fiterr.m. 

2. e2fit.m implements the double exponential fit of apparent power against flux density. Use 
is just like efit. It uses the auxiliary function fit2err.m. 

3. pfit.m uses the MATLAB function polyfit to fit a polynomial (in B) to the data. 

Most of the machine design scripts enclosed with the material for this special summer subject 
employ the exponential fits for core iron developed here. 
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LAMINATION STEELS THIRD EDITION 
Excerpts specially prepared for the Massachusetts Institute of Technology 

by the Electric Motor Education and Research Foundation 

Magnetization – B vs. H 

DC and Derived AC Magnetizing Force in Oersteds and Amperes per Meter at Various Frequencies – H 
Oe A/m 

DC 50 Hz 60 Hz 100 Hz 150 Hz 200 Hz 300 Hz 400 Hz 600 Hz 1000 Hz 1500 Hz 2000 Hz 

0.333 26.5 0.334 26.6 0.341 27.1 0.349 27.8 0.356 28.3 0.372 29.6 0.385 30.6 0.412 32.8 0.485 38.6 0.564 44.9 0.642 51.11000


0.401 31.9 0.475 37.8 0.480 38.2 0.495 39.4 0.513 40.8 0.533 42.4 0.567 45.1 0.599 47.7 0.661 52.6 0.808 64.3 0.955 76.0 1.09 86.92000


0.564 44.9 0.659 52.4 0.669 53.2 0.700 55.7 0.739 58.8 0.777 61.8 0.846 67.3 0.911 72.5 1.04 82.8 1.30 103 1.56 124 1.80 143
4000


0.845 67.3 0.904 71.9 0.916 72.9 0.968 77.0 1.03 82.0 1.09 87.1 1.21 96.4 1.33 105 1.55 124 2.00 159 2.48 198 2.95 235
7000


1.34 106 1.25 99.3 1.26 101 1.32 105 1.40 112 1.48 118 1.65 131 1.82 145 2.17 173 2.87 228 3.70 294 4.53 361
10000


2.06 164 1.71 136 1.72 137 1.78 141 1.86 148 1.94 155 2.13 169 2.33 185 2.74 218 3.66 291 4.77 380 5.89 469
12000


2.95 235 2.21 176 2.22 177 2.27 181 2.34 186 2.42 193 2.61 208 2.82 224 3.24 258 4.27 340 5.50 438
13000


5.47 435 3.51 279 3.51 279 3.57 284 3.63 289 3.69 294 3.86 307 4.13 329
14000


13.9 1109 8.28 659 8.31 662 8.37 666 8.37 666 8.48 675 8.65 689 9.74 775
15000


22.8 1813 13.6 1084 13.6 1081 13.8 1095 13.7 1092 13.8 1096 14.1 1122 16.5 1313
15500


35.2 2802 21.6 1718 21.7 1728 21.8 1735 21.8 1738 21.9 1742
16000


50.9 4054 32.4 2577 32.5 2587 32.6 2597 32.5 2590 32.6 2594
16500


70.3 5592 46.1 3670 46.2 3680 46.4 3692 46.6 3712 46.6 3711
17000


122 9711
18000


202 16044
19000


394 31319
20000


1112 88491
21000


Typical DC and derived AC magnetizing force of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. DC values in 
Oersteds from published AK Steel documents. AC values in Oersteds developed from previously unpublished exciting power information provided by AK Steel, 2000. AC values 
have been derived from RMS Exciting Power using the following formulas: 

88.19 × Density (g/cc) × RMS Exciting Power (VA/lb) 
Magnetizing Force in Oersteds  = 

Magnetic Flux Density (kG) × Frequency (Hz)


Density of M-19 = 7.65 g/cc

Values in Amperes per meter  = Oersteds × 79.58


See exciting power data page for AC exciting power source data. Magnetizing force formula developed by AK Steel; use only for deriving magnetizing force of AK Steel non-
oriented silicon steel. Data table preparation, including conversion of data values, by EMERF, 2004. 

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material producer prior to 
use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008. 

This page is excerpted from the Laminations Steels Third Edition CD-ROM published by the Electric Motor Education and Research Founda­
tion and is intended for use in the Massachusetts Institute of Technology OpenCourseWare program. Unauthorized duplication and distribu­
tion of this document in violation of the OpenCourseWare license is prohibited. Please refer to the Summary Graphs page, reached by the link 
at left, for additional information concerning this document. 
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page for data values. Curves developed from previously unpublished information provided by AK Steel, 2000. Chart prepared by EMERF, 2004. 

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material 
producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008. 
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Total Core Loss – Pc vs. B 

Core Loss in Watts per Pound and Watts per Kilogram at Various Frequencies – Pc 

W/lb W/kg 

50 Hz 60 Hz 100 Hz 150 Hz 200 Hz 300 Hz 400 Hz 600 Hz 1000 Hz 1500 Hz 2000 Hz 

0.008 0.0176 0.009 0.0198 0.017 0.0375 0.029 0.0639 0.042 0.0926 0.074 0.163 0.112 0.247 0.205 0.452 0.465 1.02 0.9 1.98 1.45 3.201000


0.031 0.0683 0.039 0.0860 0.072 0.159 0.119 0.262 0.173 0.381 0.300 0.661 0.451 0.994 0.812 1.79 1.79 3.94 3.37 7.43 5.32 11.72000


0.109 0.240 0.134 0.295 0.252 0.555 0.424 0.934 0.621 1.37 1.09 2.39 1.64 3.60 2.96 6.52 6.34 14.0 11.8 26.1 18.5 40.84000


0.273 0.602 0.340 0.749 0.647 1.43 1.11 2.44 1.64 3.61 2.92 6.44 4.45 9.81 8.18 18.0 17.8 39.1 33.7 74.3 54.0 119
7000


0.494 1.09 0.617 1.36 1.18 2.61 2.04 4.50 3.06 6.74 5.53 12.2 8.59 18.9 16.2 35.7 36.3 80.0 71.5 158 117 257
10000


0.687 1.51 0.858 1.89 1.65 3.63 2.86 6.30 4.29 9.46 7.83 17.3 12.2 26.9 23.5 51.8 54.3 120 109 240 179 395
12000


0.812 1.79 1.01 2.23 1.94 4.28 3.36 7.41 5.06 11.2 9.23 20.3 14.4 31.8 27.8 61.3 65.1 143 132 291
13000


0.969 2.14 1.21 2.66 2.31 5.09 4.00 8.82 6.00 13.2 10.9 24.1 17.0 37.514000


1.16 2.56 1.45 3.19 2.77 6.11 4.76 10.5 7.15 15.8 13.0 28.7 20.1 44.415000


1.26 2.77 1.56 3.44 2.99 6.59 5.15 11.4 7.71 17.0 13.9 30.7 21.6 47.615500


1.34 2.96 1.67 3.67 3.18 7.01 5.47 12.0 8.19 18.016000


1.42 3.13 1.76 3.89 3.38 7.44 5.79 12.8 8.67 19.116500


1.49 3.29 1.85 4.08 3.54 7.80 6.09 13.4 9.13 20.117000


2.00 4.4018000


Typical total AC core loss of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. Watts per pound 
values from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF, 2004. 

Watts per kilogram values developed using this formula: Watts per Kilogram = Watts per Pound × 2.204 . 

Information on this page is not guaranteed or endorsed by The Electric Motor Education and Research Foundation. Confirm material properties with material 
producer prior to use. © 2007 The Electric Motor Education and Research Foundation. MIT OCW excerpts prepared October 2008. 
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Exciting Power 

Exciting Power in Volt-amps per Pound and Volt-amps per Kilogram at Various Frequencies 
V-A/lb V-A/kg 

50 Hz 60 Hz 100 Hz 150 Hz 200 Hz 300 Hz 400 Hz 600 Hz 1000 Hz 1500 Hz 2000 Hz 

0.025 0.055 0.030 0.066 0.051 0.112 0.078 0.172 0.106 0.234 0.165 0.364 0.228 0.503 0.366 0.807 0.719 1.58 1.25 2.76 1.90 4.201000 

0.07 0.154 0.085 0.187 0.147 0.324 0.228 0.503 0.316 0.696 0.504 1.11 0.710 1.56 1.18 2.59 2.40 5.28 4.25 9.36 6.48 14.32000


0.195 0.430 0.238 0.525 0.415 0.915 0.657 1.45 0.921 2.03 1.51 3.32 2.16 4.76 3.70 8.15 7.70 17.0 13.9 30.5 21.4 47.1 

0.469 1.03 0.57 1.26 1.00 2.21 1.60 3.53 2.27 5.00 3.77 8.31 5.50 12.1 9.67 21.3 20.8 45.7 38.7 85.2 61.3 135


4000


7000


0.925 2.04 1.12 2.48 1.96 4.32 3.12 6.88 4.39 9.68 7.33 16.2 10.8 23.8 19.3 42.5 42.5 93.7 82.2 181 134 296
10000


1.52 3.34 1.83 4.04 3.16 6.96 4.96 10.9 6.91 15.2 11.4 25.0 16.6 36.5 29.2 64.4 65.1 143 127 280 210 462
12000


2.13 4.69 2.57 5.66 4.38 9.65 6.77 14.9 9.34 20.6 15.1 33.2 21.7 47.8 37.5 82.7 82.3 181 159 350
13000


3.64 8.02 4.37 9.63 7.41 16.3 11.3 24.9 15.3 33.8 24.0 52.9 34.3 75.6 

9.20 20.3 11.1 24.4 18.6 41.0 27.9 61.5 37.7 83.1 57.7 127 86.6 191


14000


15000


15.6 34.5 18.7 41.3 31.6 69.6 47.3 104 63.3 140 97.2 214 152 334
15500


25.6 56.4 30.9 68.1 51.7 114 77.7 171 104 229
16000


39.6 87.3 47.7 105 79.8 176 119 263 159 351
16500


58.1 128 69.9 154 117 258 176 389 235 518
17000


Typical RMS Exciting Power of as-sheared .014 inch (.36 mm, 29 gauge) Di-Max M-19 fully processed cold-rolled non-oriented silicon steel. Volt-amps per 
pound values from previously unpublished information provided by AK Steel, 2000. Data table preparation, including conversion of data values, by EMERF, 
2004. 

Volt-amps per kilogram developed using this formula: Volt-amps per kilogram = Volt-amps per pound × 2.204 . 
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6.061 Introduction to Power Systems

Class Notes Chapter 9


Synchronous Machine and Winding Models ∗


J.L. Kirtley Jr. 

1 Introduction 

The objective here is to develop a simple but physically meaningful model of the synchronous 
machine, one of the major classes of electric machine. We can look at this model from several 
different directions. This will help develop an understanding of analysis of machines, particularly 
in cases where one or another analytical picture is more appropriate than others. Both operation 
and sizing will be of interest here. 

Along the way we will approach machine windings from two points of view. On the one hand, 
we will approximate windings as sinusoidal distributions of current and flux linkage. Then we will 
take a concentrated coil point of view and generalize that into a more realistic and useful winding 
model. 

2 Physical Picture: Current Sheet Description 

Consider this simple picture. The ‘machine’ consists of a cylindrical rotor and a cylindrical stator 
which are coaxial and which have sinusoidal current distributions on their surfaces: the outer 
surface of the rotor and the inner surface of the stator. 

The ‘rotor’ and ‘stator’ bodies are made of highly permeable material (we approximate this as 
being infinite for the time being, but this is something that needs to be looked at carefully later). 
We also assume that the rotor and stator have current distributions that are axially (z) directed 
and sinusoidal: 

Kz
S = KS cos pθ


Kz
R = KR cos p (θ − φ)


Here, the angle φ is the physical angle of the rotor. The current distribution on the rotor goes 
along. Now: assume that the air-gap dimension g is much less than the radius: g << R. It is not 

∗�2003 James L. Kirtley Jr. 
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Figure 1: Elementary Machine Model: Axial View 

difficult to show that with this assumption the radial flux density Br is nearly uniform across the 
gap (i.e. not a function of radius) and obeys: 

Then the radial magnetic flux density for this case is simply: 

Now it is possible to compute the traction on rotor and stator surfaces by recognizing that 
the surface current distributions are the azimuthal magnetic fields: at  the surface of the stator, 
HQ= -K:, and at the surface of the rotor, HQ= K;. So at the surface of the rotor, traction is: 

TO= Tro= --P o R  (Ks sinp0 + KR sinp (0 - 4)) KR cosp (0 - 4)
Pg 

The average of that is simply: 

The same exercise done at the surface of the stator yields the same results (with opposite sign). 
To find torque, use: 

We can pause here to make a few observations: 

1. For a given value of surface currents Ks and Kr, torque goes as the fourth power of linear 
dimension. The volume of the machine goes as the third power, so this implies that torque 
capability goes as the 413 power of machine volume. Actually, this understates the situation 



3 

since the assumed surface current densities are the products of volume current densities and 
winding depth, which one would expect to increase with machine size. Thus machine torque 
(and power) densities tend to increase somewhat faster with size. 

2. The current distributions want to align with each other. In actual practice what is done is to 
generate a stator current distribution which is not static as implied here but which rotates in 
space: 

KS = KS cos (pθ − ωt)z 

and this pulls the rotor along. 

3. For a given pair of current distributions there is a maximum torque that can be sustained, 
but as long as the torque that is applied to the rotor is less than that value the rotor will 
adjust to the correct angle. 

Continuous Approximation to Winding Patterns: 

Now let’s try to produce those surface current distributions with physical windings. In fact we 
can’t do exactly that yet, but we can approximate a physical winding with a turns distribution 
that would look like: 

nS = 
NS 

2R 
cos pθ 

nR = 
NR 

2R 
cos p (θ − φ) 

Note that this implies that NS and NR are the total number of turns on the rotor and stator. 
i.e.: 

� π 
2 

p nSRdθ = NS 
π

−
2 

Then the surface current densities are as we assumed above, with: 

NSIS NRIR
KS = KR = 

2R 2R 

So far nothing is different, but with an assumed number of turns we can proceed to computing 
inductances. It is important to remember what these assumed winding distributions mean: they 
are the density of wires along the surface of the rotor and stator. A positive value implies a wire 
with sense in the +z direction, a negative value implies a wire with sense in the -z direction. That 
is, if terminal current for a winding is positive, current is in the +z direction if n is positive, in 
the -z direction if n is negative. In fact, such a winding would be made of elementary coils with 
one half (the negatively going half) separated from the other half (the positively going half) by a 
physical angle of π/p. So the flux linked by that elemental coil would be: 

� θ 

Φi(θ) = µ0Hr(θ
�)�Rdθ� 

θ−π/p 

So, if only the stator winding is excited, radial magnetic field is: 

NSIS
Hr = − 

2gp 
sin pθ 

3 



and thus the elementary coil flux is: 

µ0NSIS�R 
Φi(θ) = cos pθ 

p2g 

Now, this is flux linked by an elementary coil. To get flux linked by a whole winding we must 
‘add up’ the flux linkages of all of the elementary coils. In our continuous approximation to the 
real coil this is the same as integrating over the coil distribution: 

� π 
2p 

λS = p Φi(θ)nS(θ)Rdθ 
π

− 
2p 

This evaluates fairly easily to: 
π �RNS 

2 

IsλS = µ0 
4 gp2 

which implies a self-inductance for the stator winding of: 

π �RNS 
2 

LS = µ0 
4 gp2 

The same process can be used to find self-inductance of the rotor winding (with appropriate 
changes of spatial variables), and the answer is: 

π �RNR 
2 

LR = µ0 24 gp

To find the mutual inductance between the two windings, excite one and compute flux linked 
by the other. All of the expressions here can be used, and the answer is: 

π �RNSNR
M(φ) = µ0 

4 gp2 
cos pφ 

Now it is fairly easy to compute torque using conventional methods. Assuming both windings 
are excited, magnetic coenergy is: 

1 1 
W � LRIR 

2 + M(φ)ISIR= m LSIS 
2 + 

2 2


and then torque is:

∂W � π �RNSNR

ISIR sin pφ T = 
∂φ 

m = −µ0 
4 gp


and then substituting for NSIS and NRIR:


NSIS = 2RKS


NRIR = 2RKR


we get the same answer for torque as with the field approach: 

T = 2πR2� < τθ >= 
µ0πR

3�
KSKR sin pφ 

pg 

4




� � � � 

� � 

� � 

4 

5 

Classical, Lumped-Parameter Synchronous Machine: 

Now we are in a position to examine the simplest model of a polyphase synchronous machine. 
Suppose we have a machine in which the rotor is the same as the one we were considering, but the 
stator has three separate windings, identical but with spatial orientation separated by an electrical 
angle of 120◦ = 2π/3. The three stator windings will have the same self- inductance (La). 

With a little bit of examination it can be seen that the three stator windings will have mutual 
inductance, and that inductance will be characterized by the cosine of 120◦ . Since the physical 
angle between any pair of stator windings is the same, 

1 
Lab = Lac = Lbc = −

2 
La 

There will also be a mutual inductance between the rotor and each phase of the stator. Using 
M to denote the magnitude of that inductance: 

π �RNaNf
M = µ0 

4 gp2 

Maf = M cos (pφ) 
� 

2π 
� 

Mbf = M cos pφ − 
3 

� 
2π 
� 

Mcf = M cos pφ + 
3 

We show in Chapter 1 of these notes that torque for this system is: 

2π 2π 
T = −pMiaif sin (pφ) − pMibif sin pφ − − pMicif sin pφ + 

3 3 

Balanced Operation: 

Now, suppose the machine is operated in this fashion: the rotor turns at a constant velocity, the 
field current is held constant, and the three stator currents are sinusoids in time, with the same 
amplitude and with phases that differ by 120 degrees. 

pφ = ωt + δi 

if = If 

ia = I cos (ωt) 

2π 
ib = I cos ωt − 

3 
2π 

ic = I cos ωt + 
3 

Straightforward (but tedious) manipulation yields an expression for torque: 

3 
T = −

2
pMIIf sin δi 

5 



� � 

� � 

� � 

Operated in this way, with balanced currents and with the mechanical speed consistent with 
the electrical frequency (pΩ = ω), the machine exhibits a constant torque. The phase angle δi is 
called the torque angle, but it is important to use some caution, as there is more than one torque 
angle. 

Now, look at the machine from the electrical terminals. Flux linked by Phase A will be: 

λa = Laia + Labib + Lacic + MIf cos pφ 

Noting that the sum of phase currents is, under balanced conditions, zero and that the mutual 
phase-phase inductances are equal, this simplifies to: 

λa = (La − Lab) ia + MIf cos pφ = Ldia + MIf cos pφ 

where we use the notation Ld to denote synchronous inductance. 
Now, if the machine is turning at a speed consistent with the electrical frequency we say it is 

operating synchronously, and it is possible to employ complex notation in the sinusoidal steady 
state. Then, note: 

ia = I cos (ωt + θi) = Re Iejωt+θi 

If , we can write an expression for the complex amplitude of flux as: 

λa = Re Λae
jωt 

where we have used this complex notation: 

I = Iejθi 

If = Ife
jθm 

Now, if we look for terminal voltage of this system, it is: 

dλa 
= Re jωΛ ejωt va = 

dt a

This system is described by the equivalent circuit shown in Figure 2. 

j Xd 

V 

+ 

− 

Eaf 

+ 

− 

Figure 2: Round Rotor Synchronous Machine Equivalent Circuit 

where the internal voltage is: 
Eaf = jωMIfe

jθm 

6 



Now, if that is connected to a voltage source (i.e. if is fixed), terminal current is: 

V − Eaf e
jδ 

I = 
jXd 

where Xd = ωLd is the synchronous reactance. 
Then real and reactive power (in phase A) are: 

1 
V I∗P + jQ = 

2 
� �

∗ 

1 V −Eaf e
jδ 

= V 
2 jXd 

1 V 2 1 V Eafe
jδ 

= 
2 −

|
jX

|
d 
−

2 −jXd


This makes real and reactive power:


1 V Eaf

Pa = −

2 Xd 
sin δ 

1 V 2 1 V Eaf Xd
Qa = 

2Xd 
−

2 cos 
δ


If we consider all three phases, real power is


3 V Eaf

P = −

2 Xd 
sin δ 

Now, at last we need to look at actual operation of these machines, which can serve either as 
motors or as generators. 

Vector diagrams that describe operation as a motor and as a generator are shown in Figures 3 
and 4, respectively. 

Ia V V 

δ 

j X Id a 

Iaδ 

j X Id a 

Eaf 
Eaf 

Over−Excited Under−Excited 

Figure 3: Motor Operation, Under- and Over- Excited 

Operation as a generator is not much different from operation as a motor, but it is common to 
make notations with the terminal current given the opposite (“generator”) sign. 

7 
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δ 

Eaf 

Ia 

δ 

Eaf 

j X Id a j X Id a 

V VIa 

Over−Excited Under−Excited 

Figure 4: Generator Operation, Under- and Over- Excited 

Reconciliation of Models 

We have determined that we can predict its power and/or torque characteristics from two points 
of view : first, by knowing currents in the rotor and stator we could derive an expression for torque 
vs. a power angle: 

3 
T = −

2
pMIIf sin δi


From a circuit point of view, it is possible to derive an expression for power:


3 V Eaf 
P = −

2 Xd 
sin δ 

and of course since power is torque times speed, this implies that:


3 V Eaf 3 pV Eaf 
T = −

2 ΩXd 
sin δ = −

2 ωXd 
sin δ 

In this section of the notes we will, first of all, reconcile these notions, look a bit more at what 
they mean, and then generalize our simple theory to salient pole machines as an introduction to 
two-axis theory of electric machines. 

6.1 Torque Angles: 

Figure 5 shows a vector diagram that shows operation of a synchronous motor. It represents the 
MMF’s and fluxes from the rotor and stator in their respective positions in space during normal 
operation. Terminal flux is chosen to be ‘real’, or occupy the horizontal position. In motor operation 
the rotor lags by angle δ, so the rotor flux MIf is shown in that position. Stator current is also 
shown, and the torque angle between it and the rotor, δi is also shown. Now, note that the dotted 
line OA, drawn perpendicular to a line drawn between the stator flux LdI and terminal flux Λt, 
has length: 

|OA| = LdI sin δi = Λt sin δ 

8 
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Ld I 

i 

A 

O t 

M I f 

Figure 5: Synchronous Machine Phasor Addition 

Then, noting that terminal voltage V = ωΛt, Ea = ωMIf and Xd = ωLd , straightforward 
substitution yields: 

3 pV Eaf 3 
sin δ = pMIIf sin δi

2 ωXd 2

So the current- and voltage- based pictures do give the same result for torque. 

Per-Unit Systems: 

Before going on, we should take a short detour to look into per-unit systems, a notational device 
that, in addition to being convenient, will sometimes be conceptually helpful. The basic notion is 
quite simple: for most variables we will note a base quantity and then, by dividing the variable by 
the base we have a per-unit version of that variable. Generally we will want to tie the base quantity 
to some aspect of normal operation. So, for example, we might make the base voltage and current 
correspond with machine rating. If that is the case, then power base becomes: 

PB = 3VBIB 

and we can define, in similar fashion, an impedance base: 

VB
ZB = 

IB 

Now, a little caution is required here. We have defined voltage base as line-neutral and current 
base as line current (both RMS). That is not necessary. In a three phase system we could very well 
have defined base voltage to have been line-line and base current to be current in a delta connected 
element: 

IB
VBΔ = 

√
3VB IBΔ = √

3 

In that case the base power would be unchanged but base impedance would differ by a factor of 
three: 

PB = VBΔIBΔ ZBΔ = 3ZB 

9 
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However, if we were consistent with actual impedances (note that a delta connection of elements of 
impedance 3Z is equivalent to a wye connection of Z), the per-unit impedances of a given system 
are not dependent on the particular connection. In fact one of the major advantages of using a 
per-unit system is that per-unit values are uniquely determined, while ordinary variables can be 
line-line, line-neutral, RMS, peak, etc., for a large number of variations. 

Perhaps unfortunate is the fact that base quantities are usually given as line-line voltage and 
base power. So that: 

PB VB 1 VBΔ VB
2
ΔIB = √

3VBΔ 

ZB = 
IB 3 IBΔ PB 

= = 

Now, we will usually write per-unit variables as lower-case versions of the ordinary variables: 

V P 
v = 

VB 
p = 

PB 
etc. 

Thus, written in per-unit notation, real and reactive power for a synchronous machine operating 
in steady state are: 

2veaf v veaf 
p = sin δ q =− 

xd xd 
− 

xd 
sin δ 

These are, of course, in motor reference coordinates, and represent real and reactive power into 
the terminals of the machine. 

Normal Operation: 

The synchronous machine is used, essentially interchangeably, as a motor and as a generator. Note 
that, as a motor, this type of machine produces torque only when it is running at synchronous 
speed. This is not, of course, a problem for a turbogenerator which is started by its prime mover 
(e.g. a steam turbine). Many synchronous motors are started as induction machines on their 
damper cages (sometimes called starting cages). And of course with power electronic drives the 
machine can often be considered to be “in synchronism” even down to zero speed. 

As either a motor or as a generator, the synchronous machine can either produce or consume 
reactive power. In normal operation real power is dictated by the load (if a motor) or the prime 
mover (if a generator), and reactive power is determined by the real power and by field current. 

Figure 6 shows one way of representing the capability of a synchronous machine. This picture 
represents operation as a generator, so the signs of p and q are reversed, but all of the other elements 
of operation are as we ordinarily would expect. If we plot p and q (calculated in the normal way) 
against each other, we see the construction at the right. If we start at a location q = −v2/xd, (and 
remember that normally v = 1 per-unit , then the locus of p and q is what would be obtained by 
swinging a vector of length veaf/xd over an angle δ. This is called a capability chart because it is 
an easy way of visualizing what the synchronous machine (in this case generator) can do. There 
are three easily noted limits to capability. The upper limit is a circle (the one traced out by that 
vector) which is referred to as field capability. The second limit is a circle that describes constant 
|p + jq|. This is, of course, related to the magnitude of armature current and so this limit is called 
armature capability. The final limit is related to machine stability, since the torque angle cannot 
go beyond 90 degrees. In actuality there are often other limits that can be represented on this type 
of a chart. For example, large synchronous generators typically have a problem with heating of the 
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Figure 6: Synchronous Generator Capability Diagram 

stator iron when they attempt to operate in highly underexcited conditions (q strongly negative), 
so that one will often see another limit that prevents the operation of the machine near its stability 
limit. In very large machines with more than one cooling state (e.g. different values of cooling 
hydrogen pressure) there may be multiple curves for some or all of the limits. 

Another way of describing the limitations of a synchronous machine is embodied in the Vee 

Curve. An example is shown in Figure 7 . This is a cross-plot of magnitude of armature current 
with field current. Note that the field and armature current limits are straightforward (and are the 
right-hand and upper boundaries, respectively, of the chart). The machine stability limit is what 
terminates each of the curves at the upper left-hand edge. Note that each curve has a minimum at 
unity power factor. In fact, there is yet another cross-plot possible, called a compounding curve, in 
which field current is plotted against real power for fixed power factor. 

Salient Pole Machines: Two-Reaction Theory 

So far, we have been describing what are referred to as “round rotor” machines, in which stator 
reactance is not dependent on rotor position. This is a pretty good approximation for large turbine 
generators and many smaller two-pole machines, but it is not a good approximation for many 
synchronous motors nor for slower speed generators. For many such applications it is more cost 
effective to wind the field conductors around steel bodies (called poles) which are then fastened 
onto the rotor body, with bolts or dovetail joints. These produce magnetic anisotropies into the 
machine which affect its operation. The theory which follows is an introduction to two-reaction 
theory and consequently for the rotating field transformations that form the basis for most modern 
dynamic analyses. 

Figure 8 shows a very schematic picture of the salient pole machine, intended primarily to show 
how to frame this analysis. As with the round rotor machine the stator winding is located in slots 
in the surface of a highly permeable stator core annulus. The field winding is wound around steel 
pole pieces. We separate the stator current sheet into two components: one aligned with and one 
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Figure 7: Synchronous Machine Vee Curve 

in quadrature to the field. Remember that these two current components are themselves (linear) 
combinations of the stator phase currents. The transformation between phase currents and the d-
and q- axis components is straightforward and will appear in Chapter 4 of these notes. 

The key here is to separate MMF and flux into two orthogonal components and to pretend that 
each can be treated as sinusoidal. The two components are aligned with the direct axis and with 
the quadrature axis of the machine. The direct axis is aligned with the field winding, while the 
quadrature axis leads the direct by 90 degrees. Then, if φ is the angle between the direct axis and 
the axis of phase a, we can write for flux linking phase a: 

λa = λd cosφ − λq sinφ 

Then, in steady state operation, if Va = dλa and φ = ωt + delta ,dt 

Va = −ωλd sinφ − ωλq cosφ 

which allows us to define: 

Vd = −ωλq 

Vq = ωλd 

one might think of the ‘voltage’ vector as leading the ‘flux’ vector by 90 degrees.

Now, if the machine is linear, those fluxes are given by:


λd = LdId + MIf 

λq = LqIq 
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Figure 9: Resolution of Terminal Voltage 

Note that, in general, Ld = Lq. In wound-field synchronous machines, usually Ld > Lq. The 
reverse is true for most salient (buried magnet) permanent magnet machines. 

Referring to Figure 9, one can resolve terminal voltage into these components: 

Vd = V sin δ 

Vq = V cos δ 

or: 

Vd = −ωλq = −ωLqIq = V sin δ 

Vq = ωλd = ωLdId + ωMIf = V cos δ 

which is easily inverted to produce: 

Id = 
V cos δ −Eaf 

Xd 
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V sin δ 
Iq = − 

Xq 

where 
Xd = ωLd Xq = ωLq Eaf = ωMIf 

Now, we are working in ordinary variables (this discussion should help motivate the use of per­
unit!), and each of these variables is peak amplitude. Then, if we take up a complex frame of 
reference: 

V = Vd + jVq 

I = Id + jIq 

complex power is: 

3 3 
P + jQ = V I∗ =

2 
{(VdId + VqIq) + j (VqId − VdIq)}

2 

or: 
� � � � 

P = − 3 

2 

V Eaf 

Xd 
sin δ + 

V 2 

2 

1 

Xd 
− 1 

Xq 
sin 2δ 

� � � � � � 
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Figure 10: Phasor Diagram: Salient Pole Machine 

A phasor diagram for a salient pole machine is shown in Figure 10. This is a little different 
from the equivalent picture for a round-rotor machine, in that stator current has been separated 
into its d- and q- axis components, and the voltage drops associated with those components have 
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been drawn separately. It is interesting and helpful to recognize that the internal voltage Eaf can 
be expressed as: 

Eaf = E1 + (Xd −Xq) Id 

where the voltage E1 is on the quadrature axis. In fact, E1 would be the internal voltage of a 
round rotor machine with reactance Xq and the same stator current and terminal voltage. Then 
the operating point is found fairly easily: 

δ = − tan−1 XqI sinψ 
V + XqI cosψ 

E1 = (V + XqI sinψ)2 + (XqI cosψ)2 
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Figure 11: Torque-Angle Curves: Round Rotor and Salient Pole Machines 

A comparison of torque-angle curves for a pair of machines, one with a round, one with a salient 
rotor is shown in Figure 11 . It is not too difficult to see why power systems analysts often neglect 
saliency in doing things like transient stability calculations. 

10 Relating Rating to Size 

It is possible, even with the simple model we have developed so far, to establish a quantitative 
relationship between machine size and rating, depending (of course) on elements such as useful flux 
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and surface current density. To start, note that the rating of a machine (motor or generator) is: 

|P + jQ| = qV I 

where q is the number of phases, V is the RMS voltage in each phase and I is the RMS current. 
To establish machine rating we must establish voltage and current, and we do these separately. 

10.1 Voltage 

Assume that our sinusoidal approximation for turns density is valid: 

Na 
na(θ) = cos pθ 

2R 

And suppose that working flux density is: 

Br(θ) = B0 sin p(θ − φ) 

Now, to compute flux linked by the winding (and consequently to compute voltage), we first 
compute flux linked by an incremental coil: 

� θ 

λi(θ) = �Br(θ
�)Rdθ� 

θ−

Then flux linked by the whole coil is: 

π
p 

π 
2p π 2�RNa

λa = p
 λi(θ)na(θ)Rdθ = B0 cos pφ 
−

π 
2p 

4 p


This is instantaneous flux linked when the rotor is at angle φ. If the machine is operating at some 
electrical frequency ω with a phase angle so that pφ = ωt + δ, the RMS magnitude of terminal 
voltage is: 

ω π B0
Va = 

p 4
2�RNa √

2 

Finally, note that the useful peak current density that can be used is limited by the fraction of 
machine periphery used for slots: 

B0 = Bs (1 − λs) 

where Bs is the flux density in the teeth, limited by saturation of the magnetic material. 

10.2 Current 

The (RMS) magnitude of the current sheet produced by a current of (RMS) magnitude I is: 

q NaI 
Kz = 

2 2R 

And then the current is, in terms of the current sheet magnitude:


2 
I = 2RKz 

qNa 
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Note that the surface current density is, in terms of area current density Js, slot space factor λs 

and slot depth hs: 
Kz = λsJshs 

This gives terminal current in terms of dimensions and useful current density: 

4R 
I = λshsJs

qNa 

10.3 Rating 

Assembling these expressions, machine rating becomes: 

ω Bs |P + jQ| = qV I = 
p 

2πR2�√
2 
λs (1 − λs)hsJs 

This expression is actually fairly easily interpreted. The product of slot factor times one minus 
slot factor optimizes rather quickly to 1/4 (when λs = 1). We could interpret this as: 

∗ |P = jQ| = Asusτ

where the interaction area is: 
As = 2πR� 

The surface velocity of interaction is: 

ω 
R = ΩRus = 

p 

and the fragment of expression which “looks like” traction is: 

∗ 
Bs

τ = hsJs √
2 
λs (1 − λs) 

Note that this is not quite traction since the current and magnetic flux may not be ideally aligned, 
and this is why the expression incorporates reactive as well as real power. 

This is not quite yet the whole story. The limit on Bs is easily understood to be caused by 
saturation of magnetic material. The other important element on shear stress density, hsJs is a 
little more involved. 

We will do a more complete derivation of winding reactances shortly. Here, start by noting that 
the per-unit, or normalized synchronous reactance is: 

I 
= 
µ0R λs √

2 
hsJs 

xd = Xd
V pg 1 − λs Bs 

While this may be somewhat interesting by itself, it becomes useful if we solve it for hsJa: 

p(1 − λs)Bs
hsJa = xdg

µ0Rλs

√
2 

That is, if xd is fixed, hsJa (and so power) are directly related to air- gap g.Now, to get a limit on 
g, we must answer the question of how far the field winding can “throw” effective air- gap flux? To 
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understand this question, we must calculate the field current to produce rated voltage, no- load, 
and then the excess of field current required to accommodate load current. 

Under rated operation, per- unit field voltage is: 

eaf 
2 = v 2 + (xdi)

2 + 2xdi sinψ 

Or, if at rated conditions v and i are both unity (one per- unit), then 

eaf = 1 + x2 
d + 2xd sinψ 

Thus, given a value for xd and ψ, per- unit internal voltage eaf is also fixed. Then field current 
required can be calculated by first estimating field winding current for “no-load operation”. 

µ0NfIfnl 
Br = 

2gp 

and rated field current is: 
If = Ifnleaf 

or, required rated field current is: 

NfIf =
2gp(1 − λp)Bs 

eaf 
µ0 

Next, If can be related to a field current density: 

NRS 
NfIf = ARSJf

2 

where NRS is the number of rotor slots and the rotor slot area ARS is 

ARS = wRhR 

where hR is rotor slot height and wR is rotor slot width: 

2πR 
wR = λR

NRS 

Then: 
NfIf = πRλRhRJf 

Now we have a value for air- gap g: 

2µ0kfRλRhRJf 
g = 

p(1 − λs)Bseaf 

This then gives us useful armature surface current density: 

hsJs = 
√

2 
xd λR

hRJf 
eaf λs 

We will not have a lot more to say about this. Note that the ratio of xd/eaf can be quite small 
(if the per-unit reactance is small), will never be a very large number for any practical machine, 
and is generally less than one. As a practical matter it is unusual for the per-unit synchronous 
reatance of a machine to be larger than about 2 or 2.25 per-unit. What this tells us should be 
obvious: either the rotor or the stator of a machine can produce the dominant limitation on shear 
stress density (and so on rating). The best designs are “balanced”, with both limits being reached 
at the same time. 
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11 Winding Inductance Calculation 

The purpose of this section is to show how the inductances of windings in round- rotor machines 
with narrow air gaps may be calculated. We deal only with the idealized air- gap magnetic fields, 
and do not consider slot, end winding, peripheral or skew reactances. We do, however, consider 
the space harmonics of winding magneto-motive force (MMF). 

To start, consider the MMF of a full- pitch, concentrated winding. Assuming that the winding 
has a total of N turns over p pole- pairs, the MMF is: 

∞ 
� 4 NI 

F = sinnpφ 
nπ 2p 

n = 1 
nodd 

This leads directly to magnetic flux density in the air- gap: 

∞ 
� µ0 4 NI 

sinnpφ Br = 
g nπ 2p 

n = 1 
nodd 

Note that a real winding, which will most likely not be full- pitched and concentrated, will have a 
winding factor which is the product of pitch and breadth factors, to be discussed later. 

Now, suppose that there is a polyphase winding, consisting of more than one phase (we will use 
three phases), driven with one of two types of current. The first of these is balanced, current: 

Ia = I cos(ωt) 

2π 
Ib = I cos(ωt − )

3 
2π 

Ic = I cos(ωt + ) (1) 
3 

Conversely, we might consider Zero Sequence currents: 

Ia = Ib = Ic = I cosωt 

Then it is possible to express magnetic flux density for the two distinct cases. For the balanced 

case: 
∞ 

Br = Brn sin(npφ � ωt) 
n=1 

where 

• The upper sign holds for n = 1, 7, ... 

• The lower sign holds for n = 5, 11, ... 

all other terms are zero • 
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and 
3 µ0 4 NI 

Brn = 
2 g nπ 2p 

The zero- sequence case is simpler: it is nonzero only for the triplen harmonics: 

∞ 
� µ0 4 NI 3 

g nπ 2p 2
(sin(npφ − ωt) + sin(npφ + ωt)) Br = 

n=3,9,... 

Next, consider the flux from a winding on the rotor: that will have the same form as the flux 
produced by a single armature winding, but will be referred to the rotor position: 

∞ 
� µ0 4 NI 

Brf = sinnpφ� 
g nπ 2p 

n = 1 
nodd 

ωt which is, substituting φ� = φ − p , 

∞ 
� µ0 4 NI 

Brf = 
g nπ 2p 

sinn(pφ − ωt) 

n = 1 
nodd 

The next step here is to find the flux linked if we have some air- gap flux density of the form: 

∞ 

Br = Brn sin(npφ ± ωt) 
n=1 

Now, it is possible to calculate flux linked by a single- turn, full- pitched winding by: 

� π 
p

φ = BrRldφ 
0 

and this is: 
∞ 
� Brn 

φ = 2Rl cos(ωt) 
np 

n=1 

This allows us to compute self- and mutual- inductances, since winding flux is: 

λ = Nφ 

The end of this is a set of expressions for various inductances. It should be noted that, in the 
real world, most windings are not full- pitched nor concentrated. Fortunately, these shortcomings 
can be accommodated by the use of winding factors. 

The simplest and perhaps best definition of a winding factor is the ratio of flux linked by an 
actual winding to flux that would have been linked by a full- pitch, concentrated winding with the 
same number of turns. That is: 

λactual 
kw = 

λfull−pitch 
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It is relatively easy to show, using reciprocity arguments, that the winding factors are also 
the ratio of effective MMF produced by an actual winding to the MMF that would have been 
produced by the same winding were it to be full- pitched and concentrated. The argument goes 
as follows: mutual inductance between any pair of windings is reciprocal. That is, if the windings 
are designated one and two, the mutual inductance is flux induced in winding one by current in 
winding two, and it is also flux induced in winding two by current in winding one. Since each 
winding has a winding factor that influences its linking flux, and since the mutual inductance must 
be reciprocal, the same winding factor must influence the MMF produced by the winding. 

The winding factors are often expressed for each space harmonic, although sometimes when a 
winding factor is referred to without reference to a harmonic number, what is meant is the space 
factor for the space fundamental. 

Two winding factors are commonly specified for ordinary, regular windings. These are usually 
called pitch and breadth factors, reflecting the fact that often windings are not full pitched, which 
means that individual turns do not span a full π electrical radians and that the windings occupy a 
range or breadth of slots within a phase belt. The breadth factors are ratios of flux linked by a given 
winding to the flux that would be linked by that winding were it full- pitched and concentrated. 
These two winding factors are discussed in a little more detail below. What is interesting to note, 
although we do not prove it here, is that the winding factor of any given winding is the product of 
the pitch and breadth factors: 

kw = kpkb 

With winding factors as defined here and in the sections below, it is possible to define winding 
inductances. For example, the synchronous inductance of a winding will be the apparent induc­
tance of one phase when the polyphase winding is driven by a balanced set of currents. This is, 
approximately: 

∞ 3 4 µ0N
2Rlk2 

wn Ld = 
2 π p2gn2 

n=1,5,7,... 

This expression is approximate because it ignores the asynchronous interactions between higher 
order harmonics and the rotor of the machine. These are beyond the scope of this note. 

Zero- sequence inductance is the ratio of flux to current if a winding is excited by zero sequence 
currents: 

∞ 4 µ0N
2Rlk2 

L0 = 3 wn 

π p2gn2 
n=3,9,... 

And then mutual inductance, as between a field winding (f) and an armature winding (a), is:


∞ 
� 4 µ0NfNakfnkanRl 

M(θ) = 
π p2gn2 

cos(npθ) 

n = 1 
nodd 

Now we turn out attention to computing the winding factors for simple, regular winding patterns. 
We do not prove but only state that the winding factor can, for regular winding patterns, be 
expressed as the product of a pitch factor and a breadth factor, each of which can be estimated 
separately. 
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Pitch factor is found by considering the flux linked by a less- than- full pitched winding. Consider 
the situation in which radial magnetic flux density is: 

Br = Bn sin(npφ − ωt) 

A winding with pitch α will link flux: 

π + α 
2p 2p

λ = Nl Bn sin(npφ − ωt)Rdφ

π
−

α 
2p 2p 

Pitch α refers to the angular displacement between sides of the coil, expressed in electrical 
radians. For a full- pitch coil α = π. 

The flux linked is: 
2NlRBn nπ nα 

λ = sin( ) sin( ) 
np 2 2 

The pitch factor is seen to be: 
nα 

kpn = sin 
2 

Now for breadth factor. This describes the fact that a winding may consist of a number of coils, 
each linking flux slightly out of phase with the others. A regular winding will have a number (say 
m) coil elements, separated by electrical angle γ. 

A full- pitch coil with one side at angle ξ will, in the presence of sinusoidal magnetic flux density, 
link flux: 

λ = Nl

π
p 

ξ

p 

− 
ξ

p

Bn sin(npφ − ωt)Rdφ 

This is readily evaluated to be: 

2NlRBn j(ωt−nξ)λ = Re e
np 

where complex number notation has been used for convenience in carrying out the rest of this 
derivation. 

Now: if the winding is distributed into m sets of slots and the slots are evenly spaced, the 
angular position of each slot will be: 

ξi = iγ − m − 1 
γ 

2 

and the number of turns in each slot will be N , so that actual flux linked will be: mp

2NlRBn 1 m−1 
� 

j(ωt−nξi) 
� 

λ = Re e
np m 

i=0 

The breadth factor is then simply: 

m−11 � m−1
−jn(iγ−

2 γ)kb = e 
m 

i=0 
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Note that this can be written as: 

jnγ m−1 m e 2 � 
kb = e −jniγ 

m 
i=0 

Now, focus on that sum. We know that any coverging geometric sum has a simple sum: 

∞ 
� 1i x = 

x 
i=0 

1 −

and that a truncated sum is: 
m−1 ∞ ∞ 

= −
i=0 i=0 i=m 

Then the useful sum can be written as: 

m−1 
� � ∞ jnmγ 

� � e
e −jniγ = 1 − ejnmγ e −jniγ =

1 −
e−jnγ 

i=0 i=0 
1 −

Now, the breadth factor is found: 
sin nmγ 

kbn = 
m sin 

2 
nγ 
2 
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Analytic Design Evaluation of Induction Machines ∗


J.L. Kirtley Jr. 

1 Introduction 

Induction machines are perhaps the most widely used of all electric motors. They are generally 
simple to build and rugged, offer reasonable asynchronous performance: a manageable torque-speed 
curve, stable operation under load, and generally satisfactory efficiency. Because they are so widely 
used, they are worth understanding. 

In addition to their current economic importance, induction motors and generators may find 
application in some new applications with designs that are not similar to motors currently in 
commerce. An example is very high speed motors for gas compressors, perhaps with squirrel cage 
rotors, perhaps with solid iron (or perhaps with both). 

Because it is possible that future, high performance induction machines will be required to 
have characteristics different from those of existing machines, it is necessary to understand them 
from first principles, and that is the objective of this document. It starts with a circuit theoretical 
view of the induction machine. This analysis is strictly appropriate only for wound-rotor machines, 
but leads to an understanding of more complex machines. This model will be used to explain the 
basic operation of induction machines. Then we will derive a model for squirrel-cage machines. 
Finally, we will show how models for solid rotor and mixed solid rotor/squirrel cage machines can 
be constructed. 

The view that we will take in this document is relentlessly classical. All of the elements that 
we will use are calculated from first principles, and we do not resort to numerical analysis or 
empirical methods unless we have no choice. While this may seem to be seriously limiting, it serves 
our basic objective here, which is to achieve an understanding of how these machines work. It is 
our feeling that once that understanding exists, it will be possible to employ more sophisticated 
methods of analysis to get more accurate results for those elements of the machines which do not 
lend themselves to simple analysis. 

An elementary picture of the induction machine is shown in Figure 1. The rotor and stator are 
coaxial. The stator has a polyphase winding in slots. The rotor has either a winding or a cage, also 
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in slots. This picture will be modified slightly when we get to talking of “solid rotor” machines, 
anon. Generally, this analysis is carried out assuming three phases. As with many systems, this 
generalizes to different numbers of phases with little difficulty. 

Stator Core Stator Winding 
in Slots 

Rotor Winding 
or Cage in 
Slots 

Rotor 

Air−Gap 

Figure 1: Axial View of an Induction Machine 

Induction Motor Transformer Model 

The induction machine has two electrically active elements: a rotor and a stator. In normal 
operation, the stator is excited by alternating voltage. (We consider here only polyphase machines). 
The stator excitation creates a magnetic field in the form of a rotating, or traveling wave, which 
induces currents in the circuits of the rotor. Those currents, in turn, interact with the traveling 
wave to produce torque. To start the analysis of this machine, assume that both the rotor and the 
stator can be described by balanced, three – phase windings. The two sets are, of course, coupled 
by mutual inductances which are dependent on rotor position. Stator fluxes are (λa, λb, λc) and 
rotor fluxes are (λA, λB, λC). The flux vs. current relationship is given by: 

⎡ ⎤	 ⎡ ⎤ 
λa ⎡ ⎤ ia 

⎢ λb 
⎥ ⎢ ib ⎥ 

⎢ ⎥ ⎢ ⎥⎢ ⎥ 
⎢ ⎥ ⎢ LS MSR ⎥⎢ ⎥ 
⎢	 λc ⎥ ⎢ ⎥⎢ ic ⎥ 
⎢ ⎥ = ⎢ ⎥⎢ ⎥	 (1) 
⎢	 λA ⎥ ⎢ ⎥⎢ iA ⎥ 
⎢ ⎥ ⎣ MT LR ⎦⎢ ⎥ 
⎣	 λB ⎦ SR 

⎣ iB ⎦ 

λC iC 
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where the component matrices are: 

⎡ ⎤ 
La Lab Lab 

L 
S 

= 
⎢ 
⎣ Lab La Lab 

⎥ 
⎦ (2) 

Lab Lab La 

⎡ ⎤ 
LA LAB LAB 

⎢ ⎥

L = 
⎣ LAB LA LAB ⎦ (3) 

R 
LAB LAB LA 

The mutual inductance part of (1) is a circulant matrix: 

⎡ ⎤ 
M cos(pθ) M cos(pθ + 23 

π 2
3 
π) M cos(pθ − ) 

M = 
⎢ 
M cos(pθ − 2π ) M cos(pθ) M cos(pθ + 2π ) 

⎥

⎦ (4) 
SR 

⎣ 3 3 
M cos(pθ + 23 

π 2
3 
π) M cos(pθ − ) M cos(pθ) 

To carry the analysis further, it is necessary to make some assumptions regarding operation. 
To start, assume balanced currents in both the stator and rotor: 

ia = IS cos(ωt)

ib = IS cos(ωt − 2

3 
π ) (5)


ic = IS cos(ωt + 23 
π )


iA = IR cos(ωRt + ξR) 
iB = IR cos(ωRt + ξR − 2π ) (6) 3 
iC = IR cos(ωRt + ξR + 23 

π ) 

The rotor position θ can be described by 

θ = ωmt + θ0 (7) 

Under these assumptions, we may calculate the form of stator fluxes. As it turns out, we need 
only write out the expressions for λa and λA to see what is going on: 

λa = (La − Lab)Is cos(ωt) +MIR(cos(ωRt + ξR) cos p(ωm + θ0) (8) 

2π 2π 2π 2π 
+cos(ωRt + ξR + ) cos(p(ωmt + θ0) − ) + cos(ωRt + ξR − ) cos(p(ωmt + θ0) + )

3 3 3 3 

which, after reducing some of the trig expressions, becomes: 

3 
λa = (La − Lab)Is cos(ωt) + MIR cos((pωm + ωR)t + ξR + pθ0) (9) 

2 

Doing the same thing for the rotor phase A yields: 

2π 2π 
λA = MIs(cos p(ωmt + θ0) cos(ωt)) + cos(p(ωmt + θ0) − ) cos(ωt − ) (10) 

3 3 
2π 2π 

+cos(p(ωmt + θ0) + ) cos(ωt + ) + (LA − LAB)IR cos(ωRt + ξR)
3 3 

3 
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This last expression is, after manipulating:


3

λA = MIs cos((ω − pωm)t − pθ0) + (LA − LAB)IR cos(ωRt + ξR) (11) 

2 

These two expressions, 9 and 11 give expressions for fluxes in the armature and rotor windings 
in terms of currents in the same two windings, assuming that both current distributions are sinu­
soidal in time and space and represent balanced distributions. The next step is to make another 
assumption, that the stator and rotor frequencies match through rotor rotation. That is: 

ω − pωm = ωR (12) 

It is important to keep straight the different frequencies here: 

ω is stator electrical frequency

ωR is rotor electrical frequency

ωm is mechanical rotation speed


so that pωm is electrical rotation speed. 
To refer rotor quantities to the stator frame (i.e. non- rotating), and to work in complex 

amplitudes, the following definitions are made: 

λa = Re(Λae
jωt) (13) 

λA = Re(ΛAe
jωRt) (14) 

ia = Re(Iae
jωt) (15) 

iA = Re(IAe
jωRt) (16) 

With these definitions, the complex amplitudes embodied in 58 and 66 become:


3

Λa = LSIa + MIAe

j(ξR+pθ0) (17) 
2 

3 
−jpθ0 jξRΛA MIae + LRIAe (18) = 

2 

There are two phase angles embedded in these expressions: θ0 which describes the rotor physical 
phase angle with respect to stator current and ξR which describes phase angle of rotor currents 
with respect to stator currents. We hereby invent two new rotor variables: 

ΛAR = ΛAe
jpθ) (19) 

IAR = IAe
j(pθ0+ξR) (20) 

These are rotor flux and current referred to armature phase angle. Note that ΛAR and IAR 

have the same phase relationship to each other as do ΛA and IA. Using 19 and 20 in 17 and 18, 
the basic flux/current relationship for the induction machine becomes: 

M IΛa = 
L
3 

S 
3
2 a (21) 

ΛAR 2 M LR IAR 

4




This is an equivalent single- phase statement, describing the flux/current relationship in phase 
a, assuming balanced operation. The same expression will describe phases b and c. 

Voltage at the terminals of the stator and rotor (possibly equivalent) windings is, then: 

V a = jωΛa + RaIa (22) 

V AR = jωRΛAR + RAIAR (23) 

or: 
3 

V a = jωLSIa + jω MIAR + RaIa (24) 
2 

3 
V AR = jωR

2 
MIa + jωRLRIAR + RAIAR (25) 

To carry this further, it is necessary to go a little deeper into the machine’s parameters. Note 
that LS and LR are synchronous inductances for the stator and rotor. These may be separated 
into space fundamental and “leakage” components as follows: 

3 4 µ0RlNS
2kS 

2 

LS = La − Lab =
2 π p2g 

+ LSl (26) 

3 4 µ0RlN
2 k2 

LR = LA − LAB =
2 π p2g 

R R + LRl (27) 

Where the normal set of machine parameters holds:


R is rotor radius 
l is active length 
g is the effective air- gap 
p is the number of pole- pairs 
N represents number of turns 
k represents the winding factor 
S as a subscript refers to the stator 
R as a subscript refers to the rotor 
Ll is “leakage” inductance 

The two leakage terms LSl and LRl contain higher order harmonic stator and rotor inductances, 
slot inducances, end- winding inductances and, if necessary, a provision for rotor skew. Essentially, 
they are used to represent all flux in the rotor and stator that is not mutually coupled. 

In the same terms, the stator- to- rotor mutual inductance, which is taken to comprise only a 
space fundamental term, is: 

4 µ0RlNSNRkSkR
M = 

π p2g 
(28) 

Note that there are, of course, space harmonic mutual flux linkages. If they were to be included, 
they would hair up the analysis substantially. We ignore them here and note that they do have an 
effect on machine behavior, but that effect is second- order. 
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Air- gap permeance is defined as: 

4 µ0Rl 
℘ag = 

π p2g 
(29) 

so that the inductances are: 

3 
℘agkS

2 NS 
2 + LSl (30) LS = 

2 

3 
LR = RN

2 (31) ℘agk
2 

R + LRl 
2 

M = ℘agNSNRkSkR (32) 

Here we define “slip” s by: 

ωR = sω (33) 

so that 

pωm 
s = 1 − 

ω 
(34) 

Then the voltage balance equations become: 

V a = jω 
3 
℘agkS

2 NS 
2 + LSl Ia + jω 

3 
℘agNSNRkSkRIAR + RaIa (35) 

2 2 

3 3 
k2V AR = jsω ℘agNSNRkSkRIa + jsω ℘ag RNR 

2 + LRl IAR + RAIAR (36) 
2 2 

At this point, we are ready to define rotor current referred to the stator. This is done by 
assuming an effective turns ratio which, in turn, defines an equivalent stator current to produce 
the same fundamental MMF as a given rotor current: 

NRkR
I2 = IAR (37) 

NSkS 

Now, if we assume that the rotor of the machine is shorted so that V AR = 0 and do some 
manipulation we obtain: 

V a = j(XM + X1)Ia + jXMI2 + RaIa (38) 

R2
0 = jXMIa + j(XM + X2)I2 + I2 (39) 

s 
where the following definitions have been made: 

3 
ω℘agNS

2kS 
2 (40) XM = 

2 

X1 = ωLSl (41) 
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X2 = ωLRl (42)

NRkR 

� �2NSkS
R2 = RA (43)

NRkR 

These expressions describe a simple equivalent circuit for the induction motorshow in Figure 2. 
We will amplify on this equivalent circuit anon. 

Ia Ra X1 X2 I2 
∧ ∧ ∧ 
∨ ∨ 

� ∩∩∩∩ ∩∩∩∩ � 

⊃⊃
⊃⊃Xm 

< 
< 
< 

> 
> 

R2 
s 

Figure 2: Equivalent Circuit 

2.1 Effective Air-Gap: Carter’s Coefficient 

In induction motors, where the air-gap is usually quite small, it is necessary to correct the air-gap 
permeance for the effect of slot openings. These make the permeance of the air-gap slightly smaller 
than calculated from the physical gap, effectively making the gap a bit bigger. The ratio of effective 
to physical gap is: 

t + s 
geff = g (44)

t + s − gf(α) 

where 
� � 
s 

f(α) = f 
2g 

= α tan(α) − log secα (45) 

3 Operation: Energy Balance 

Now we are ready to see how the induction machine actually works. Assume for the moment 
that Figure 2 represents one phase of a polyphase system and that the machine is operated under 
balanced conditions and that speed is constant or varying only slowly. “Balanced conditions” means 
that each phase has the same terminal voltage magnitude and that the phase difference between 
phases is a uniform. Under those conditions, we may analyze each phase separately (as if it were 
a single phase system). Assume an RMS voltage magnitude of Vt across each phase. 

The “gap impedance”, or the impedance looking to the right from the right-most terminal of 
X1 is: 

R2
Zg = jXm (jX2 +||

s 
) (46) 
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A total, or terminal impedance is then 

Zt = jX1 + Ra + Zg (47) 

and terminal current is 
Vt 

(48) It = 
Zt 

Rotor current is found by using a current divider: 

jXm
I2 = It R2 

(49) 
jX2 + 

s 

“Air-gap” power is then calculated (assuming a three-phase machine): 

2 R2
Pag = 3 I2| |

s 
(50) 

This is real (time-average) power crossing the air-gap of the machine. Positive slip implies rotor 
speed less than synchronous and positive air-gap power (motor operation). Negative slip means 
rotor speed is higher than synchronous, negative air-gap power (from the rotor to the stator) and 
generator operation. 

Now, note that this equivalent circuit represents a real physical structure, so it should be possible 
to calculate power dissipated in the physical rotor resistance, and that is: 

Ps = Pags (51) 

(Note that, since both Pag and s will always have the same sign, dissipated power is positive.) 
The rest of this discussion is framed in terms of motor operation, but the conversion to generator 
operation is simple. The difference between power crossing the air-gap and power dissipated in the 
rotor resistance must be converted from mechanical form: 

Pm = Pag − Ps (52) 

and electrical input power is: 
Pin = Pag + Pa (53) 

where armature dissipation is: 
Pa = 3|It|2Ra (54) 

Output (mechanical) power is 
Pout = Pag − Pw (55) 

Where Pw describes friction, windage and certain stray losses which we will discuss later. 
And, finally, efficiency and power factor are: 

Pout η = (56) 
Pin 

Pin cosψ = (57) 
3VtIt 
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% -----------------------------------------------------­

% Torque-Speed Curve for an Induction Motor

% Assumes the classical model

% This is a single-circuit model

% Required parameters are R1, X1, X2, R2, Xm, Vt, Ns

% Assumed is a three-phase motor

% This thing does a motoring, full speed range curve

% Copyright 1994 James L. Kirtley Jr.

% ------------------------------------------------------­

s = .002:.002:1; % vector of slip

N = Ns .* (1 - s); % Speed, in RPM

oms = 2*pi*Ns/60; % Synchronous speed

Rr = R2 ./ s; % Rotor resistance

Zr = j*X2 + Rr; % Total rotor impedance

Za = par(j*Xm, Zr); % Air-gap impedance

Zt = R1 + j*X1 +Za; % Terminal impedance

Ia = Vt ./ Zt; % Terminal Current

I2 = Ia .* cdiv (Zr, j*Xm); % Rotor Current

Pag = 3 .* abs(I2) .^2 .* Rr; % Air-Gap Power

Pm = Pag .* (1 - s); % Converted Power

Trq = Pag ./ oms; % Developed Torque

subplot(2,1,1)


plot(N, Trq)

title(’Induction Motor’);

ylabel(’N-m’);


subplot(2,1,2)


plot(N, Pm);

ylabel(’Watts’);


xlabel(’RPM’);


3.1 Example of Operation 

The following MATLAB script generates a torque-speed and power-speed curve for the simple 
induction motor model described above. Note that, while the analysis does not require that any 
of the parameters, such as rotor resistance, be independent of rotor speed, this simple script does 
assume that all parameters are constant. 

3.2 Example 

That MATLAB script has been run for a standard motor with parameters given in Table 1. 
Torque vs. speed and power vs. speed are plotted for this motor in Figure 3. These curves were 

generated by the MATLAB script shown above. 
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Table 1: Example, Standard Motor


Rating 300 kw 
Voltage 440 VRMS, l-l 

254 VRMS, l-n 
Stator Resistance R1 .0073 Ω 
Rotor Resistance R2 .0064 Ω 
Stator Reactance X1 .06 Ω 
Rotor Reactance X2 .06 Ω 
Magnetizing Reactance Xm 2.5 Ω 
Synchronous Speed Ns 1200 RPM 

Squirrel Cage Machine Model 

Now we derive a circuit model for the squirrel-cage motor using field analytical techniques. The 
model consists of two major parts. The first of these is a description of stator flux in terms of stator 
and rotor currents. The second is a description of rotor current in terms of air- gap flux. The result 
of all of this is a set of expressions for the elements of the circuit model for the induction machine. 

To start, assume that the rotor is symmetrical enough to carry a surface current, the funda­
mental of which is: 

Kr = ızRe Kre
j(sωt−pφ�) 

= ızRe Kre
j(ωt−pφ) (58) 

Note that in 58 we have made use of the simple transformation between rotor and stator 
coordinates: 

φ� = φ − ωmt (59) 

and that 
pωm = ω − ωr = ω(1 − s) (60) 

Here, we have used the following symbols: 

Kr is complex amplitude of rotor surface current

s is per- unit “slip”

ω is stator electrical frequency

ωr is rotor electrical frequency

ωm is rotational speed


The rotor current will produce an air- gap flux density of the form: 

Br = Re Bre
j(ωt−pφ) (61) 

where 
R 

B = −jµ0 K (62) r r pg 
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Figure 3: Torque and Power vs. Speed for Example Motor 

Note that this describes only radial magnetic flux density produced by the space fundamental 
of rotor current. Flux linked by the armature winding due to this flux density is: 

� 0 
λAR = lNSkS Br(φ)Rdφ (63) 

−
π 
p 

This yields a complex amplitude for λAR: 

λAR = Re ΛARe
jωt (64) 

where 
2lµ0R

2NSkS
ΛAR = Kr (65) 

p2g 

Adding this to flux produced by the stator currents, we have an expression for total stator flux: 

Λa = 

� 
3 

2 

4 

π 
µ0N

2 
SRlk

2 
S 

p2g 
+ LSl 

� 

Ia + 
2lµ0R

2NSkS 

p2g 
Kr (66) 

Expression 66 motivates a definiton of an equivalent rotor current I2 in terms of the space 
fundamental of rotor surface current density: 

π R 
I2 Kz (67) = 

3 NSkS


Then we have the simple expression for stator flux:
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Λa = (Lad + LSl)Ia + LadI2 (68) 

where Lad is the fundamental space harmonic component of stator inductance: 

3 4 µ0NS
2kS

2 Rl 
Lad = 

2 π p2g 
(69) 

The second part of this derivation is the equivalent of finding a relationship between rotor flux 
and I2. However, since this machine has no discrete windings, we must focus on the individual 
rotor bars. 

Assume that there are NR slots in the rotor. Each of these slots is carrying some current. If 
the machine is symmetrical and operating with balanced currents, we may write an expression for 
current in the kth slot as: 

ik = Re Ike
jsωt (70) 

where 

2πp 

Ik = Ie 
−j

NR (71) 

and I is the complex amplitude of current in slot number zero. Expression 71 shows a uniform 
progression of rotor current phase about the rotor. All rotor slots carry the same current, but that 
current is phase retarded (delayed) from slot to slot because of relative rotation of the current wave 
at slip frequency. 

The rotor current density can then be expressed as a sum of impulses: 

⎛ ⎞ 
NR−1 

2πp � 1 j(ωrt−k
NRKz = Re ⎝ Ie 

)
δ(φ� 

2πk 
)⎠ (72) 

R 
−
NRk=0 

The unit impulse function δ() is our way of approximating the rotor current as a series of 
impulsive currents around the rotor. 

This rotor surface current may be expressed as a fourier series of traveling waves: 

∞ 

Kz = Re Kne
j(ωrt−npφ�) (73) 

n=−∞ 

Note that in 73, we are allowing for negative values of the space harmonic index n to allow for 
reverse- rotating waves. This is really part of an expansion in both time and space, although we are 
considering only the time fundamental part. We may recover the nth space harmonic component 
of 73 by employing the following formula: 

1 
� 2π 

K =< Kr(φ, t)e 
−j(ωrt−npφ)dφ > (74) n π 0 

Here the brackets <> denote time average and are here beause of the two- dimensional nature 
of the expansion. To carry out 74 on 72, first expand 72 into its complex conjugate parts: 

NR−1 � � 
1 � I j(ωrt−k

2πp ) I∗ −j(ωrt−k
2πp ) 2πk 

NR NRKr = 
2 R

e + 
R
e δ(φ� −

NR 
) (75) 

k=0 
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If 75 is used in 74, the second half of 75 results in a sum of terms which time average to zero. 
The first half of the expression results in: 

� 2π NR−1 
2πpk 2πk I � 

−j
K = e NR ejnpφδ(φ − )dφ	 (76) n 2πR 0	 NRk=0 

The impulse function turns the integral into an evaluation of the rest of the integrand at the 
impulse. What remains is the sum: 

NR−1
I � j(n−1) 2πkp 

K = e NR	 (77) n 2πR 
k=0 

The sum in 77 is easily evaluated. It is: 

NR−1 
�	

e 
j

2πkp

N

(

R

n−1) 

= 
NR if (n − 1) 

N
P 

R 
= integer 

(78) 
0 otherwise 

k=0 

The integer in 78 may be positive, negative or zero. As it turns out, only the first three of these 
(zero, plus and minus one) are important, because these produce the largest magnetic fields and 
therefore fluxes. These are: 

(n − 1) 
N

p 

R 

−1 − NR

p 
−p= or n = 

= 0 or n = 1 

= 1 or n = NR

p 
+p	 (79) 

Note that 79 appears to produce space harmonic orders that may be of non- integer order. This 
is not really true: is is necessary that np be an integer, and 79 will always satisfy that condition. 

So, the harmonic orders of interest to us are one and 

NR 
n+ = + 1	 (80) 

p 
NR 

n− = − 
p 

− 1	 (81) 

Each of the space harmonics of the squirrel- cage current will produce radial flux density. A 
surface current of the form: 

NRI
ej(ωrt−npφ�)	 (82) Kn = Re 

2πR


produces radial magnetic flux density:


Brn = Re Brne
j(ωrt−npφ�)	 (83) 

where 

µ0NRI 
(84) Brn = −j 

2πnpg 
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In turn, each of the components of radial flux density will produce a component of induced 
voltage. To calculate that, we must invoke Faraday’s law: 

∂B �× E −
∂t 

(85) = 

The radial component of 85, assuming that the fields do not vary with z, is: 

1 ∂ ∂Br


R ∂φ 
Ez = −

∂t 
(86)


Or, assuming an electric field component of the form: 

Ezn = Re Ene
j(ωrt−npφ) (87) 

Using 84 and 87 in 86, we obtain an expression for electric field induced by components of air-
gap flux: 

ωrR 
En = Bn (88) 

np 

µ0NRωrR 
En = −j 

2πg(np)2 I (89) 

Now, the total voltage induced in a slot pushes current through the conductors in that slot. We 
may express this by: 

E1 + En− + En+ = ZslotI (90) 

Now: in 90, there are three components of air- gap field. E1 is the space fundamental field, 
produced by the space fundamental of rotor current as well as by the space fundamental of stator 
current. The other two components on the left of 90 are produced only by rotor currents and 
actually represent additional reactive impedance to the rotor. This is often called zigzag leakage 
inductance. The parameter Zslot represents impedance of the slot itself: resistance and reactance 
associated with cross- slot magnetic fields. Then 90 can be re-written as: 

µ0NRωrR 1 1 
E1 = ZslotI + j 

2πg (n+p)2 + (n−p)2 I (91) 

To finish this model, it is necessary to translate 91 back to the stator. See that 67 and 77 make 
the link between I and I2: 

NR
I2 = I (92) 

6NSkS 

Then the electric field at the surface of the rotor is: 

6NSkS 3 µ0NSkSR 1 1 
E1 = Zslot + jωr 

π g (n+p)2 + (n−p)2 I2 (93) 
NR 

This must be translated into an equivalent stator voltage. To do so, we use 88 to translate 93 
into a statement of radial magnetic field, then find the flux liked and hence stator voltage from 
that. Magnetic flux density is: 
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pE1B = r ωrR 
� � � � �� 
6NSkSp Rslot 3 µ0NSkSp 1 1 

= 
NRR ωr 

+ jLslot + j
π g (n+p)2 + (n−p)2 I2 (94) 

where the slot impedance has been expressed by its real and imaginary parts: 

Zslot = Rslot + jωrLslot (95) 

Flux linking the armature winding is: 

� 0 � � 
λag = NSkSlR Re Bre

j(ωt−pφ) dφ (96) 
− 

π 
2p 

Which becomes: 
λag = Re Λage

jωt (97) 

where: 

2NSkSlR 
Λag = j Br (98) 

p 

Then “air- gap” voltage is:


2ωNSkSlR

V ag = jωΛag = − 

p
Br 

12lN2k2 R2 6 µ0RlNS
2kS 

2 1 1 
= −I2 NR

S S jωLslot + 
s 

+ jω 
π g (n+p)2 + (n−p)2 (99) 

Expression 99 describes the relationship between the space fundamental air- gap voltage V ag 

and rotor current I2. This expression fits the equivalent circuit of Figure 4 if the definitions made 
below hold: 

Figure 4: Rotor Equivalent Circuit


X2 

R2 

= 

= 

ω 
12lN2 

Sk
2 
S 

NR 
Lslot + ω 

6 

π 
µ0RlN

2 
Sk

2 
S 

g 

� 
1 

(NR + p)2 + 
1 

(NR − p)2 

� 

12lN2 
Sk

2 
S 

NR 

Rslot 

(100) 

(101) 
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12lN k 6 µ0RlN k  1 1
X2,5 = ω S 5L + ω S 5 + (105) slot N 2

R π g 

�

(N (NR − 5p)2 
R + 5p)  

�

12lN2k2    
S 7 6 µ0RlN

2
Sk

2

X = ω L 7
2,7 + ω

�

1 1 
+

�

(106) slot N π g (N 2
R + )2 

R 7p (NR − 7p)  

  

� � 

The first term in 100 expresses slot leakage inductance for the rotor. Similarly, 101 expresses 
rotor resistance in terms of slot resistance. Note that Lslot and Rslot are both expressed per unit 
length. The second term in 100 expresses the “zigzag” leakage inductance resulting from harmonics 
on the order of rotor slot pitch. 

Next, see that armature flux is just equal to air- gap flux plus armature leakage inductance. 
That is, 68 could be written as: 

Λa = Λag + LalI (102) a 

There are a number of components of stator slot leakage Lal, each representing flux paths that 
do not directly involve the rotor. Each of the components adds to the leakage inductance. The 
most prominent components of stator leakage are referred to as slot, belt, zigzag, end winding, and 
skew. Each of these will be discussed in the following paragraphs. 

Belt and zigzag leakage components are due to air- gap space harmonics. As it turns out, these 
are relatively complicated to estimate, but we may get some notion from our first- order view of 
the machine. The trouble with estimating these leakage components is that they are not really 
independent of the rotor, even though we call them “leakage”. Belt harmonics are of order n = 5 
and n = 7. If there were no rotor coupling, the belt harmonic leakage terms would be: 

3 4 µ0NS
2k5

2Rl 
Xag5 =

2 π 52p2g 
(103) 

3 4 µ0NS
2k7

2Rl 
=Xag7 

2 π 72p2g 
(104) 

The belt harmonics link to the rotor, however, and actually appear to be in parallel with 
components of rotor impedance appropriate to 5p and 7p pole- pair machines. At these harmonic 
orders we can usually ignore rotor resistance so that rotor impedance is purely inductive. Those 
components are: 

2 2 2 2 

In the simple model of the squirrel cage machine, because the rotor resistances are relatively
small and slip high, the effect of rotor resistance is usually ignored. Then the fifth and seventh 
harmonic components of belt leakage are: 

X5 = Xag5�X2,5 (107) 

X7 = Xag7�X2,7 (108) 

Stator zigzag leakage is from those harmonics of the orders pns = Nslots ± p where Nslots. 

3 4 µ0NS
2Rl kns+ kns−Xz = 

2 π g (Nslots + p)2 + (Nslots − p)2 (109) 
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Note that these harmonic orders do not tend to be shorted out by the rotor cage and so no 
direct interaction with the cage is ordinarily accounted for. 

In order to reduce saliency effects that occur because the rotor teeth will tend to try to align 
with the stator teeth, induction motor designers always use a different number of slots in the rotor 
and stator. There still may be some tendency to align, and this produces “cogging” torques which 
in turn produce vibration and noise and, in severe cases, can retard or even prevent starting. To 
reduce this tendency to “cog”, rotors are often built with a little “skew”, or twist of the slots from 
one end to the other. Thus, when one tooth is aligned at one end of the machine, it is un-aligned 
at the other end. A side effect of this is to reduce the stator and rotor coupling by just a little, 
and this produces leakage reactance. This is fairly easy to estimate. Consider, for example, a 
space-fundamental flux density Br = B1 cos pθ, linking a (possibly) skewed full-pitch current path: 

λ =


l 
2 

−
l 
2 

π 
2p

π 
2p 

−

+ x
l 

ς
p 

B1 cos pθRdθdx 
+ x

l 
ς
p 

Here, the skew in the rotor is ς electrical radians from one end of the machine to the other. 
Evaluation of this yields: 

2B1Rl sin ς 
λ = ς 

2 

p 2 

Now, the difference between what would have been linked by a non-skewed rotor and what is 
linked by the skewed rotor is the skew leakage flux, now expressible as: 

sin ς 
Xk = Xag 1 − ς 

2 

2 

The final component of leakage reactance is due to the end windings. This is perhaps the most 
difficult of the machine parameters to estimate, being essentially three-dimensional in nature. There 
are a number of ways of estimating this parameter, but for our purposes we will use a simplified 
parameter from Alger[1]: 

14 q µ0RNa 
2 

Xe =
4π2 2 p2 (p − 0.3) 

As with all such formulae, extreme care is required here, since we can give little guidance as to 
when this expression is correct or even close. And we will admit that a more complete treatment 
of this element of machine parameter construction would be an improvement. 

4.1 Harmonic Order Rotor Resistance and Stray Load Losses 

It is important to recognize that the machine rotor “sees” each of the stator harmonics in essentially 
the same way, and it is quite straightforward to estimate rotor parameters for the harmonic orders, 
as we have done just above. Now, particularly for the “belt” harmonic orders, there are rotor 
currents flowing in response to stator mmf’s at fifth and seventh space harmonic order. The 
resistances attributable to these harmonic orders are: 

12lN2k2 

R2,5 = s 5 Rslot,5 (110) 
NR 
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12lNs 
2k7

2 

R2,7 = Rslot,7 (111) 
NR 

The higher-order slot harmonics will have relative frequencies (slips) that are: 

n = 6k + 1 
sn = 1 � (1 − s)n 

6k − 1 
k an integer (112) 

n = 

The induction motor electromagnetic interaction can now be described by an augmented mag­
netic circuit as shown in Figure 17. Note that the terminal flux of the machine is the sum of all 
of the harmonic fluxes, and each space harmonic is excited by the same current so the individual 
harmonic components are in series. 

Each of the space harmonics will have an electromagnetic interaction similar to the fundamental: 
power transferred across the air-gap is: 

Pem,n = 3I2
2 
,n 

R2,n 

sn 

Of course dissipation in each circuit is: 

Pd,n = 3I2
2 
,nR2,n 

leaving 

Pm,n = 3I2 R2,n 
(1 − sn)2,n sn 

Note that this equivalent circuit has provision for two sets of circuits which look like “cages”. 
In fact one of these sets is for the solid rotor body if that exists. We will discuss that anon. There 
is also a provision (rc) for loss in the stator core iron. 

Power deposited in the rotor harmonic resistance elements is characterized as “stray load” loss 
because it is not easily computed from the simple machine equivalent circuit. 

4.2 Slot Models 

Some of the more interesting things that can be done with induction motors have to do with the 
shaping of rotor slots to achieve particular frequency-dependent effects. We will consider here three 
cases, but there are many other possibilities. 

First, suppose the rotor slots are representable as being rectangular, as shown in Figure 5, and 
assume that the slot dimensions are such that diffusion effects are not important so that current in 
the slot conductor is approximately uniform. In that case, the slot resistance and inductance per 
unit length are: 

1 
Rslot = 

wshsσ 
(113) 

Lslot = µ0 
hs 

3ws 
(114) 

The slot resistance is obvious, the slot inductance may be estimated by recognizing that if the 
current in the slot is uniform, magnetic field crossing the slot must be: 

I x 
Hy = 

ws hs 
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wd hd 

h s 

w s 

Then energy stored in the field in the slot is simply: 

hs1 
� 

µ0 
� 
Ix 

�2 1 µ0hs 
I2 = ws dx =LslotI

2 

2 0 2 wshs 6 ws 

Figure 5: Single Slot 

4.3 Deep Slots 

Now, suppose the slot is not small enough that diffusion effects can be ignored. The slot becomes 
“deep” to the extent that its depth is less than (or even comparable to) the skin depth for conduction 
at slip frequency. Conduction in this case may be represented by using the Diffusion Equation: 

�2H = µ0σ
∂

∂t 
H 

In the steady state, and assuming that only cross-slot flux (in the y direction) is important, and 
the only variation that is important is in the radial (x) direction: 

∂2Hy 

∂x2 = jωsµ0σHy 

This is solved by solutions of the form: 

Hy = H±e 
±(1+j) x 

δ 

where the skin depth is 
� 

2 
δ = 

ωsµ0σ 

Since Hy must vanish at the bottom of the slot, it must take the form: 

sinh(1 + j)x
δHy = Htop 

sinh(1 + j)h
δ 
s 
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Since current is the curl of magnetic field, 

∂Hy 1 + j cosh(1 + j)hs 

Jz = σEz = 
∂x 

= Htop δ sinh(1 + j)h
δ

δ 

s 

Then slot impedance, per unit length, is: 

1 1 + j hs
Zslot = 

ws σδ 
coth(1 + j)

δ 

Of course the impedance (purely reactive) due to the slot depression must be added to this. It 
is possible to extract the real and imaginary parts of this impedance (the process is algebraically a 
bit messy) to yield: 

1 sinh 2h
δ 
s + sin 2h

δ 
s 

=Rslot wsσδ cosh 2h
δ 
s − cos 2hs 

δ 

hd 1 1 sinh 2h
δ 
s − sin 2hs 

= µ0 +Lslot wd ωs wsσδ cosh 2h
δ 
s − cos 2h

δ 

s 

δ 

4.4 Multiple Cages 

The purpose of a “deep” slot is to improve starting performance of a motor. When the rotor is 
stationary, the frequency seen by rotor conductors is relatively high, and current crowding due to 
the skin effect makes rotor resistance appear to be high. As the rotor accelerates the frequency seen 
from the rotor drops, lessening the skin effect and making more use of the rotor conductor. This, 
then, gives the machine higher starting torque (requiring high resistance) without compromising 
running efficiency. 

This effect can be carried even further by making use of multiple cages, such as is shown in 
Figure 6. Here there are two conductors in a fairly complex slot. Estimating the impedance of this 
slot is done in stages to build up an equivalent circuit. 

Assume for the purposes of this derivation that each section of the multiple cage is small enough 
that currents can be considered to be uniform in each conductor. Then the bottom section may be 
represented as a resistance in series with an inductance: 

1 
Ra = 

σw1h1 

µ0 h1
La = 

3 w1 

The narrow slot section with no conductor between the top and bottom conductors will contribute 
an inductive impedance: 

hs
Ls = µ0 

ws 

The top conductor will have a resistance: 

1 
Rb = 

σw2h2 
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w2 

hd 

hs 
h1 

h2 

ws 

w1 

Figure 6: Double Slot 

Now, in the equivalent circuit, current flowing in the lower conductor will produce a magnetic field 
across this section, yielding a series inductance of 

h2
Lb = µ0 

w2 

By analogy with the bottom conductor, current in the top conductor flows through only one third of 
the inductance of the top section, leading to the equivalent circuit of Figure 7, once the inductance 
of the slot depression is added on: 

hd
Lt = µ0 

wd 

Lt 3
1 Lb 3

2 Lb Ls La 
∩∩∩∩ ∩∩∩∩ ∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 

< < 
> > 

<
> Rb <

> Ra 
<< 

Figure 7: Equivalent Circuit: Double Bar 

Now, this rotor bar circuit fits right into the framework of the induction motor equivalent circuit, 
shown for the double cage case in Figure 8, with 

12lNS
2kS 

2 

R2a = Ra
NR 

12lNS
2kS 

2 

R2b = Rb
NR 
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12lN2k2 2 
X2a = ω S S ( Lb + Ls + La)

NR 3 

12lNS
2kS 

2 1 
X2a = ω (Lt + Lb)

NR 3 

Ia Ra X1 X2b I2 X2a 
∧ ∧ ∧ 
∨ ∨ 

∩∩∩∩ ∩∩∩∩ ∩∩∩∩ 
< < 

Xm <
> R2b <

> R2a 
> s > s ⊃⊃

⊃⊃
< < 

� 

Figure 8: Equivalent Circuit: Double Cage Rotor 

4.5 Rotor End Ring Effects 

It is necessary to correct for “end ring” resistance in the rotor. To do this, we note that the 
magnitude of surface current density in the rotor is related to the magnitude of individual bar 
current by: 

2πR 
Iz = Kz (115)

NR 

Current in the end ring is: 
R 

IR = Kz (116) 
p 

Then it is straightforward to calculate the ratio between power dissipated in the end rings to power 
dissipated in the conductor bars themselves, considering the ratio of current densities and volumes. 
Assuming that the bars and end rings have the same radial extent, the ratio of current densities is: 

JR NR wr 
= (117)

Jz 2πp lr 

where wr is the average width of a conductor bar and lr is the axial end ring length. 
Now, the ratio of losses (and hence the ratio of resistances) is found by multiplying the square 

of current density ratio by the ratio of volumes. This is approximately: 

Rend NR wr 
�2 2πR lr NRRwr 

= 2 = 
2 (118)

Rslot 2πp lr NRl wr πllrp

4.6 Windage 

Bearing friction, windage loss and fan input power are often regarded as elements of a “black art”. 
We approach them with some level of trepidation, for motor manufacturers seem to take a highly 
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empirical view of these elements. What follows is an attempt to build reasonable but simple models 
for two effects: loss in the air gap due to windage and input power to the fan for cooling. Some 
caution is required here, for these elements of calculation have not been properly tested, although 
they seem to give reasonable numbers 

The first element is gap windage loss. This is produced by shearing of the air in the relative 
rotation gap. It is likely to be a signifigant element only in machines with very narrow air gaps or 
very high surface speeds. But these include, of course, the high performance machines with which 
we are most interested. We approach this with a simple “couette flow” model. Air-gap shear loss 
is approximately: 

Pw = 2πR4Ω3lρaf (119) 

where ρa is the density of the air-gap medium (possibly air) and f is the friction factor, estimated 
by: 

.0076 
f
= 

R 
(120)
1

4 
n 

and the Reynold’s Number Rn is 
ΩRg 

Rn = (121) 
νair 

and νair is the kinematic viscosity of the air-gap medium. 
The second element is fan input power. We base an estimate of this on two hypotheses. The 

first of these is that the mass flow of air circulated by the fan can be calculated by the loss in the 
motor and an average temperature rise in the cooling air. The second hypothesis is the the pressure 
rise of the fan is established by the centrifugal pressure rise associated with the surface speed at 
the outside of the rotor. Taking these one at a time: If there is to be a temperature rise ΔT in the 
cooling air, then the mass flow volume is: 

ṁ = 
Pd 

CpΔT 

and then volume flow is just 
ṁ 

v̇ = 
ρair 

Pressure rise is estimated by centrifugal force: 

� 
ω 

�2 

ΔP = ρair p 
rfan 

then power is given by: 
Pfan = ΔP v̇ 

For reference, the properties of air are: 

Density ρair 1.18 kg/m2 

Kinematic Viscosity 
Heat Capacity 

νair 
Cp 

1.56 × 10−5 

1005.7 
m2/sec 
J/kg 
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4.7 Magnetic Circuit Loss and Excitation 

There will be some loss in the stator magnetic circuit due to eddy current and hysteresis effects 
in the core iron. In addition, particularly if the rotor and stator teeth are saturated there will be 
MMF expended to push flux through those regions. These effects are very difficult to estimate from 
first principles, so we resort to a simple model. 

Assume that the loss in saturated steel follows a law such as: 
� ��f 

� ��bωe B 
Pd = PB (122) 

ωB BB 

This is not too bad an estimate for the behavior of core iron. Typically, �f is a bit less than 
two (between about 1.3 and 1.6) and �b is a bit more than two (between about 2.1 and 2.4). Of 
course this model is good only for a fairly restricted range of flux density. Base dissipation is 
usually expressed in “watts per kilogram”, so we first compute flux density and then mass of the 
two principal components of the stator iron, the teeth and the back iron. 

In a similar way we can model the exciting volt-amperes consumed by core iron by something 
like: 

� � ��v1 
� ��v2 

� 
B B ω 

+ V a2 (123) Qc = V a1 
BB BB ωB 

This, too, is a form that appears to be valid for some steels. Quite obviously it may be necessary 
to develop different forms of curve ’fits’ for different materials. 

Flux density (RMS) in the air-gap is: 

pVa
Br = (124) 

2RlNak1ωs 

Then flux density in the stator teeth is: 

wt + w1
Bt = Br (125) 

wt 

where wt is tooth width and w1 is slot top width. Flux in the back-iron of the core is 

R 
(126) Bc = Br 

pdc 

where dc is the radial depth of the core. 
One way of handling this loss is to assume that the core handles flux corresponding to terminal 

voltage, add up the losses and then compute an equivalent resistance and reactance: 

rc =
3|Va|2 

Pcore 

xc =
3|Va|2 

Qcore 

then put this equivalent resistance in parallel with the air-gap reactance element in the equivalent 
circuit. 
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5 Solid Iron Rotor Bodies 

Solid steel rotor electric machines (SSRM) can be made to operate with very high surface speeds and 
are thus suitable for use in high RPM situations. They resemble, in form and function, hysteresis 
machines. However, asynchronous operation will produce higher power output because it takes 
advantage of higher flux density. We consider here the interactions to be expected from solid iron 
rotor bodies. The equivalent circuits can be placed in parallel (harmonic-by-harmonic) with the 
equivalent circuits for the squirrel cage, if there is also a cage in the machine. 

To estimate the rotor parameters R2s and X2s, we assume that important field quantities in 
the machine are sinusoidally distributed in time and space, so that radial flux density is: 

Br = Re Bre
j(ωt−pφ) (127) 

and, similarly, axially directed rotor surface current is: 

Kz = Re Kze
j(ωt−pφ) (128) 

Now, since by Faraday’s law: 
∂B �× E −
∂t 

(129) = 

we have, in this machine geometry: 
1 ∂ ∂Br 

R ∂φ 
Ez = −

∂t 
(130) 

The transformation between rotor and stator coordinates is: 

φ� = φ − ωmt (131) 

where ωm is rotor speed. Then: 
pωm = ω − ωr = ω(1 − s) (132) 

and 
Now, axial electric field is, in the frame of the rotor, just: 

Ez = Re Eze
j(ωt−pφ) (133) 

= Re E ej(ωrt−pφ�) (134) z

and 
ωrR 

E = B (135) z r p 

Of course electric field in the rotor frame is related to rotor surface current by: 

E = Z K (136) z s z 

Now these quantities can be related to the stator by noting that air-gap voltage is related to 
radial flux density by: 

Br = 
p

V ag (137) 
2lNak1Rω 
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The stator-equivalent rotor current is: 

π R 
I2 = Kz (138) 

3 Naka 

Then we can find stator referred, rotor equivalent impedance to be: 

V ag 3 4 l  ω E
Z2 N2k2 z 

 = = a a (139) 
I2 2 π R ωr Kz 

� 

Now, if rotor surface impedance can be expressed as: 

Zs = Rs + jωrLs (140) 

then 
R2

Z2 = + jX2 (141) 
s 

where 

3 4 l 
R2 = Na 

2k1
2Rs (142) 

2 π R 
3 4 l 

X2 = Na 
2k1

2Xs (143) 
2 π R 

Now, to find the rotor surface impedance, we make use of a nonlinear eddy-current model proposed 
by Agarwal. First we define an equivalent penetration depth (similar to a skin depth): 

2Hm
δ = (144) 

ωrσB0 

where σ is rotor surface material volume conductivity, B0, ”saturation flux density” is taken to be 
75 % of actual saturation flux density and 

3 Naka
Hm = |Kz| = 

π R 
|I2 (145) | 

Then rotor surface resistivity and surface reactance are: 

16 1 
Rs = (146) 

3π σδ 
Xs = .5Rs (147) 

Note that the rotor elements X2 and R2 depend on rotor current I2, so the problem is nonlinear. 
We find, however, that a simple iterative solution can be used. First we make a guess for R2 and find 
currents. Then we use those currents to calculate R2 and solve again for current. This procedure 
is repeated until convergence, and the problem seems to converge within just a few steps. 

Aside from the necessity to iterate to find rotor elements, standard network techniques can be 
used to find currents, power input to the motor and power output from the motor, torque, etc. 
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5.1 Solution 

Not all of the equivalent circuit elements are known as we start the solution. To start, we assume 
a value for R2, possibly some fraction of Xm, but the value chosen doesn not seem to matter 
much. The rotor reactance X2 is just a fraction of R2. Then, we proceed to compute an “air-gap” 
impedance, just the impedance looking into the parallel combination of magnetizing and rotor 
branches: 

R2 ||
s 

) (148) Zg = jXm (jX2 + 

(Note that, for a generator, slip s is negative). 
A total impedance is then 

Zt = jX1 + R1 + Zg (149) 

and terminal current is 

It = 
Vt 

Zt 
(150) 

Rotor current is just: 

I2 = It 
jXm 

jX2 + R2 
s 

(151) 

Now it is necessary to iteratively correct rotor impedance. This is done by estimating flux 
density at the surface of the rotor using (145), then getting a rotor surface impedance using (146) 
and using that and (143 to estimate a new value for R2. Then we start again with (148). The 
process “drops through” this point when the new and old estimates for R2 agree to some criterion. 

5.2 Harmonic Losses in Solid Steel 

If the rotor of the machine is constructed of solid steel, there will be eddy currents induced on the 
rotor surface by the higher-order space harmonics of stator current. These will produce magnetic 
fields and losses. This calculation assumes the rotor surface is linear and smooth and can be 
characterized by a conductivity and relative permeability. In this discussion we include two space 
harmonics (positive and negative going). In practice it may be necessary to carry four (or even 
more) harmonics, including both ‘belt’ and ‘zigzag’ order harmonics. 

Terminal current produces magnetic field in the air-gap for each of the space harmonic orders, 
and each of these magnetic fields induces rotor currents of the same harmonic order. 

The “magnetizing” reactances for the two harmonic orders, really the two components of the 
zigzag leakage, are: 

k2 

Xzp = Xm
p 

k2 (152) 
Np

2
1 

k2 

Xzn = Xm 
N2 

n 

k2 (153) 
n 1 

where Np and Nn are the positive and negative going harmonic orders: For ‘belt’ harmonics 
these orders are 7 and 5. For ‘zigzag’ they are: 

Ns + p
Np = (154) 

p 
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Nn = 
Ns − p 

(155) 
p 

Now, there will be a current on the surface of the rotor at each harmonic order, and following 67, 
the equivalent rotor element current is: 

π R 
K (156) I2p = 3 Nakp

p 

π R 
K (157) I2n = n3 Nakn 

These currents flow in response to the magnetic field in the air-gap which in turn produces an 
axial electric field. Viewed from the rotor this electric field is: 

Ep = spωRBp (158) 

En = snωRBn (159) 

where the slip for each of the harmonic orders is: 

sp = 1 −Np(1 − s) (160) 

sn = 1 +Np(1 − s) (161) 

and then the surface currents that flow in the surface of the rotor are: 

E
K = 

p 
(162) p Zsp 

E
K = n (163) n Zsn 

where Zsp and Zsn are the surface impedances at positive and negative harmonic slip frequencies, 
respectively. Assuming a linear surface, these are, approximately: 

1 + j
Zs = (164) 

σδ 

where σ is material restivity and the skin depth is 

2 
δ = (165) 

ωsµσ 

and ωs is the frequency of the given harmonic from the rotor surface. We can postulate that the 
appropriate value of µ to use is the same as that estimated in the nonlinear calculation of the space 
fundamental, but this requires empirical confirmation. 

The voltage induced in the stator by each of these space harmonic magnetic fluxes is: 

2NakplRω 
Vp = 

Npp
Bp (166) 

2NaknlRω 
Vn = Bn (167) 

Nnp 
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Then the equivalent circuit impedance of the rotor is just: 

Vp 3 4 N2
a k

2
pl Zsp 

Z2p = = (168) 
Ip 2 π NpR sp 

V 3 4 N2k2 
n a nl Zsn 

Z2n = = (169) 
In 2 π NnR sn


The equivalent rotor circuit elements are now:


3 4 N2
a k

2
pl 1 

R2p = (170) 
2 π NpR σδp 

3 4 N2k2 
a nl 1

R2n = (171) 
2 π NnR σδn 

1 
X2p = R2p (172) 

2 

1 
X2n = R2n (173) 

2 

5.3 Stray Losses 

So far in this document, we have outlined the major elements of torque production and consequently 
of machine performance. We have also discussed, in some cases, briefly, the major sources of loss 
in induction machines. Using what has been outlined in this document will give a reasonable 
impression of how an induction machine works. We have also discussed some of the stray load 
losses: those which can be (relatively) easily accounted for in an equivalent circuit description of 
the machine. But there are other losses which will occur and which are harder to estimate. We do 
not claim to do a particularly accurate job of estimating these losses, and fortunately they do not 
normally turn out to be very large. To be accounted for here are: 

1. No-load losses in rotor teeth because of stator slot opening modulation of fundamental flux 
density, 

2. Load losses in the rotor teeth because of stator zigzag mmf, and 

3. No-load losses in the solid rotor body (if it exists) due to stator slot opening modulation of 
fundamental flux density. 

Note that these losses have a somewhat different character from the other miscellaneous losses we 
compute. They show up as drag on the rotor, so we subtract their power from the mechanical 
output of the machine. The first and third of these are, of course, very closely related so we take 
them first. 

The stator slot openings ‘modulate’ the space fundamental magnetic flux density. We may 
estimate a slot opening angle (relative to the slot pitch): 

2πwdNs wdNs
θD = = 

2πr r 
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Then the amplitude of the magnetic field disturbance is: 

2 θD
sin BH = Br1 

π 2 

In fact, this flux disturbance is really in the form of two traveling waves, one going forward and one 
backward with respect to the stator at a velocity of ω/Ns. Since operating slip is relatively small, 
the two variations will have just about the same frequency as viewed from the rotor, so it seems 
reasonable to lump them together. The frequency is: 

Ns
ωH = ω 

p 

Now, for laminated rotors this magnetic field modulation will affect the tips of rotor teeth. We 
assume (perhaps arbitrarily) that the loss due to this magnetic field modulation can be estimated 
from ordinary steel data (as we estimated core loss above) and that only the rotor teeth, not any of 
the rotor body, are affected. The method to be used is straightforward and follows almost exactly 
what was done for core loss, with modification only of the frequency and field amplitude. 

For solid steel rotors the story is only a little different. The magnetic field will produce an axial 
electric field: 

ω 
E = Rz BH 

p 

and that, in turn, will drive a surface current 

E
K = z 

z Zs 

Now, what is important is the magnitude of the surface current, and since |Z | = 
√

1 + .52Rs ≈s

1.118Rs, we can simply use rotor resistance. The nonlinear surface penetration depth is: 

2B0
δ = 

ωHσ Kz| | 

A brief iterative substitution, re-calculating δ and then Kz quickly yields consistent values for δ| |
and Rs. Then the full-voltage dissipation is: 

zPrs = 2πRl 
|K |2 

σδ 

and an equivalent resistance is: 

Rrs =
3|Va|2 

Prs 

Finally, the zigzag order current harmonics in the stator will produce magnetic fields in the 
air gap which will drive magnetic losses in the teeth of the rotor. Note that this is a bit different 
from the modulation of the space fundamental produced by the stator slot openings (although the 
harmonic order will be the same, the spatial orientation will be different and will vary with load 
current). The magnetic flux in the air-gap is most easily related to the equivalent circuit voltage 
on the nth harmonic: 
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Bn = 

2lRNaknomega 

This magnetic field variation will be substantial only for the zigzag order harmonics: the belt 
harmonics will be essentially shorted out by the rotor cage and those losses calculated within 
the equivalent circuit. The frequency seen by the rotor is that of the space harmonics, already 
calculated, and the loss can be estimated in the same way as core loss, although as we have pointed 
out it appears as a ‘drag’ on the rotor. 

6 Induction Motor Speed Control 

6.1 Introduction 

The inherent attributes of induction machines make them very attractive for drive applications. 
They are rugged, economical to build and have no sliding contacts to wear. The difficulty with 
using induction machines in servomechanisms and variable speed drives is that they are “hard to 
control”, since their torque-speed relationship is complex and nonlinear. With, however, modern 
power electronics to serve as frequency changers and digital electronics to do the required arithmetic, 
induction machines are seeing increasing use in drive applications. 

In this chapter we develop models for control of induction motors. The derivation is quite brief 
for it relies on what we have already done for synchronous machines. In this chapter, however, we 
will stay in “ordinary” variables, skipping the per-unit normalization. 

6.2 Volts/Hz Control 

Remembering that induction machines generally tend to operate at relatively low per unit slip, we 
might conclude that one way of building an adjustable speed drive would be to supply an induction 
motor with adjustable stator frequency. And this is, indeed, possible. One thing to remember is 
that flux is inversely proportional to frequency, so that to maintain constant flux one must make 
stator voltage proportional to frequency (hence the name “constant volts/Hz”). However, voltage 
supplies are always limited, so that at some frequency it is necessary to switch to constant voltage 
control. The analogy to DC machines is fairly direct here: below some “base” speed, the machine 
is controlled in constant flux (“volts/Hz”) mode, while above the base speed, flux is inversely 
proportional to speed. It is easy to see that the maximum torque is then inversely to the square of 
flux, or therefore to the square of frequency. 

To get a first-order picture of how an induction machine works at adjustable speed, start with 
the simplified equivalent network that describes the machine, as shown in Figure 9 

Earlier in this chapter, it was shown that torque can be calculated by finding the power dissi­
pated in the virtual resistance R2/s and dividing by electrical speed. For a three phase machine, 
and assuming we are dealing with RMS magnitudes: 

p 2 R2
Te = 3

ω 
|I2|

s 

where ω is the electrical frequency and p is the number of pole pairs. It is straightforward to find 
I2 using network techniques. As an example, Figure 10 shows a series of torque/speed curves for 
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Figure 9: Equivalent Circuit 

an induction machine operated with a wide range of input frequencies, both below and above its 
“base” frequency. The parameters of this machine are: 

Number of Phases 3 
Number of Pole Pairs 3 
RMS Terminal Voltage (line-line) 230 
Frequency (Hz) 60 
Stator Resistance R1 .06 Ω 
Rotor Resistance R2 .055 Ω 
Stator Leakage X1 .34 Ω 
Rotor Leakage X2 .33 Ω 
Magnetizing Reactance Xm 10.6 Ω 

Strategy for operating the machine is to make terminal voltage magnitude proportional to frequency 
for input frequencies less than the “Base Frequency”, in this case 60 Hz, and to hold voltage constant 
for frequencies above the “Base Frequency”. 

For high frequencies the torque production falls fairly rapidly with frequency (as it turns out, 
it is roughly proportional to the inverse of the square of frequency). It also falls with very low 
frequency because of the effects of terminal resistance. We will look at this next. 

6.3 Idealized Model: No Stator Resistance 

Ignore, for the moment, R1. An equivalent circuit is shown in Figure 11. It is fairly easy to show 
that, from the rotor, the combination of source, armature leakage and magnetizing branch can be 
replaced by its equivalent circuit, as shown in in Figure 12. 

In the circuit of Figure 12, the parameters are: 

V � = V
Xm 

Xm + X1 

X � = Xm||X1 

If the machine is operated at variable frequency ω, but the reactance is established at frequency 
ωB, current is: 

V � 
I = 

+j(X1 
� + X2)ω

ω 

B 

R
s 
2 
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Figure 10: Induction Machine Torque-Speed Curves 
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<+ > R2V Xm < 

Figure 11: Idealized Circuit: Ignore Armature Resistance 

and then torque is 

2 R2 3p V � 2 R
s 
2 

Te = 3 I2 =| |
s ω (X1 

� + 

|
X2

|
)2 + (R

s 
2 )2 

Now, if we note that what counts is the absolute slip of the rotor, we might define a slip with 
respect to base frequency: 

ωr ωr ωB ωB 
s = = = sB

ω ωB ω ω 
Then, if we assume that voltage is applied proportional to frequency: 

ω 
V � V � = 0 ωB 

and with a little manipulation, we get: 

3p |V0 
�|2 R2 

sBTe = 
ωB (X1 

� + X2)2 + (R2 )2 
sB 
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Figure 12: Idealized Equivalent 

This would imply that torque is, if voltage is proportional to frequency, meaning constant applied 
flux, dependent only on absolute slip. The torque-speed curve is a constant, dependent only on the 
difference between synchronous and actual rotor speed. 

This is fine, but eventually, the notion of “volts per Hz” runs out because at some number of 
Hz, there are no more volts to be had. This is generally taken to be the “base” speed for the drive. 
Above that speed, voltage is held constant, and torque is given by: 

3p |V �|2 R2 
sBTe = 

ωB (X1 
� + X2)2 + (R2 )2 

sB 

The peak of this torque has a square-inverse dependence on frequency, as can be seen from Figure 13. 
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Figure 13: Idealized Torque-Speed Curves: Zero Stator Resistance 
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6.4 Peak Torque Capability 

Assuming we have a smart controller, we are interested in the actual capability of the machine. At 
some voltage and frequency, torque is given by: 

|V � 2 R2 

ω
ωB 

p
ω2 R2 3 |


sTe = 3 I2| | =

R2 
s

)2s
 ((X1 
� + X2)( ))2 + (R1 

� + 

ω
ω

ω
ω

Now, we are interested in finding the peak value of that, which is given by the value of R2s which 
maximizes power transfer to the virtual resistance. This is given by the matching condition: 

R2 
� 

ω 
s 

= R1 
�2 + ((X1 

� + X2)( 
ωB 

))2 

Then maximum (breakdown) torque is given by: 

3
B 

ω
ωB B

p
ω
V � 2 R�

1
2 + ((X1 

� + X2)( ))2|
 |

Tmax =


R�2 
1((X1 

� + X2)( ))2 + (R� 
1 + + ((X1 

� + X2)( ))2)2 

This is plotted in Figure 14. Just as a check, this was calculated assuming R1 = 0, and the 
results are plotted in figure 15. This plot shows, as one would expect, a constant torque limit region 
to zero speed. 
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Figure 14: Torque-Capability Curve For An Induction Motor 
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6.5 Field Oriented Control 

One of the more useful impacts of modern power electronics and control technology has enabled 
us to turn induction machines into high performance servomotors. In this note we will develop a 
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Figure 15: Idealized Torque Capability Curve: Zero Stator Resistance 

picture of how this is done. Quite obviously there are many details which we will not touch here. 
The objective is to emulate the performance of a DC machine, in which (as you will recall), torque 
is a simple function of applied current. For a machine with one field winding, this is simply: 

T = GIfIa 

This makes control of such a machine quite easy, for once the desired torque is known it is easy to 
translate that torque command into a current and the motor does the rest. 

Of course DC (commutator) machines are, at least in large sizes, expensive, not particularly 
efficient, have relatively high maintenance requirements because of the sliding brush/commutator 
interface, provide environmental problems because of sparking and carbon dust and are environ­
mentally sensitive. The induction motor is simpler and more rugged. Until fairly recently the 
induction motor has not been widely used in servo applications because it was thought to be ”hard 
to control”. As we will show, it does take a little effort and even some computation to do the 
controls right, but this is becoming increasingly affordable. 

6.6 Elementary Model: 

We return to the elementary model of the induction motor. In ordinary variables, referred to the 
stator, the machine is described by flux-current relationships (in the d-q reference frame): 

� � � � � � 
λdS LS M idS = 
λdR M LR idR 

� � � � � � 
λqS = 

LS M iqS 

λqR M LR iqR 
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Note the machine is symmetric (there is no saliency), and since we are referred to the stator, 
the stator and rotor self-inductances include leakage terms: 

LS = M + LS� 

LR = M + LR� 

The voltage equations are: 

dλdS 
vdS = − ωλqS + rSidS 

dt 
dλqS 

vqS = + ωλdS + rSiqS 
dt 
dλdR 

0 = − ωsλqR + rRidR 
dt 
dλqR 

0 = + ωsλdR + rRiqR 
dt 

Note that both rotor and stator have “speed” voltage terms since they are both rotating with 
respect to the rotating coordinate system. The speed of the rotating coordinate system is w with 
respect to the stator. With respect to the rotor that speed is , where wm is the rotor mechanical 
speed. Note that this analysis does not require that the reference frame coordinate system speed 
w be constant. 

Torque is given by:

3


T e = p (λdSiqS − λqSidS)
2

6.7 Simulation Model 

As a first step in developing a simulation model, see that the inversion of the flux-current relation­
ship is (we use the d- axis since the q- axis is identical): 

LR M 
idS = 

LSLR −M2 λdS −
LSLR −M2 λdR 

M LS
idR = 

LSLR −M2 λdS −
LSLR −M2 λdR 

Now, if we make the following definitions (the motivation for this should by now be obvious): 

Xd = ω0LS 

Xkd = ω0LR 

Xad = ω0M 

M2 

=Xd 
� ω0 LS −

LR 

the currents become: 

ω0 Xad ω0
idS = 

Xd 
� 
λdS −

Xkd Xd 
� 
λdR 

Xad ω0 Xd ω0
idR = 

Xkd Xd 
� 
λdS −

Xd 
� Xkd 

λdR 
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The q- axis is the same.

Torque may be, with these calculations for current, written as:


3 3 ω0Xad

Te =

2
p (λdSiqS − λqSidS) = −

2
p
XkdXd 

� 
(λdSλqR − λqSλdR)


Note that the usual problems with ordinary variables hold here: the foregoing expression was 
written assuming the variables are expressed as peak quantities. If RMS is used we must replace 
3/2 by 3! 

With these, the simulation model is quite straightforward. The state equations are: 

dλdS 

dt 
= VdS + ωλqS −RSidS 

dλqS 

dt 
= VqS − ωλdS −RSiqS 

dλdR 

dt 
= ωsλqR −RRidR 

dλqR 

dt 
= −ωsλdR −RSiqR 

dΩm 1 
= (Te + Tm)

dt J 

where the rotor frequency (slip frequency) is: 

ωs = ω − pΩm 

For simple simulations and constant excitaion frequency, the choice of coordinate systems is 
arbitrary, so we can choose something convenient. For example, we might choose to fix the coordi­
nate system to a synchronously rotating frame, so that stator frequency ω = ω0. In this case, we 
could pick the stator voltage to lie on one axis or another. A common choice is Vd = 0 and Vq = V . 

6.8 Control Model 

If we are going to turn the machine into a servomotor, we will want to be a bit more sophisticated 
about our coordinate system. In general, the principle of field-oriented control is much like emu­
lating the function of a DC (commutator) machine. We figure out where the flux is, then inject 
current to interact most directly with the flux. 

As a first step, note that because the two stator flux linkages are the sum of air-gap and leakage 
flux, 

λdS = λagd + LS�idS 

λqS = λagq + LS�iqS 

This means that we can re-write torque as: 

3 
T e = p (λagdiqS − λagqidS)

2
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Next, note that the rotor flux is, similarly, related to air-gap flux: 

λagd = λdR − LR�idR 

λagq = λqR − LR�iqR 

Torque now becomes: 

3 3 
T e = pLR� (idRiqS − iqRidS)p (λdRiqS − λqRidS) −

2 2

Now, since the rotor currents could be written as: 

λdR M 
idR = 

LR 

−
LR 

idS 

λqR M 
iqR = 

LR 

−
LR 

iqS 

That second term can be written as: 

1 
idRiqS − iqRidS = 

LR 

(λdRiqS − λqRidS) 

So that torque is now: 

3 LR� 3 M 
T e = 

2
p 1 −

LR 

(λdRiqS − λqRidS) =
2 LR 

(λdRiqS − λqRidS)p 

6.9 Field-Oriented Strategy: 

What is done in field-oriented control is to establish a rotor flux in a known position (usually this 
position is the d- axis of the transformation) and then put a current on the orthogonal axis (where 
it will be most effective in producing torque). That is, we will attempt to set 

λdR = Λ0 

λqR = 0 

Then torque is produced by applying quadrature-axis current: 

3 M 
T e = p Λ0iqS 

2 LR 

The process is almost that simple. There are a few details involved in figuring out where the 
quadrature axis is and how hard to drive the direct axis (magnetizing) current. 

Now, suppose we can succeed in putting flux on the right axis, so that λqR = 0, then the two 
rotor voltage equations are: 

0 = 
dλdR 

dt 
− ωsλqR + rRIdR 

0 = 
dλqR 

dt 
+ ωsλdR + rRIqR 
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λdR M 
idR = 

LR 

− idS 
LR 

λqR M 
iqR = 

LR 

− iqS 
LR 

� � 

� 

Now, since the rotor currents are:

The voltage expressions become, accounting for the fact that there is no rotor quadrature axis 
flux: 

dλdR λdR M 
0 = + rR

dt LR 

−
LR 

idS 

M 
0 = ωsλdR − rR iqS 

LR 

Noting that the rotor time constant is 

LR
TR = 

rR 

we find: 

dλdR 
TR + λdR = MidS 

dt 
M iqS 

ωs = 
TR λdR 

The first of these two expressions describes the behavior of the direct-axis flux: as one would 
think, it has a simple first-order relationship with direct-axis stator current. The second expression, 
which describes slip as a function of quadrature axis current and direct axis flux, actually describes 
how fast to turn the rotating coordinate system to hold flux on the direct axis. 

Now, a real machine application involves phase currents ia, ib and ic, and these must be derived 
from the model currents idS and iqs. This is done with, of course, a mathematical operation which 
uses a transformation angle θ. And that angle is derived from the rotor mechanical speed and 
computed slip: 

θ = (pωm + ωs) dt 

A generally good strategy to make this sort of system work is to measure the three phase currents 
and derive the direct- and quadrature-axis currents from them. A good estimate of direct-axis flux is 
made by running direct-axis flux through a first-order filter. The tricky operation involves dividing 
quadrature axis current by direct axis flux to get slip, but this is now easily done numerically (as 
are the trigonometric operations required for the rotating coordinate system transformation). An 
elmentary block diagram of a (possbly) plausible scheme for this is shown in Figure 16. 

In this picture we start with commanded values of direct- and quadrature- axis currents, corre­
sponding to flux and torque, respectively. These are translated by a rotating coordinate transfor­
mation into commanded phase currents. That transformation (simply the inverse Park’s transform) 
uses the angle q derived as part of the scheme. In some (cheap) implementations of this scheme 
the commanded currents are used rather than the measured currents to establish the flux and slip. 

We have shown the commanded currents i∗ a, etc. as inputs to an “Amplifier”. This might be 
implemented as a PWM current-source, for example, and a tight loop here results in a rather high 
performance servo system. 
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Figure 17: Extended Equivalent Circuit
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1 Introduction 

Virtually all electric machines, and all practical electric machines employ some form of rotating 
or alternating field/current system to produce torque. While it is possible to produce a “true 
DC” machine (e.g. the “Faraday Disk”), for practical reasons such machines have not reached 
application and are not likely to. In the machines we have examined so far the machine is operated 
from an alternating voltage source. Indeed, this is one of the principal reasons for employing AC 
in power systems. 

The first electric machines employed a mechanical switch, in the form of a carbon brush/commutator 
system, to produce this rotating field. While the widespread use of power electronics is making 
“brushless” motors (which are really just synchronous machines) more popular and common, com­
mutator machines are still economically very important. They are relatively cheap, particularly in 
small sizes, they tend to be rugged and simple. 

You will find commutator machines in a very wide range of applications. The starting motor 
on all automobiles is a series-connected commutator machine. Many of the other electric motors in 
automobiles, from the little motors that drive the outside rear-view mirrors to the motors that drive 
the windshield wipers are permanent magnet commutator machines. The large traction motors 
that drive subway trains and diesel/electric locomotives are DC commutator machines (although 
induction machines are making some inroads here). And many common appliances use “universal” 
motors: series connected commutator motors adapted to AC. 

1.1 Geometry: 

A schematic picture (“cartoon”) of a commutator type machine is shown in 1. The armature of 
this machine is on the rotor (this is the part that handles the electric power), and current is fed to 
the armature through the brush/commutator system. The interaction magnetic field is provided 

∗ c�2003 James L. Kirtley Jr. 
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Figure 1: Wound-Field DC Machine Geometry 

(in this picture) by a field winding. A permanent magnet field is applicable here, and we will have 
quite a lot more to say about such arrangements below. 

Now, if we assume that the interaction magnetic flux density averages Br, and if there are Ca 

conductors underneath the poles at any one time, and if there are m parallel paths, then we may 
estimate torque produced by the machine by: 

Ca 
R�BrIaTe = 

m 

where R and � are rotor radius and length, respectively and Ia is terminal current. Note that Ca 

is not necessarily the total number of conductors, but rather the total number of active conductors 
(that is, conductors underneath the pole and therefore subject to the interaction field). Now, if we 
note Nf as the number of field turns per pole, the interaction field is just: 

NfIf
Br = 

g 

leading to a simple expression for torque in terms of the two currents: 

Te = GIaIf 

where G is now the motor coefficient (units of N-m/ampere squared): 

Ca Nf
G = µ0 R� 

m g 

Now, let’s go back and look at this from the point of view of voltage. Start with Faraday’s Law: 

∂B�
�× E� = − 

∂t 

Integrating both sides and noting that the area integral of a curl is the edge integral of the 
quantity, we find: 

� �� 

∂B�
E� · d� = − 

∂t 
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Now, that is a bit awkward to use, particularly in the case we have here in which the edge of 
the contour is moving (note we will be using this expression to find voltage). We can make this a 
bit more convenient to use if we note: 

where v' is the velocity of the contour. This gives us a convenient way of noting the apparent electric 
field within a moving object (as in the conductors in a DC machine): 

Figure 2: Motion of a contour through a magnetic field produces flux change and electric field in 
the moving contour 

Now, note that the armature conductors are moving through the magnetic field produced by 
the stator (field) poles, and we can ascribe to them an axially directed electric field: 

If the armature conductors are arranged as described above, with Ca conductors in m parallel 
paths underneath the poles and with a mean active radial magnetic field of B,, we can compute a 
voltage induced in the stator conductors: 

Note that this is only the voltage induced by motion of the armature conductors through the 
field and does not include brush or conductor resistance. If we include the expression for effective 
magnetic field, we find that the back voltage is: 

which leads us to the conclusion that newton-meters per ampere squared equals volt seconds per 
ampere. This stands to reason if we examine electric power into the interaction and mechanical 
power out: 

Pe, = EbIa=TeR 



Now, a more complete model of this machine would include the effects of armature, brush and 
lead resistance, so that in steady state operation: 

Va = RaIa + GΩIf 

Now, consider this machine with its armatucre connected to a voltage source and its field 
operating at steady current, so that: 

Va −GΩIf
Ia = 

Ra 

G I fΩ
 +

 Va

 -

Ra 

+ 

-

Figure 3: DC Machine Equivalent Circuit 

Then torque, electric power in and mechanical power out are: 

Te = GIf 

Va −GΩIf 

Ra 

Pe = Va 

Va −GΩIf 

Ra 

Pm = GΩIf 

Va −GΩIf 

Ra 

Now, note that these expressions define three regimes defined by rotational speed. The two 
“break points” are at zero speed and at the “zero torque” speed: 

Va
Ω0 = 

GIf 

For 0 < Ω < Ω0, the machine is a motor: electric power in and mechanical power out are both 
positive. For higher speeds: Ω0 < Ω , the machine is a generator, with electrical power in and 
mechanical power out being both negative. For speeds less than zero, electrical power in is positive 
and mechanical power out is negative. There are few needs to operate machines in this regime, 
short of some types of ”plugging” or emergency braking in tractions systems. 

1.2 Hookups: 

We have just described a mode of operation of a commutator machine usually called “separately 
excited”, in which field and armature circuits are controlled separately. This mode of operation is 
used in some types of traction applications in which the flexibility it affords is useful. For example, 
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Figure 4: DC Machine Operating Regimes
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Figure 5: Two-Chopper, separately excited machine hookup 

some traction applications apply voltage control in the form of “choppers” to separately excited 
machines. 

Note that the “zero torque speed” is dependend on armature voltage and on field current. 
For high torque at low speed one would operate the machine with high field current and enough 
armature voltage to produce the requisite current. As speed increases so does back voltage, and 
field current may need to be reduced. At any steady operating speed there will be some optimum 
mix of field and armature currents to produced the required torque. For braking one could (and this 
is often done) re-connect the armature of the machine to a braking resistor and turn the machine 
into a generator. Braking torque is controlled by field current. 

A subset of the separately excited machine is the shunt connection in which armature and field 
are supplied by the same source, in parallel. This connection is not widely used any more: it does 
not yield any meaningful ability to control speed and the simple applications to which is used to 
be used are mostly being handled by induction machines. 
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Figure 6: Series Connection 

Another connection which is still widely used in the series connection, in which the field winding 
is sized so that its normal operating current level is the same as normal armature current and the 
two windings are connected in series. Then: 

V 
Ia = If = 

Ra + Rf + GΩ 

And then torque is: 
GV 2 

Te = 
(Ra + Rf + GΩ)2 

It is important to note that this machine has no “zero-torque” speed, leading to the possibility 
that an unloaded machine might accelerate to dangerous speeds. This is particularly true because 
the commutator, made of pieces of relatively heavy material tied together with non- conductors, is 
not very strong. 

Speed control of series connected machines can be achieved with voltage control and many 
appliances using this type of machine use choppers or phase control. An older form of control 
used in traction applications was the series dropping resistor: obviously not a very efficient way of 
controlling the machine and not widely used (except in old equipment, of course). 

A variation on this class of machine is the very widely used “universal motor”, in which the stator 
and rotor (field and armature) of the machine are both constructed to operate with alternating 
current. This means that both the field and armature are made of laminated steel. Note that such 
a machine will operate just as it would have with direct current, with the only addition being the 
reactive impedance of the two windings. Working with RMS quantities: 

V 
I = 

Ra + Rf + GΩ + jω (La + Lf ) 

|V |2 

Te = 
(Ra + Rf + GΩ)2 + (ωLa + ωLf )2 

where ω is the electrical supply frequency. Note that, unlike other AC machines, the universal 
motor is not limited in speed to the supply frequency. Appliance motors typically turn substantially 
faster than the 3,600 RPM limit of AC motors, and this is one reason why they are so widely used: 
with the high rotational speeds it is possible to produce more power per unit mass (and more power 
per dollar). 
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1.3 Commutator: 

The commutator is what makes this machine work. The brush and commutator system of this 
class of motor involves quite a lot of “black art”, and there are still aspects of how they work 
which are poorly understood. However, we can make some attempt to show a bit of what the 
brush/commutator system does. 

To start, take a look at the picture shown in Figure 7. Represented are a pair of poles (shaded) 
and a pair of brushes. Conductors make a group of closed paths. Current from one of the brushes 
takes two parallel paths. You can follow one of those paths around a closed loop, under each of 
the two poles (remember that the poles are of opposite polarity) to the opposite brush. Open 
commutator segments (most of them) do not carry current into or out of the machine. 

Figure 7: Commutator and Current Paths 

A commutation interval occurs when the current in one coil must be reversed. (See Figure 8 
In the simplest form this involves a brush bridging between two commutator segments, shorting 
out that coil. The resistance of the brush causes the current to decay. When the brush leaves the 
leading segment the current in the leading coil must reverse. 

Figure 8: Commutator at Commutation


We will not attempt to fully understand the commutation process in this type of machine, but 
we can note a few things. Resistive commutation is the process relied upon in small machines. 
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When the current in one coil must be reversed (because it has left one pole and is approaching the 
other), that coil is shorted by one of the brushes. The brush resistance causes the current in the 
coil to decay. Then the leading commutator segment leaves the brush the current MUST reverse 
(the trailing coil has current in it), and there is often sparking. 

1.4 Commutation 

Commutation 

Stator Yoke 
Field Poles 

Field Winding 

Armature Winding 

Rotor Ω 

Interpoles 

Figure 9: Commutation Interpoles 

In larger machines the commutation process would involve too much sparking, which causes 
brush wear, noxious gases (ozone) that promote corrosion, etc. In these cases it is common to use 
separate commutation interpoles. These are separate, usually narrow or seemingly vestigal pole 
pieces which carry armature current. They are arranged in such a way that the flux from the 
interpole drives current in the commutated coil in the proper direction. Remember that the coil 
being commutated is located physically between the active poles and the interpole is therefore in the 
right spot to influence commutation. The interpole is wound with armature current (it is in series 
with the main brushes). It is easy to see that the interpole must have a flux density proportional 
to the current to be commutated. Since the speed with which the coil must be commutated is 
proportional to rotational velocity and so is the voltage induced by the interpole, if the right 
number of turns are put around the interpole, commutation can be made to be quite accurate. 

1.5 Compensation: 

The analysis of commutator machines often ignores armature reaction flux. Obviously these ma­
chines DO produce armature reaction flux, in quadrature with the main field. Normally, commuta­
tor machines are highly salient and the quadrature inductance is lower than direct-axis inductance, 
but there is still flux produced. This adds to the flux density on one side of the main poles (pos­
sibly leading to saturation). To make the flux distribution more uniform and therefore to avoid 
this saturation effect of quadrature axis flux, it is common in very highly rated machines to wind 
compensation coils: essentially mirror-images of the armature coils, but this time wound in slots 
in the surface of the field poles. Such coils will have the same number of ampere-turns as the 
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Rotor 

Commutation 
Interpoles 

Pole−Face 
Compensation 
Winding 

Field Poles 

Field Winding 

Armature Winding 

Ω 

Figure 10: Pole Face Compensation Winding 

armature. Normally they have the same number of turns and are connected directly in series with 
the armature brushes. What they do is to almost exactly cancel the flux produced by the armature 
coils, leaving only the main flux produced by the field winding. One might think of these coils as 
providing a reaction torque, produced in exactly the same way as main torque is produced by the 
armature. A cartoon view of this is shown in Figure 10. 

Permanent Magnets in Electric Machines 

Of all changes in materials technology over the last several years, advances in permanent magnets 
have had the largest impact on electric machines. Permanent magnets are often suitable as replace­
ments for the field windings in machines: that is they can produce the fundamental interaction 
field. This does three things. First, since the permanent magnet is lossless it eliminates the energy 
required for excitation, usually improving the efficiency of the machine. Second, since eliminating 
the excitation loss reduces the heat load it is often possible to make PM machines more compact. 
Finally, and less appreciated, is the fact that modern permanent magnets have very large coercive 
force densities which permit vastly larger air gaps than conventional field windings, and this in turn 
permits design flexibility which can result in even better electric machines. 

These advantages come not without cost. Permanent magnet materials have special character­
istics which must be taken into account in machine design. The highest performance permanent 
magnets are brittle ceramics, some have chemical sensitivities, all are sensitive to high temperatures, 
most have sensitivity to demagnetizing fields, and proper machine design requires understanding 
the materials well. These notes will not make you into seasoned permanent magnet machine de­
signers. They are, however, an attempt to get started, to develop some of the mathematical skills 
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required and to point to some of the important issues involved. 

2.1 Permanent Magnets: 

Hysteresis Loop: Perm anent Magn et 
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Figure 11: Hysteresis Loop Of Ceramic Permanent Magnet 

Permanent magnet materials are, at core, just materials with very wide hysteresis loops. Fig­
ure 11 is an example of something close to one of the more popular ceramic magnet materials.Note 
that this hysteresis loop is so wide that you can see the effect of the permeability of free space. 

Figure 12: Demagnetization Curve


It is usual to display only part of the magnetic characteristic of permanent magnet materials 
(see Figure 12), the third quadrant of this picture, because that is where the material is normally 
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operated. Note a few important characteristics of what is called the “demagnetization curve”. The 
remanent flux density Br, is the value of flux density in the material with zero magnetic field H. 
The coercive field Hc is the magnetic field at which the flux density falls to zero. Shown also on 
the curve are loci of constant energy product. This quantity is unfortunately named, for although 
it has the same units as energy it represents real energy in only a fairly general sense. It is the 
product of flux density and field intensity. As you already know, there are three commonly used 
systems of units for magnetic field quantities, and these systems are often mixed up to form very 
confusing units. We will try to stay away from the English system of units in which field intensity 
H is measured in amperes per inch and flux density B in lines (actually, usually kilolines) per 
square inch. In CGS units flux density is measured in Gauss (or kilogauss) and magnetic field 
intensity in Oersteds. And in SI the unit of flux density is the Tesla, which is one Weber per square 
meter, and the unit of field intensity is the Ampere per meter. Of these, only the last one, A/m is 
obvious. A Weber is a volt-second. A Gauss is 10−4 Tesla. And, finally, an Oersted is that field 
intensity required to produce one Gauss in the permeability of free space. Since the permeability 
of free space µ0 = 4π × 10−7Hy/m, this means that one Oe is about 79.58 A/m. Commonly, the 
energy product is cited in MgOe (Mega-Gauss-Oersted)s. One MgOe is equal to 7.958kJ/m3 . A 
commonly used measure for the performance of a permanent magnet material is the maximum 
energy product, the largest value of this product along the demagnetization curve. 

To start to understand how these materials might be useful, consider the situation shown in 
Figure 13: A piece of permanent magnet material is wrapped in a magnetic circuit with effectively 
infinite permeability. Assume the thing has some (finite) depth in the direction you can’t see. Now, 
if we take Ampere’s law around the path described by the dotted line, 

H� · d�� = 0 

since there is no current anywhere in the problem. If magnetization is upwards, as indicated by 
the arrow, this would indicate that the flux density in the permanent magnet material is equal to 
the remanent flux density (also upward). 

Magnetic Circuit, µ→∞ 

Permanent Magnet 

Figure 13: Permanent Magnet in Magnetic Circuit


A second problem is illustrated in Figure 14, in which the same magnet is embedded in a
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magnetic circuit with an air gap. Assume that the gap has width g and area Ag. The magnet has 
height hm and area Am. For convenience, we will take the positive reference direction to be up (as 
we see it here) in the magnet and down in the air-gap. 

Magnetic Circuit, µ→∞ 

Permanent Magnet 

g 

hm 

Figure 14: Permanent Magnet Driving an Air-Gap 

Thus we are following the same reference direction as we go around the Ampere’s Law loop. 
That becomes: 

� 

H� · d �� = Hmhm + Hgg 

Now, Gauss’ law could be written for either the upper or lower piece of the magnetic circuit. 
Assuming that the only substantive flux leaving or entering the magnetic circuit is either in the 
magnet or the gap: 

� B� · dA� = BmAm − µ0HgAg 

Solving this pair we have: 

Ag hm
Bm = −µ0 Hm = µ0PuHm

Am g 

This defines the unit permeance, essentially the ratio of the permeance facing the permanent 
magnet to the internal permeance of the magnet. The problem can be, if necessary, solved graph­
ically, since the relationship between Bm and Hm is inherently nonlinear, as shown in Figure 15 
“load line” analysis of a nonlinear electronic circuit. 

Now, one more ‘cut’ at this problem. Note that, at least for fairly large unit permeances the 
slope of the magnet characteristic is fairly constant. In fact, for most of the permanent magnets 
used in machines (the one important exception is the now rarely used ALNICO alloy magnet), it 
is generally acceptable to approximate the demagnitization curve with: 

B�m = µm H�m + M� 0 

Here, the magnetization M0 is fixed. Further, for almost all of the practical magnet materials 
the magnet permeability is nearly the same as that of free space (µm ≈ µ0). With that in mind, 
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Figure 15: Load Line, Unit Permeance Analysis 

consider the problem shown in Figure 16, in which the magnet fills only part of a gap in a magnetic 
circuit. But here the magnet and gap areas are essentially the same. We could regard the magnet 
as simply a magnetization. 

Permanent Magnet 

Magnetic Circuit, µ→∞ 

Figure 16: Surface Magnet Primitive Problem 

In the region of the magnet and the air-gap, Ampere’s Law and Gauss’ law can be written: 

�× H� = 0 

� · µ0 H�m + M� 0 = 0 

� · µ0H� g = 0 

Now, if in the magnet the magnetization is constant, the divergence of H in the magnet is zero. 
Because there is no current here, H is curl free, so that everywhere: 

H� = −�ψ 

�2ψ = 0 

That is, magnetic field can be expressed as the gradient of a scalar potential which satisfies 
Laplace’s equation. It is also pretty clear that, if we can assign the scalar potential to have a value 
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of zero anywhere on the surface of the magnetic circuit it will be zero over all of the magnetic 
circuit (i.e. at both the top of the gap and the bottom of the magnet). Finally, note that we can’t 
actually assume that the scalar potential satisfies Laplace’s equation everywhere in the problem. 
In fact the divergence of M is zero everywhere except at the top surface of the magnet where it is 
singular! In fact, we can note that there is a (some would say fictitious) magnetic charge density: 

ρm = −� · M�

At the top of the magnet there is a discontinuous change in M and so the equivalent of a 
magnetic surface charge. Using Hg to note the magnetic field above the magnet and Hm to note 
the magnetic field in the magnet, 

µ0Hg = µ0 (Hm + M0) 

σm = M0 = Hg −Hm 

and then to satisfy the potential condition, if hm is the height of the magnet and g is the gap: 

gHg = hmHm 

Solving, 
hm

Hg = M0 
hm + g 

Now, one more observation could be made. We would produce the same air-gap flux density 
if we regard the permanent magnet as having a surface current around the periphery equal to the 
magnetization intensity. That is, if the surface current runs around the magnet: 

Kφ = M0 

This would produce an MMF in the gap of: 

F = Kφhm 

and then since the magnetic field is just the MMF divided by the total gap: 

F hm
Hg = = M0

hm + g hm + g 

The real utility of permanent magnets comes about from the relatively large magnetizations: 
numbers of a few to several thousand amperes per meter are common, and these would translate 
into enormous current densities in magnets of ordinary size. 

Simple Permanent Magnet Machine Structures: Commutator 
Machines 

Figure 17 is a cartoon picture of a cross section of the geometry of a two-pole commutator machine 
using permanent magnets. This is actually the most common geometry that is used. The rotor 
(armature) of the machine is a conventional, windings-in-slots type, just as we have already seen 
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Armature Winding 

Rotor 

Figure 17: PM Commutator Machine 

for commutator machines. The field magnets are fastened (often just bonded) to the inside of a 
steel tube that serves as the magnetic flux return path. 

Assume for the purpose of first-order analysis of this thing that the magnet is describable by its 
remanent flux density Br and had permeability of µ0. First, we will estimate the useful magnetic 
flux density and then will deal with voltage generated in the armature. Interaction Flux Density 
Using the basics of the analysis presented above, we may estimate the radial magnetic flux density 
at the air-gap as being: 

Br
Bd = 

1 + 1 
Pc 

where the effective unit permeance is: 

fl hm Ag
Pc = 

ff g Am 

A book on this topic by James Ireland suggests values for the two “fudge factors”: 

1. The “leakage factor” fl is cited as being about 1.1. 

2. The “reluctance factor” ff is cites as being about 1.2. 

We may further estimate the ratio of areas of the gap and magnet by: 

Ag R + g 
2= 

Am R + g + h
2 
m 

Now, there are a bunch of approximations and hand wavings in this expression, but it seems to 
work, at least for the kind of machines contemplated. 

A second correction is required to correct the effective length for electrical interaction. The 
reason for this is that the magnets produce fringing fields, as if they were longer than the actual 
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”stack length” of the rotor (sometimes they actually are). This is purely empirical, and Ireland 
gives a value for effective length for voltage generation of: 

�∗ 
�eff = 

f� 

where �∗ = � + 2NR , and the empirical coefficient 

A hm
N ≈ log 1 +B 

B R 

where 

hm
B = 7.4 − 9.0 

R 
A = 0.9 

3.0.1 Voltage: 

It is, in this case, simplest to consider voltage generated in a single wire first. If the machine is 
running at angular velocity Ω, speed voltage is, while the wire is under a magnet, 

vs = ΩR�Br 

Now, if the magnets have angular extent θm the voltage induced in a wire will have a waveform 
as shown in Figure 18: It is pulse-like and has the same shape as the magnetic field of the magnets. 

θm 

π
vs 

Ωt 

Figure 18: Voltage Induced in One Conductor 

The voltage produced by a coil is actually made up of two waveforms of exactly this form, but 
separated in time by the ”coil throw” angle. Then the total voltage waveform produced will be 
the sum of the two waveforms. If the coil thrown angle is larger than the magnet angle, the two 
voltage waveforms add to look like this: There are actually two coil-side waveforms that add with 
a slight phase shift. 

If, on the other hand, the coil thrown is smaller than the magnet angle, the picture is the same, 
only the width of the pulses is that of the coil rather than the magnet. In either case the average 
voltage generated by a coil is: 

θ∗ 
v = ΩR�Ns Bd

π 
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Figure 19: Voltage Induced in a Coil 

where θ∗ is the lesser of the coil throw or magnet angles and Ns is the number of series turns in 
the coil. This gives us the opportunity to develop the number of “active” turns: 

Ca 
= Ns 

θ∗ Ctot θ
∗ 

= 
m π m π 

Here, Ca is the number of active conductors, Ctot is the total number of conductors and m is the 
number of parallel paths. The motor coefficient is then: 

R�effCtotBd θ∗ 
K = 

m π 

3.1 Armature Resistance 

The last element we need for first-order prediction of performance of the motor is the value of 
armature resistance. The armature resistance is simply determined by the length and area of the 
wire and by the number of parallel paths (generally equal to 2 for small commutator motors). If 
we note Nc as the number of coils and Na as the number of turns per coil, 

NcNa
Ns = 

m 

Total armature resistance is given by: 

Ns
Ra = 2ρw�t 

m 

where ρw is the resistivity (per unit length) of the wire: 

1 
ρw = πd2 σw4 w

(dw is wire diameter, σw is wire conductivity and �t is length of one half-turn). This length depends 
on how the machine is wound, but a good first-order guess might be something like this: 

�t ≈ � + πR 
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Permanent Magnet “Brushless DC” Motors ∗


J.L. Kirtley Jr. 

1 Introduction 

This document is a brief introduction to the design evaluation of permanent magnet motors, with 
an eye toward servo and drive applications. It is organized in the following manner: First, we 
describe three different geometrical arrangements for permanent magnet motors: 

1. Surface Mounted Magnets, Conventional Stator, 

2. Surface Mounted Magnets, Air-Gap Stator Winding, and 

3. Internal Magnets (Flux Concentrating). 

After a qualitative discussion of these geometries, we will discuss the elementary rating param­
eters of the machine and show how to arrive at a rating and how to estimate the torque and power 
vs. speed capability of the motor. Then we will discuss how the machine geometry can be used to 
estimate both the elementary rating parameters and the parameters used to make more detailed 
estimates of the machine performance. 

Some of the more involved mathematical derivations are contained in appendices to this note. 

2 Motor Morphologies 

There are, of course, many ways of building permanent magnet motors, but we will consider only a 
few in this note. Actually, once these are understood, rating evaluations of most other geometrical 
arrangements should be fairly straightforward. It should be understood that the “rotor inside” vs. 
“rotor outside” distinction is in fact trivial, with very few exceptions, which we will note. 

∗ c�2003 James L. Kirtley Jr. 
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2.1 Surface Magnet Machines 

Figure 1 shows the basic magnetic morphology of the motor with magnets mounted on the surface 
of the rotor and an otherwise conventional stator winding. This sketch does not show some of 
the important mechanical aspects of the machine, such as the means for fastening the permanent 
magnets to the rotor, so one should look at it with a bit of caution. In addition, this sketch and 
the other sketches to follow are not necessarily to a scale that would result in workable machines. 

Stator Core Rotor Core 

Stator Windings 
in Slots 

Rotor 
Magnets 

Figure 1: Axial View of a Surface Mount Motor 

This figure shows an axial section of a four-pole (p = 2) machine. The four magnets are 
mounted on a cylindrical rotor “core”, or shaft, made of ferromagnetic material. Typically this 
would simply be a steel shaft. In some applications the magnets may be simply bonded to the 
steel. For applications in which a glue joint is not satisfactory (e.g. for high speed machines) some 
sort of rotor banding or retaining ring structure is required. 

The stator winding of this machine is “conventional”, very much like that of an induction motor, 
consisting of wires located in slots in the surface of the stator core. The stator core itself is made of 
laminated ferromagnetic material (probably silicon iron sheets), the character and thickness of the 
sheets determined by operating frequency and efficiency requirements. They are required to carry 
alternating magnetic fields, so must be laminated to reduce eddy current losses. 

This sort of machine is simple in construction. Note that the operating magnetic flux density in 
the air-gap is nearly the same as in the magnets, so that this sort of machine cannot have air-gap 
flux densities higher than that of the remanent flux density of the magnets. If low cost ferrite 
magnets are used, this means relatively low induction and consequently relatively low efficiency 
and power density. (Note the qualifier “relatively” here!). Note, however, that with modern, high 
performance permanent magnet materials in which remanent flux densities can be on the order of 
1.2 T, air-gap working flux densities can be on the order of 1 T. With the requirement for slots to 
carry the armature current, this may be a practical limit for air-gap flux density anyway. 

It is also important to note that the magnets in this design are really in the “air gap” of 
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the machine, and therefore are exposed to all of the time- and space- harmonics of the stator 
winding MMF. Because some permanent magnets have electrical conductivity (particularly the 
higher performance magnets), any asynchronous fields will tend to produce eddy currents and 
consequent losses in the magnets. 

2.2 Interior Magnet or Flux Concentrating Machines 

Interior magnet designs have been developed to counter several apparent or real shortcomings of 
surface mount motors: 

•	 Flux concentrating designs allow the flux density in the air-gap to be higher than the flux 
density in the magnets themselves. 

•	 In interior magnet designs there is some degree of shielding of the magnets from high order 
space harmonic fields by the pole pieces. 

•	 There are control advantages to some types of interior magnet motors, as we will show anon. 
Essentially, they have relatively large negative saliency which enhances “flux weakening” for 
high speed operation, in rather direct analogy the what is done in DC machines. 

•	 Some types of internal magnet designs have (or claim) structural advantages over surface 
mount magnet designs. 

Stator Core	 Armature Winding 
in Slots 

Non−Magnetic 
Rotor Core Rotor 

Magnets 

Rotor Pole 
Pieces 

Figure 2: Axial View of a Flux Concentrating Motor 

The geometry of one type of internal magnet motor is shown (crudely) in Figure 2. The 
permanent magnets are oriented so that their magnetization is azimuthal. They are located between 
wedges of magnetic material (the pole pieces) in the rotor. Flux passes through these wedges, 
going radially at the air- gap, then azimuthally through the magnets. The central core of the rotor 
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must be non-magnetic, to prevent “shorting out” the magnets. No structure is shown at all in 
this drawing, but quite obviously this sort of rotor is a structural challenge. Shown is a six-pole 
machine. Typically, one does not expect flux concentrating machines to have small pole numbers, 
because it is difficult to get more area inside the rotor than around the periphery. On the other 
hand, a machine built in this way but without substantial flux concentration will still have saliency 
and magnet shielding properties. 

Stator Core 

Stator Slots 

Air Gap 

Rotor 

Saliency Slots 

Figure 3: Axial View of Internal Magnet Motor 

A second morphology for an internal magneti motor is shown in Figure 3. This geometry 
has been proposed for highly salient synchronous machines without permanent magnets: such 
machines would run on the saliency torque and are called synchronous reluctance motors. however, 
the saliency slots may be filled with permanent magnet material, giving them some internally 
generated flux as well. The rotor iron tends to short out the magnets, so that the ’bridges’ around 
the ends of the permanent magnets must be relatively thin. They are normally saturated. 

At first sight, these machines appear to be quite complicated to analyze, and that judgement 
seems to hold up. 

2.3 Air Gap Armature Windings 

Shown in Figure 4 is a surface-mounted magnet machine with an air-gap, or surface armature 
winding. Such machines take advantage of the fact that modern permanent magnet materials have 
very low permeabilities and that, therefore, the magnetic field produced is relatively insensitive to 
the size of the air-gap of the machine. It is possible to eliminate the stator teeth and use all of the 
periphery of the air-gap for windings. 

Not shown in this figure is the structure of the armature winding. This is not an issue in 
“conventional” stators, since the armature is contained in slots in the iron stator core. The use of 
an air-gap winding gives opportunities for economy of construction, new armature winding forms 
such as helical windings, elimination of “cogging” torques, and (possibly) higher power densities. 
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Stator Back I r o o 

Figure 4: Axial View of a PM Motor With an Air-Gap Winding 

3 Zeroth Order Rating 

In determining the rating of a machine, we may consider two separate sets of parameters. The first 
set, the elementary rating parameters, consist of the machine inductances, internal flux linkage and 
stator resistance. From these and a few assumptions about base and maximum speed it is possible 
to get a first estimate of the rating and performance of the motor. More detailed performance 
estimates, including efficiency in sustained operation, require estimation of other parameters. We 
will pay more attention to that first set of parameters, but will attempt to show how at least some 
of the more complete operating parameters can be estimated. 

3.1 Voltage and Current: Round Rotor 

To get started, consider the equivalent circuit shown in Figure 5. This is actually the equivalent 
circuit which describes all round rotor synchronous machines. It is directly equivalent only to some 
of the machines we are dealing with here, but it will serve to illustrate one or two important points. 

What is shown here is the equivalent circuit of a single phase of the machine. Most motors 
are three-phase, but it is not difficult to carry out most of the analysis for an arbitrary number 
of phases. The circuit shows an internal voltage Ea and a reactance X which together with the 
terminal current I determine the terminal voltage V. In this picture armature resistance is ignored. 
If the machine is running in the sinusoidal steady state, the major quantities are of the form: 

Ea = wAa cos (wt + 6) 

& = Vcoswt 

I, = Icos (wt  -+) 

The machine is in synchronous operation if the internal and external voltages are at the same 
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Figure 5: Synchronous Machine Equivalent Circuit 
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Figure 6: Phasor Diagram For A Synchronous Machine 

frequency and have a constant (or slowly changing) phase relationship (δ). The relationship between 
the major variables may be visualized by the phasor diagram shown in Figure 3.1. The internal 
voltage is just the time derivative of the internal flux from the permanent magnets, and the voltage 
drop in the machine reactance is also the time derivative of flux produced by armature current in 
the air-gap and in the “leakage” inductances of the machine. By convention, the angle ψ is positive 
when current I lags voltage V and the angle δ is positive then internal voltage Ea leads terminal 
voltage V . So both of these angles have negative sign in the situation shown in Figure 3.1. 

If there are q phases, the time average power produced by this machine is simply: 

q
P = V I cosψ 

2 

For most polyphase machines operating in what is called “balanced” operation (all phases doing 
the same thing with uniform phase differences between phases), torque (and consequently power) 
are approximately constant. Since we have ignored power dissipated in the machine armature, it 
must be true that power absorbed by the internal voltage source is the same as terminal power, or: 

q
P = EaI cos (ψ − δ)

2 
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Since in the steady state: 
ω 

P = T 
p 

where T is torque and ω/p is mechanical rotational speed, torque can be derived from the terminal 
quantities by simply: 

q
T = p λaI cos (ψ − δ)

2 

In principal, then, to determine the torque and hence power rating of a machine it is only 
necessary to determine the internal flux, the terminal current capability, and the speed capability 
of the rotor. In fact it is almost that simple. Unfortunately, the model shown in Figure 5 is not 
quite complete for some of the motors we will be dealing with, and we must go one more level into 
machine theory. 

3.2 A Little Two-Reaction Theory 

The material in this subsection is framed in terms of three-phase (q = 3) machine theory, but 
it is actually generalizable to an arbitrary number of phases. Suppose we have a machine whose 
three-phase armature can be characterized by internal fluxes and inductance which may, in general, 
not be constant but is a function of rotor position. Note that the simple model we presented in 
the previous subsection does not conform to this picture, because it assumes a constant terminal 
inductance. In that case, we have: 

λph = L Iph + λR (1) 
ph 

where λR is the set of internally produced fluxes (from the permanent magnets) and the stator 
winding may have both self- and mutual- inductances. 

Now, we find it useful to do a transformation on these stator fluxes in the following way: each 
armature quantity, including flux, current and voltage, is projected into a coordinate system that 
is fixed to the rotor. This is often called the Park’s Transformation. For a three phase machine it 
is: 

  ⎡

ud 

⎤ ⎡

ua 
  ⎢

 u⎣ q  = udq = Tuph = T  ub 

⎤

 (2) 
u0 

⎥ ⎢

uc 

⎥

Where the transformation and its inve

⎦

rse are:

⎣ ⎦

 ⎡

os  cos(θ 2π c θ − ) cos(θ + 2π )
2
 3 3

T ⎢   =  − sin θ − sin(θ − 2π ) − sin(θ +
 2π )  (3) 
3

⎣ 3 3

1 1 1 

⎤

2 2 2 

⎥

  

⎦

⎡

cos θ − sin θ 1 
−1  

( π T =

⎢

 cos θ −
 2 ) − sin(θ −
 2π ) 1  3

⎤

(4) 
⎣ 3

 cos(θ +
 2π ) − sin(θ +
 2π ) 1
3 3

⎥

⎦
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It is easy to show that balanced polyphase quantities in the stationary, or phase variable frame, 
translate into constant quantities in the so-called “d-q” frame. For example: 

Ia = I cosωt 
2π 

Ib = I cos(ωt − )
3 
2π 

Ic = I cos(ωt + )
3 

θ = ωt + θ0 

maps to: 

Id = I cos θ0 

Iq = −I sin θ0 

Now, if θ = ωt + θ0, the transformation coordinate system is chosen correctly and the “d-” axis 
will correspond with the axis on which the rotor magnets are making positive flux. That happens 
if, when θ = 0, phase A is linking maximum positive flux from the permanent magnets. If this is 
the case, the internal fluxes are: 

λaa = λf cos θ 
2π 

λab = λf cos(θ − )
3 
2π 

λac = λf cos(θ + )
3 

Now, if we compute the fluxes in the d-q frame, we have: 

λdq = L I + λ = TL T −1I + λ (5) 
dq dq R dq Rph  

Now: two things should be noted here. The first is that, if the coordinate system has been chosen 
as described above, the flux induced by the rotor is, in the d-q frame, simply: 

 ⎡

λf 

λR = 

⎤

⎢

⎣ 0 
⎥

 (6) 
0 

⎦

That is, the magnets produce flux only on the d- axis. 
The second thing to note is that, under certain assumptions, the inductances in the d-q frame 

are independent of rotor position and have no mutual terms. That is: 

  
L

  
d 0 0 

 
L = T L T −1 =  0 Lq 0  (7) 
dq ph 

⎡ ⎤

⎣

⎢

0 0 L0 

⎥

⎦

The assertion that inductances in the d-q frame are constant is actually questionable, but it is 
close enough to being true and analyses that use it have proven to be close enough to being correct 
that it (the assertion) has held up to the test of time. In fact the deviations from independence 
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on rotor position are small. Independence of axes (that is, absence of mutual inductances in the 
d-q frame) is correct because the two axes are physically orthogonal. We tend to ignore the third, 
or “zero” axis in this analysis. It doesn’t couple to anything else and has neither flux nor current 
anyway. Note that the direct- and quadrature- axis inductances are in principle straightforward to 
compute. They are 

direct axis the inductance of one of the armature phases (corrected for the fact of multiple phases) 
with the rotor aligned with the axis of the phase, and 

quadrature axis the inductance of one of the phases with the rotor aligned 90 electrical degrees 
away from the axis of that phase. 

Next, armature voltage is, ignoring resistance, given by: 

d d 
= = T −1λdq (8) V ph dt 

λph dt 
and that the transformed armature voltage must be: 

=V dq TV ph 

d 
= T (T −1λdq)dt

d d 
λdq + (T T −1)λdq (9) = 

dt dt 

The second term in this expresses “speed voltage”. A good deal of straightforward but tedious 
manipulation yields: 

⎡ ⎤ 
0 −dθ 0

d dt 
T T −1 ⎢ dθ 0 0 

⎥ 
(10) = 

⎣ dt ⎦ 
dt 

0 0 0 

The direct- and quadrature- axis voltage expressions are then: 

dλd
Vd = − ωλq (11) 

dt 
dλq

Vq = + ωλd (12) 
dt 

where 
dθ 

ω = 
dt 

Instantaneous power is given by: 

P = VaIa + VbIb + VcIc (13) 

Using the transformations given above, this can be shown to be: 

3 3 
P = VqIq + 3V0I0 (14) VdId + 

2 2
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which, in turn, is: 
3	 3 dλd dλq dλ0

P	 = ω (λdIq − λqId) + ( Iq) + 3 I0	 (15) Id + 
2 2 dt dt dt 

Then, noting that ω = pΩ and that (15) describes electrical terminal power as the sum of shaft 
power and rate of change of stored energy, we may deduce that torque is given by: 

q
T = p(λdIq − λqId)	 (16) 

2

Note that we have stated a generalization to a q- phase machine even though the derivation 
given here was carried out for the q = 3 case. Of course three phase machines are by far the 
most common case. Machines with higher numbers of phases behave in the same way (and this 
generalization is valid for all purposes to which we put it), but there are more rotor variables 
analogous to “zero axis”. 

Now, noting that, in general, Ld and Lq are not necessarily equal, 

λd = LdId + λf (17) 

λq = LqIq (18) 

then torque is given by: 
q

T	 = p (λf + (Ld − Lq) Id) Iq	 (19) 
2 

3.3 Finding Torque Capability 

For high performance drives, we will generally assume that the power supply, generally an inverter, 
can supply currents in the correct spatial relationship to the rotor to produce torque in some 
reasonably effective fashion. We will show in this section how to determine, given a required torque 
(or if the torque is limited by either voltage or current which we will discuss anon), what the 
values of Id and Iq must be. Then the power supply, given some means of determining where the 
rotor is (the instantaneous value of θ), will use the inverse Park’s transformation to determine the 
instantaneous valued required for phase currents. This is the essence of what is known as “field 
oriented control”, or putting stator currents in the correct location in space to produce the required 
torque. 

Our objective in this section is, given the elementary parameters of the motor, find the capability 
of the motor to produce torque. There are three things to consider here: 

•	 Armature current is limited, generally by heating, 

•	 A second limit is the voltage capability of the supply, particularly at high speed, and 

•	 If the machine is operating within these two limits, we should consider the optimal placement 
of currents (that is, how to get the most torque per unit of current to minimize losses). 

Often the discussion of current placement is carried out using, as a tool to visualize what is going 
on, the Id, Iq plane. Operation in the steady state implies a single point on this plane. A simple 
illustration is shown in Figure 7. The thermally limited armature current capability is represented 
as a circle around the origin, since the magnitude of armature current is just the length of a vector 
from the origin in this space. Note that since in general, for permanent magnet machines with 

10




id 

iq Current Limit Locus 

Voltage Limit 
Locus 

Optimal Torque 
Locus 

Short Circuit 
Point 

Figure 7: Limits to Operation 

buried magnets, Ld < Lq, so the optimal operation of the machine will be with negative Id. We 
will show how to determine this optimum operation anon, but it will in general follow a curve in 
the Id, Iq plane as shown. 

Finally, an ellipse describes the voltage limit. To start, consider what would happen if the 
terminals of the machine were to be short-circuited so that V = 0. If the machine is operating at 
sufficiently high speed so that armature resistance is negligible, armature current would be simply: 

λf
Id = − 

Ld 

Iq = 0 

Now, loci of constant flux turn out to be ellipses around this point on the plane. Since terminal 
flux is proportional to voltage and inversely proportional to frequency, if the machine is operating 
with a given terminal voltage, the ability of that voltage to command current in the Id, Iq plane is 
an ellipse whose size “shrinks” as speed increases. 

To simplify the mathematics involved in this estimation, we normalize reactances, fluxes, cur­
rents and torques. First, let us define the base flux to be simply λb = λf and the base current Ib to 
be the armature capability. Then we define two per-unit reactances: 

LdIb 

2


xd = 
λb 

(20) 

xq = 
LqIb 
λb 

(21) 

Next, define the base torque to be: 

Tb = p 
q 
λbIb 

and then, given per-unit currents id and iq, the per-unit torque is simply: 

te = (1 − (xq − xd) id) iq (22) 
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It is fairly straightforward (but a bit tedious) to show that the locus of current-optimal operation 
(that is, the largest torque for a given current magnitude or the smallest current magnitude for a 
given torque) is along the curve:

�

�

The “rating point” will be the point along this curve when ia = 1, or where this curve crosses the 
armature capability circle in the id, iq plane. It should be noted that this set of expressions only 
works for salient machines. For non-salient machines, of course, torque-optimal current is on the 
q-axis. In general, for machines with saliency, the “per-unit” torque will not be unity at the rating, 
so that the rated, or “Base Speed” torque is not the “Base” torque, but: 

Tr = Tb × te (25) 

where te is calculated at the rating point (that is, ia = 1 and id and iq as per (23) and (24)). 
For sufficiently low speeds, the power electronic drive can command the optimal current to 

produce torque up to rated. However, for speeds higher than the “Base Speed”, this is no longer 
true. Define a per-unit terminal flux: 

V 
ψ = 

ωλb 

Operation at a given flux magnitude implies: 

ψ2 = (1 + xdid)
2 + (xqiq)

2 

which is an ellipse in the id, iq plane. The Base Speed is that speed at which this ellipse crosses the 
point where the optimal current curve crosses the armature capability. Operation at the highest 
attainable torque (for a given speed) generally implies d-axis currents that are higher than those 
on the optimal current locus. What is happening here is the (negative) d-axis current serves to 
reduce effective machine flux and hence voltage which is limiting q-axis current. Thus operation 
above the base speed is often referred to as “flux weakening”. 

The strategy for picking the correct trajectory for current in the id, iq plane depends on the 
value of the per-unit reactance xd. For values of xd > 1, it is possible to produce some torque at any 

speed. For values of xd < 1, there is a speed for which no point in the armature current capability is 
within the voltage limiting ellipse, so that useful torque has gone to zero. Generally, the maximum 
torque operating point is the intersection of the armature current limit and the voltage limiting 
ellipse: 

�
� �2 

� 2xd 
� xd xq − ψ2 + 1 

id = 
x2 
q − x2 

d 
− 

x2 
q − x2 

d 
+ 

x2 
q − x2 

d 
(26) 

iq = 1 − id 
2 (27) 
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Table 1: Example Machine


D- Axis Inductance 2.53 mHy 
Q- Axis Inductance 6.38 mHy 
Internal Flux 58.1 mWb 
Armature Current 30 A 

Table 2: Operating Characteristics of Example Machine 

Per-Unit D-Axis Current At Rating Point id -.5924 
Per-Unit Q-Axis Current At Rating Point iq .8056 
Per-Unit D-Axis Reactance xd 1.306 
Per-Unit Q-Axis Reactance xq 3.294 
Rated Torque (Nm) Tr 9.17 
Terminal Voltage at Base Point (V) 97 

It may be that there is no intersection between the armature capability and the voltage limiting 
ellipse. If this is the case and if xd < 1, torque capability at the given speed is zero. 

If, on the other hand, xd > 1, it may be that the intersection between the voltage limiting 
ellipse and the armature current limit is not the maximum torque point. To find out, we calculate 
the maximum torque point on the voltage limiting ellipse. This is done in the usual way by 
differentiating torque with respect to id while holding the relationship between id and iq to be on 
the ellipse. The algebra is a bit messy, and results in: 

�
� �2 

3xd (xq − xd) − x2 
� 3xd (xq − xd) − x2 (xq − xd) (ψ2 − 1) + xd

id = − 
4xd 

2 (xq − xd) 
d −� 

4xd 
2 (xq − xd) 

d + 
2 (xq − xd)xd 

2 (28) 

1 
iq = ψ2 − (1 + xdid)

2 (29) 
xq 

Ordinarily, it is probably easiest to compute (28) and (29) first, then test to see if the currents 
are outside the armature capability, and if they are, use (26) and (27). 

These expressions give us the capability to estimate the torque-speed curve for a machine. As 
an example, the machine described by the parameters cited in Table 1 is a (nominal) 3 HP, 4-pole, 
3000 RPM machine. 

The rated operating point turns out to have the following attributes: 
The loci of operation in the Id, Iq plane is shown in Figure 8. The armature current limit 

is shown only in the second and third quadrants, so shows up as a semicircle. The two ellipses 
correspond with the rated point (the larger ellipse) and with a speed that is three times rated 
(9000 RPM). The torque-optimal current locus can be seen running from the origin to the rating 
point, and the higher speed operating locus follows the armature current limit. Figure 9 shows the 
torque/speed and power/speed curves. Note that this sort of machine only approximates “constant 
power” operation at speeds above the “base” or rating point speed. 
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4 Parameter Estimation 

We are now at the point of estimating the major parameters of the motors. Because we have a 
number of different motor geometries to consider, but because they share parameters in not too 
orderly a fashion, this section will have a number of sub-parts. First, we calculate flux linkage, 
then reactance. 

4.1 Flux Linkage 

Given a machine which may be considered to be uniform in the axial direction, flux linked by a 
single, full-pitched coil which spans an angle from zero to π/p, is: 

� π 
p 

φ = BrRldφ 
0 

where Br is the radial flux through the coil. And, if Br is sinusoidally distributed this will have 
a peak value of 

2RlBr
φp = 

p 

Now, if the actual winding has Na turns, and using the pitch and breadth factors derived in 
Appendix 1, the total flux linked is simply: 

2RlB1Nakw
λf = (30) 

p 

where 

kw = kpkb 
α 

kp = sin 
2 

sinm γ 

kb = 2 

m sin γ 
2 

The angle α is the pitch angle, 
Np

α = 2πp 
Ns 

where Np is the coil span (in slots) and Ns is the total number of slots in the stator. The angle γ 
is the slot electrical angle: 

2πp 
γ = 

Ns 

Now, what remains to be found is the space fundamental magnetic flux density B1. In the 
third appendix it is shown that, for magnets in a surface-mount geometry, the magnetic field at 
the surface of the magnetic gap is: 

B1 = µ0M1kg (31) 

where the space-fundamental magnetization is: 
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Br 4 pθm
M1 = sin 

µ0 π 2 

where Br is remanent flux density of the permanent magnets and θm is the magnet angle. 
and where the factor that describes the geometry of the magnetic gap depends on the case. For 

magnets inside and p � 1, = 

Rs
p−1 p � 

Rp+1 
−Rp+1 

� p 2p 
� 

1−p 1−p 
� 

kg = 2p 2p 2 1 + Ri R1 −R2
Rs −R p + 1 p − 1 

i 

For magnets inside and p = 1, 

1 1 
kg = R2

2 −R2
1 + Ri 

2 log 
R2 

R2 
s −Ri 

2 2 R1 

For the case of magnets outside and p � 1: = 

Ri
p−1 p

Rp+1 
−Rp+1 p

R2p 1−p 1−pkg = 
Rs 

2p 
−Ri 

2p p + 1 2 1 + 
p − 1 s R1 −R2 

and for magnets outside and p = 1, 

kg 
1 1 

R2
2 −R1

2 + Rs 
2 log 

R2 
= 
R2 
s −Ri 

2 2 R1 

Where Rs and Ri are the outer and inner magnetic boundaries, respectively, and R2 and R1 

are the outer and inner boundaries of the magnets. 
Note that for the case of a small gap, in which both the physical gap g and the magnet thickness 

hm are both much less than rotor radius, it is straightforward to show that all of the above expres­
sions approach what one would calculate using a simple, one-dimensional model for the permanent 
magnet: 

hm
kg → 

g + hm 

This is the whole story for the winding-in-slot, narrow air-gap, surface magnet machine. For air­
gap armature windings, it is necessary to take into account the radial dependence of the magnetic 
field. 

4.2 Air-Gap Armature Windings 

With no windings in slots, the conventional definition of winding factor becomes difficult to apply. 
If, however, each of the phase belts of the winding occupies an angular extent θw, then the equivalent 
to (31) is: 

kw = 
sin

θ

p 
w 

θ
2 
w 

p 2 
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Next, assume that the “density” of conductors within each of the phase belts of the armature 
winding is uniform, so that the density of turns as a function of radius is: 

2Nar 
N(r) = 

R2 −R2 
wo wi 

This just expresses the fact that there is more azimuthal room at larger radii, so with uniform 
density the number of turns as a function of radius is linearly dependent on radius. Here, Rwo and 
Rwi are the outer and inner radii, respectively, of the winding. 

Now it is possible to compute the flux linked due to a magnetic field distribution: 

Rwo 2lNakwr 2r 
λf = µ0Hr(r)dr (32) 

p R2 −R2 
Rwi wo wi 

Note the form of the magnetic field as a function of radius expressed in 80 and 81 of the second 
appendix. For the “winding outside” case it is: 

Hr = A rp−1 + Rs 
2pr −p−1 

Then a winding with all its turns concentrated at the outer radius r = Rwo would link flux: 

2lRwokw 2lRwokw 
Rp−1 R−p−1λc = µ0Hr(Rwo) = µ0A wo + R2

s
p 

wo p p 

Carrying out (32), it is possible, then, to express the flux linked by a thick winding to the flux that 
would have been linked by a radially concentrated winding at its outer surface by: 

λf
kt = 

λc 

where, for the winding outside, p � 2 case: = 

2 1 − x2+p ξ2p 1 − x2−p 

kt = + (33) 
(1 − x2) (1 + ξ2p) 2 + p 2 − p 

where we have used the definitions ξ = Rwo/Rs and x = Rwi/Rwo. In the case of winding outside, 
p = 2, 

2 
� 
1 − x4

� 
ξ4 

kt = − log x (34) 
(1 − x2) (1 + ξ2p) 4 

In a very similar way, we can define a winding factor for a thick winding in which the reference 
radius is at the inner surface. (Note: this is done because the inner surface of the inside winding 
is likely to be coincident with the inner ferromagnetic surface, as the outer surface of the outer 
winding ls likely to be coincident with the outer ferromagnetic surface). For p � 2: = 

2x−p 1 − x2+p 1 − x2−p 

kt = + (ηx)2p (35) 
(1 − x2) (1 + η2p) 2 + p 2 − p 

and for p = 2: 
2x−2 1 − x4 

kt = − (ηx)4 log x (36) 
(1 − x2) (1 + η2p) 4 
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where η = Ri/Rwi 
So, in summary, the flux linked by an air-gap armature is given by: 

2RlB1Nakwkt
λf = (37) 

p 

where B1 is the flux density at the outer radius of the physical winding (for outside winding 
machines) or at the inner radius of the physical winding (for inside winding machines). Note that 
the additional factor kt is a bit more than one (it approaches unity for thin windings), so that, 
for small pole numbers and windings that are not too thick, it is almost correct and in any case 
“conservative” to take it to be one. 

4.3 Interior Magnet Motors: 

For the flux concentrating machine, it is possible to estimate air-gap flux density using a simple 
reluctance model. 

The air- gap permeance of one pole piece is: 

Rθp
℘ag = µ0l 

g 

where θp is the angular width of the pole piece. 
And the incremental permeance of a magnet is: 

hml 
℘m = µ0 

wm 

The magnet sees a unit permeance consisting of its own permeance in series with one half of 
each of two pole pieces (in series) : 

℘ag Rθp wm
℘u = = 

℘m 4g hm


Magnetic flux density in the magnet is:


℘u
Bm = B0 

1 + ℘u


And then flux density in the air gap is:


2hm 2hmwm

Bg = Bm = B0

Rθp 4ghm + Rθpwm


The space fundamental of that can be written as:


4 pθp wm

B1 = sin B0 γm

π 2 2g


where we have introduced the shorthand:


1

γm = 

1 + wm θp R 
g 4 hm 

The flux linkage is then computed as before:


2RlB1Nakw
λf = (38) 

p 
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4.4 Winding Inductances 

The next important set of parameters to compute are the d- and q- axis inductances of the machine. 
We will consider three separate cases, the winding-in-slot, surface magnet case, which is magnet­
ically “round”, or non-salient, the air-gap winding case, and the flux concentrating case which is 
salient, or has different direct- and quadrature- axis inductances. 

4.4.1 Surface Magnets, Windings in Slots 

In this configuration there is no saliency, so that Ld = Lq. There are two principal parts to 
inductance, the air-gap inductance and slot leakage inductance. Other components, including end 
turn leakage, may be important in some configurations, and they would be computed in the same 
way as for an induction machine. As is shown in the first Appendix, the fundamental part of air-gap 
inductance is: 

q 4 µ0N
2k2 lRs

Ld1 = 
2 π p2(g 

a 

+ 
w

hw) 
(39) 

Here, g is the magnetic gap, including the physical rotational gap and any magnet retaining means 
that might be used. hm is the magnet thickness. 

Since the magnet thickness is included in the air-gap, the air-gap permeance may not be very 
large, so that slot leakage inductance may be important. To estimate this, assume that the slot 
shape is rectangular, characterized by the following dimensions: 
hs height of the main portion of the slot 
ws width of the top of the main portion of the slot 
hd height of the slot depression 
wd slot depression opening 

Of course not all slots are rectangular: in fact in most machines the slots are trapezoidal in 
shape to maintain teeth cross-sections that are radially uniform. However, only a very small error 
(a few percent) is incurred in calculating slot permeance if the slot is assumed to be rectangular 
and the top width is used (that is the width closest to the air-gap). Then the slot permeance is, 
per unit length: 

1 hs hd 
+P = µ0 

3 ws wd 

Assume for the rest of this discussion a standard winding, with m slots in each phase belt 
(this assumes, then, that the total number of slots is Ns = 2pqm), and each slot holds two half-
coils. (A half-coil is one side of a coil which, of course, is wound in two slots). If each coil 
has Nc turns (meaning Na = 2pmNc) , then the contribution to phase self-inductance of one 

slot is, if both half-coils are from the same phase, 4lPNc 
2 . If the half-coils are from different 

phases, then the contribution to self inductance is lPNc 
2 and the magnitude of the contribution to 

mutual inductance is lPNc 
2 . (Some caution is required here. For three phase windings the mutual 

inductance is negative, so are the senses of the currents in the two other phases, so the impact of 
“mutual leakage” is to increase the reactance. This will be true for other numbers of phases as 
well, even if the algebraic sign of the mutual leakage inductance is positive, in which case so will 
be the sense of the other- phase current.) 

We will make two other assumptions here. The standard one is that the winding “coil throw”, 
or span between sides of a coil, is N2p 

s −Nsp. Nsp is the coil “short pitch”. The other is that each 
phase belt will overlap with, at most two other phases: the ones on either side in sequence. This 
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last assumption is immediately true for three- phase windings (because there are only two other 
phases. It is also likely to be true for any reasonable number of phases. 

Noting that each phase occupies 2p(m −Nsp) slots with both coil halves in the same slot and 
4pNsp slots in which one coil half shares a slot with a different phase, we can write down the two 
components of slot leakage inductance, self- and mutual: 

Las = 2pl (m −Nsp) (2Nc)
2 + 2NspNc 

2 

Lam = 2plNspNc 
2 

For a three- phase machine, then, the total slot leakage inductance is: 

La = Las + Lam = 2plPNc 
2 (4m −Nsp) 

For a uniform, symmetric winding with an odd number of phases, it is possible to show that the 
effective slot leakage inductance is: 

2π 
La = Las − 2Lam cos 

q 

Total synchronous inductance is the sum of air-gap and leakage components: so far this is: 

Ld = Ld1 + La 

4.4.2 Air-Gap Armature Windings 

It is shown in Appendix 2 that the inductance of a single-phase of an air-gap winding is: 

La = Lnp 
n 

where the harmonic components are: 

⎡ 
8 µ0lk

2 N2 1 − x2−kγ2k 1 − x2+k 
wn a 

⎣Lk = 
π k(1 − x2)2 (4 − k2) (1 − γ2k) 

� �2 � �2 
ξ2k 1 − xk+2 ξ−2k 1 − x2−k 

+ + 
(2 + k)2 (1 − γ2k) (2 − k)2 (γ−2k − 1) 

⎤ 
1 − γ−2kx2+k 1 − x2−k 2k 1 − x

+ − ⎦ 
(4 − k2) (γ−2k − 1) 4 − k2 2 

where we have used the following shorthand coefficients: 

Rwi 
x = 

Rwo 

Ri
γ = 

Rs 

Rwo 
ξ = 

Rs 
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This fits into the conventional inductance framework: 

4 µ0N
2 2 
a RsLkL = wn 

n ka
π N2p2g 

if we assign the “thick armature” coefficient to be: 

     
− x2

 
−kγ2k  1 1 x2 − 2+k

gk 1  ka = 
R (1 x2 2 )

⎡

� �

⎣

(4 − k2) (

�

1 − γ2k
wo − ) 

�

� 2 2 
ξ2k 1 − xk+2 2k 1 − x2−k ξ−

+ + 2 2 (2 + k) (1 − γ

�

2k) (2 − k

�

) (γ−2k −

�

1) 
    �  

  1 − γ−2kx2+k 1 − x2−k
k 1 − x2

+ −  
(4 − k2) (γ

�

−

�

2k − 1) 

�

4 − k2 2 

⎤

⎦

� � 
� 

and k = np and g = Rs − Ri is the conventionally defined “air gap”. If the aspect ratio Ri/Rs is
not too far from unity, neither is ka. In the case of p = 2, the fundamental component of ka is: 

ka =
2gk 1 

2 

1 − x4 

− 
2γ4 + x4 � 1 − γ4

log x + 
γ4 

(log x)2 + 
ξ4 � 1 − x4

�2 

Rwo (1 − x2) 8 4 (1 − γ4) ξ4 (1 − γ4) 16 (1 − γ4) 

For a q-phase winding, a good approximation to the inductance is given by just the first space 
harmonic term, or: 

q 4 µ0N
2RsLk

2 

Ld = a wn 

2 π n2p2g
ka 

4.4.3 Internal Magnet Motor 

The permanent magnets will have an effect on reactance because the magnets are in the main flux 
path of the armature. Further, they affect direct and quadrature reactances differently, so that the 
machine will be salient. Actually, the effect on the direct axis will likely be greater, so that this 
type of machine will exhibit “negative” saliency: the quadrature axis reactance will be larger than 
the direct- axis reactance. 

A full- pitch coil aligned with the direct axis of the machine would produce flux density: 

µ0NaI 
Br = � � 

2g 1 + 
Rθp wm 

4g hm 

Note that only the pole area is carrying useful flux, so that the space fundamental of radial flux 
density is: 

µ0NaI 4 sin pθm 

B1 =
2g π 1 + wm 

2 
Rθp 

hm 4g 

Then, since the flux linked by the winding is: 

2RlNakwB1
λa = 

p 

21 



� � 

� � 

� � 

5 

The d- axis inductance, including mutual phase coupling, is (for a q- phase machine): 

q 4 µ0N
2Rlk2 pθp

Ld = 
2 π p

a 
2g 

w γm sin 
2 

The quadrature axis is quite different. On that axis, the armature does not tend to push flux 
through the magnets, so they have only a minor effect. What effect they do have is due to the fact 
that the magnets produce a space in the active air- gap. Thus, while a full- pitch coil aligned with 
the quadrature axis will produce an air- gap flux density: 

µ0NI 
Br = 

g 

the space fundamental of that will be: 

µ0NI 4 pθt
1 − sin B1 = 

g π 2 

where θt is the angular width taken out of the pole by the magnets. 
So that the expression for quadrature axis inductance is: 

q 4 µ0Na 
2Rlkw 

2 pθt
Lq = 1 − sin 

2 π p2g 2 

Current Rating and Resistance 

The last part of machine rating is its current capability. This is heavily influenced by cooling meth­
ods, for the principal limit on current is the heating produced by resistive dissipation. Generally, 
it is possible to do first-order design estimates by assuming a current density that can be handled 
by a particular cooling scheme. Then, in an air-gap winding: 

NaIa = R2 −R2 θwe 
Jawo wi 2 

and note that, usually, the armature fills the azimuthal space in the machine: 

2qθwe = 2π 

For a winding in slots, nearly the same thing is true: if the rectangular slot model holds true: 

2qNaIa = NshswsJs 

where we are using Js to note slot current density. Now, suppose we can characterize the total slot 
area by a “space factor” λs which is the ratio between total slot area and the annulus occupied by 
the slots: for the rectangular slot model: 

Nshsws
λs = � � 

π R2 −R2 
wo wi 

where Rwi = R+hd and Rwo = Rwi +hs in a normal, stator outside winding. In this case, Ja = Jsλs 

and the two types of machines can be evaluated in the same way. 
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It would seem apparent that one would want to make λs as large as possible, to permit high 
currents. The limit on this is that the magnetic teeth between the conductors must be able to carry 
the air-gap flux, and making them too narrow would cause them to saturate. The peak of the time 
fundamental magnetic field in the teeth is, for example, 

2πR 
Bt = B1 

Nswt 

where wt is the width of a stator tooth: 

2π(R + hd) 
wt = 

Ns 
− ws 

so that 
B1

Bt ≈ 
1 − λs 

5.1 Resistance 

Winding resistance may be estimated as the length of the stator conductor divided by its area and 
its conductivity. The length of the stator conductor is: 

lc = 2lNafe 

where the “end winding factor” fe is used to take into account the extra length of the end turns 
(which is usually not negligible). The area of each turn of wire is, for an air-gap winding : 

R2 −R2θwe wo wi Aw = λw
2 Na 

where λw, the “packing factor” relates the area of conductor to the total area of the winding. The 
resistance is then just: 

4lN2 

Ra = � a 
� 

R2 −R2θwe wo wi λwσ 

and, of course, σ is the conductivity of the conductor. 
For windings in slots the expression is almost the same, simply substituting the total slot area: 

2qlNa 
2 

Ra = 
Nshswsλwσ 

The end turn allowance depends strongly on how the machine is made. One way of estimating 
what it might be is to assume that the end turns follow a roughly circular path from one side of 
the machine to the other. The radius of this circle would be, very roughly, Rw/p, where Rw is the 
average radius of the winding: Rw ≈ (Rwo + Rwi)/2 

Then the end-turn allowance would be: 

πRw
fe = 1 + 

pl 
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Figure 10: Coordinate System for Inductance Calculation 

Appendix 1: Air-Gap Winding Inductance 

In this appendix we use a simple two-dimensional model to estimate the magnetic fields and then 
inductances of an air-gap winding. The principal limiting assumption here is that the winding is 
uniform in the ẑ direction, which means it is long in comparison with its radii. This is generally not 
true, nevertheless the answers we will get are not too far from being correct. The style of analysis 
used here can be carried into a three-dimensional, or quasi-three dimensional domain to get much 
more precise answers, at the expense of a very substantial increase in complexity. 

The coordinate system to be used is shown in Figure 10. To maintain generality we have four 
radii: Ri and Rs are ferromagnetic boundaries, and would of course correspond with the machine 
shaft and the stator core. The winding itself is carried between radii R1 and R2, which correspond 
with radii Rwi and Rwo in the body of the text. It is assumed that the armature is carrying a 
current in the z- direction, and that this current is uniform in the radial dimension of the armature. 
If a single phase of the armature is carrying current, that current will be: 

NaIa
Jz0 = � �

θwe R2
2 −R2 

2 1 

over the annular wedge occupied by the phase. The resulting distribution can be fourier analyzed, 
and the n-th harmonic component of this will be (assuming the coordinate system has been chosen 
appropriately): 

4 θwe 4 NaIa 
=Jzn = 

nπ 
Jz0 sinn 

2 π R2
2 −R2

1 
kwn 

where the n-th harmonic winding factor is: 

sinn θwe 

kwn = 
θwe 

2 

n 2 

and note that θwe is the electrical winding angle: 

θwe = pθw 
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Now, it is easiest to approach this problem using a vector potential. Since the divergence of 
flux density is zero, it is possible to let the magnetic flux density be represented by the curl of a 
vector potential: 

B = �×A 

Taking the curl of that: 

�× � ×A = µ0J = �� · A −�2A 

and using the coulomb gage 
� · A = 0 

we have a reasonable tractable partial differential equation in the vector potential: 

�2A = −µ0J 

Now, since in our assumption there is only a z- directed component of J , we can use that one 
component, and in circular cylindrical coordinates that is: 

1 ∂ ∂Az 1 ∂2 

r + Az = −µ0Jz 
r ∂r ∂r r2 ∂θ2 

For this problem, all variables will be varying sinusoidally with angle, so we will assume that 
angular dependence ejkθ. Thus: 

1 ∂ ∂Az k2 

r − Az = −µ0Jz (40) 
r ∂r ∂r r2 

This is a three-region problem. Note the regions as: 

i Ri < r < R1 

w R1 < r < R2 

o R2 < r < Rs 

For i and o, the current density is zero and an appropriate solution to (40) is: 

Az = A+r 
k +A−r 

−k 

In the region of the winding, w, a particular solution must be used in addition to the homoge­
neous solution, and 

Az = A+r 
k + A−r 

−k + Ap 

where, for k � 2, = 
µ0Jzr

2 

Ap = −
4 − k2 

or, if k = 2, 
µ0Jzr

2 1 
Ap = − log r − 

4 4 
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 kAi Rk−1   
+ i − kAi R−k−1

− i = 0

kAo Rk−1 o −k−1 
+ s − kA

− 
Rs = 0

w k−1 w −k−1 µ0JzR2 o k−1  A + 1 
+R2 A

− 
R2 − = A R o

 + A R−k−
  4 − k2 + 2 − 2

    2µ0JzR2     −kAw 1 + Aw −k−1 o k−1 o −k−1
+R

k−
2 k

− 
R2 + = −kA R + kA R

4 − k2 + 2 − 2 

w k−1 A R +Aw R−k−1 µ0JzR1 i k−1 i −k−1 
+ 1 − 

− 1 = A+R1 + A R
4 − k2 − 1 

kAw Rk−1 − + kAw  2µ0J R     
+ 1 − 

R−k−1 z 1 
1 + = −kAi Rk−1 + k

4 k2 + 1 Ai
− 
R−k−1

 1 −

Note that we are carrying this out here only for the case of k = 2. The k = 2 case may be obtained 

��	 � 

And, of course, the two pertinent components of the magnetic flux density are: 

1 ∂Az
Br = 

r ∂θ 
∂Az

Bθ = − 
∂r 

Next, it is necessary to match boundary conditions. There are six free variables and corre­
spondingly there must be six of these boundary conditions. They are the following: 

•	 At the inner and outer magnetic boundaries, r = Ri and r = Rs, the azimuthal magnetic 
field must vanish. 

•	 At the inner and outer radii of the winding itself, r = R1 and r = R2, both radial and 
azimuthal magnetic field must be continuous. 

These conditions may be summarized by:

�

by substituting its particular solution in at the beginning or by using L’Hopital’s rule on the final
solution. This set may be solved (it is a bit tedious but quite straightforward) to yield, for the 
winding region: 

R2+k −R2+k µ0Jz Rs 
2kR2

2 
−k −Ri 

2kR1
2−k 

2 1 kAz =	 � � + � � r 
2k (2 − k) Rs 

2k −Ri 
2k (2 + k) Rs 

2k −Ri 
2k 

⎛	 ⎞ ⎤ 
R2−k −R2−k R−2kR2+k −R−2kR2+k 2k 

+⎝ 2 
� 1 

� + s 2 
� i 1 

�

⎠ r −k − r 2 
⎦ 

(2 − k) Ri 
−2k −R−

s 
2k (2 + k) Ri 

−2k −Rs 
−2k 4 − k2 

Now, the inductance linked by any single, full-pitched loop of wire located with one side at 
azimuthal position θ and radius r is: 

λi = 2lAz(r, θ) 

To extend this to the whole winding, we integrate over the area of the winding the incremental flux 
linked by each element times the turns density. This is, for the n-th harmonic of flux linked: 

4lkwnNa 
� R2 

λn = 
R2

2 −R2 
R1 

Az(r)rdr 
1 
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Making the appropriate substitutions for current into the expression for vector potential, this 
becomes: 

8 µ0lk
2 N2 R2kR2−k −R2kR2−k R2+k −R2+k Rk+2 −Rk+2 
wn a Ia s 2 i 1 2 1 2 1λn = 

π k 
� 
R2

2 −R1
2
�2 (2 − k) 

� 
Rs 

2k −Ri 
2k
� +

(2 + k) 
� 
R2

2 
k −Ri 

2k
� 

k + 2 
⎛ ⎞ ⎤ 

R2−k −R2−k R−2kR2+k −R−2kR2+k R2−k −R2−k 2k R4
2 −R4 

+⎝ 2 
� 1 

� + s 2 
� i 1 

�

⎠ 2 1 − 1 
⎦ 

R−2k −R−2k R−2k −R−2k 2 − k 4 − k2 4(2 − k) i s (2 + k) i s 

7 Appendix 2: Permanent Magnet Field Analysis 

This section is a a field analysis of the kind of radially magnetized, permanent magnet structures 
commonly used in electric machinery. It is a fairly general analysis, which will be suitable for use 
with either surface or in-slot windings, and for the magnet inside or the magnet outside case. 

This is a two-dimensional layout suitable for situations in which field variation along the length 
of the structure is negligible. 

8 Layout 

The assumed geometry is shown in Figure 11. Assumed iron (highly permeable) boundaries are 
at radii Ri and Rs. The permanent magnets, assumed to be polarized radially and alternately 
(i.e. North-South ...), are located between radii R1 and R2. We assume there are p pole pairs (2p 
magnets) and that each magnet subsumes an electrical angle of θme. The electrical angle is just p 
times the physical angle, so that if the magnet angle were θme = π, the magnets would be touching. 

If the magnets are arranged so that the radially polarized magnets are located around the 
azimuthal origin (θ = 0), the space fundamental of magnetization is: 

M = irM0 cos pθ (41) 

where the fundamental magnitude is: 

4 θme Brem 
M0 = sin (42) 

π 2 µ0 

and Brem is the remanent magnetization of the permanent magnet. 
Since there is no current anywhere in this problem, it is convenient to treat magnetic field as 

the gradient of a scalar potential: 

H = −�ψ (43) 

The divergence of this is: 
�2ψ = −� · H (44) 

Since magnetic flux density is divergence-free, 

� · B = 0 (45) 

we have: 
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Figure 11: Axial View of Magnetic Field Problem 

� · H = −� · M (46) 

or: 

�2ψ = � · M =
1 
M0 cos pθ (47) 
r 

Now, if we let the magnetic scalar potential be the sum of particular and homogeneous parts: 

ψ = ψp + ψh (48) 

where �2ψh = 0, then: 

�2ψp =
1 
M0 cos pθ (49) 
r 

We can find a suitable solution to the particular part of this in the region of magnetization by 
trying: 

ψp = Crγ cos pθ (50) 

Carrying out the Laplacian on this: 

�2ψp = Crγ−2 
� 
γ2 − p 2 

� 
cos pθ = 

1 

r 
M0 cos pθ (51) 

which works if γ = 1, in which case: 

M0r 
ψp = cos pθ (52) 

1 − p2 
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and at r = R2: 

    �

p−1 2p −p−1 p−1 −p−1 M0
−pA3 R − − −2 Rs R2 = p A2R2 + B2R2 p (63) 

1 − p2 

    �

p−1 2   

� �

p −p−1
�

 
�

p 1 p 1 

�

M0
−pA3 R2 + Rs R  = −2 p A −

2R −2 B2R
− −

2 

�

− + M0 (64) 
1 − p2 

Some small-time manipulation of these yields: 

  
p 2p −p p −p M0 

A1 

�

R1 −Ri R1 

�

= A2R1 + B2R1 + R1 (65) 
1 − p2 

  
p pA

�

2R + R R−p p
i

�

 −p M0 
1 1  1 = A2R1 −B2R1 + pR1 (66) 

1 − p2 

  
p p p p M0

A 2 R−

3 

�

R  −R2p
s R

−

2 

�

= A2R2 + B2 2 + R2 (67) 
1 − p2 

  
A
�

p R + R2pR−p 
3 2 s 2 

�

p M
= A2R2 −B R−p 0

2 2 + pR2 (68) 
1 − p2 
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Of course this solution holds only for the region of the magnets: R1 < r < R2, and is zero for the 
regions outside of the magnets. 

A suitable homogeneous solution satisfies Laplace’s equation, �2ψh = 0, and is in general of the 
form: 

ψh = Arp cos pθ + Br−p cos pθ (53) 

Then we may write a trial total solution for the flux density as: 

Ri < r < R1 ψ = A1r
p + B1r 

−p cos pθ (54) 

M0r 
R1 < r < R2 ψ = A2r

p + B2r 
−p + cos pθ (55) 

1 − p2 

R2 < r < Rs ψ = A3r
p + B3r 

−p cos pθ (56) 

The boundary conditions at the inner and outer (assumed infinitely permeable) boundaries at 
r = Ri and r = Rs require that the azimuthal field vanish, or ∂ψ = 0, leading to: 

∂θ 

B1 = −R2
i
pA1 (57) 

B3 = −Rs 
2pA3 (58) 

At the magnet inner and outer radii, Hθ and Br must be continuous. These are: 

1 ∂ψ 
Hθ = − (59) 

r ∂θ 

1 − p

� 
∂ψ 

� 

Br = µ0 − 
∂r 

+ Mr (60) 

These become, at r = R1: 

−pA1 1 −Ri 1 

� � 
Rp−1 2pR−p−1 = −p A2R1 

p−1 + B2R1 
−p−1 

− p 
M0 

2 

� � 

1 − p
(61) 

−pA1 1 + Ri 1 

� � 
Rp−1 2pR−p−1 = −p A2R1 

p−1 
−B2R1 

−p−1 
− 

� � M0 
2 + M0 (62) 



� � � 

� � 

� � 
� � � � 

� � 
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Taking sums and differences of the first and second and then third and fourth of these we obtain: 

2A1R
p = 2A2R1 

p + R1M0 
1 + p 

(69) 1 1 − p2 

2A1R
2
i
pR1 

−p = −2B2R
−

1 
p + R1M0 

1

p 
−

−

p

1 
2 (70) 

2A3R
p = 2A2R

p 1 + p 
(71) 2 2 + R2M0 

1 − p2 

2A3R
2pR−p = −2B2R

−p + R2M0 
p − 1 

(72) s 2 2 1 − p2 

and then multiplying through by appropriate factors (R2 
p and R1 

p and then taking sums and differ­
ences of these, 

(A1 −A3)R1
pRp 

2 = (R1R
p 
2 −R2R1

p) 
M0 p + 1 

2 (73) 
2 1 − p

A1Ri 
2p 

−A3R
2
s
p R1 

−pR2 
−p = R1R2 

−p 
−R2R1 

−p 
� M

2 
0 

1

p 
−

−

p

1 
2 (74) 

Dividing through by the appropriate groups: 

A1 −A3 = 
R1R

p 
2 −R2R1 

p M0 1 + p 
R1
pR2 

p 2 1 − p2 (75) 

R1R
−p 

−R2R
−p M0 p − 1 

A1Ri 
2p 

−A3R
2
s
p = 2 1 

R1 
−pR2 

−p 2 1 − p2 (76) 

and then, by multiplying the top equation by Rs 
2p and subtracting: 

A1 

� 
Rs 

2p −Ri 
2p 
� 

= 
R1R

R
2 
p

p 
−R2R1 

p M0 1 + p 
2 Rs 

2p R1R

R
2 
−

−

p

p 
−

R

R
−p 

2R1 
−p M0 p − 1 

2 (77) − 
1R

p 
2 2 1 − p

1 2 2 1 − p

This is readily solved for the field coefficients A1 and A3: 

= − � 
M0 

� 
p + 1 

R1−p 
−R1−p R2p + 

p − 1 
R1+p 

−R1+p (78) A1 
2 Rs 

2p 
−Ri 

2p p2 − 1 1 2 s p2 − 1 2 1 

M0 1 1−p 1−p 2p 1 1+p 1+pA3 = − 
2 
� 
R2p 

−R2p 
� 

1 − p
R1 −R2 Ri − 

1 + p
R2 −R1 (79) 

s i 

Now, noting that the scalar potential is, in region 1 (radii less than the magnet), 

ψ = A1(r
p −Ri 

2pr −p) cos pθ r < R1 

ψ = A3(r
p −Rs 

2pr −p) cos pθ r > R2


and noting that p(p + 1)/(p2 − 1) = p/(p − 1) and p(p − 1)/(p2 − 1) = p/(p + 1), magnetic field is:
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r < R1 (80) 
  �    M

 
�

1−
�

 p 
 0 p p 1−p 2p

�

1+p 1+p  Hr = � R  s + R 1 2p
� −R R 1−

2  p − 1 1 2 p + 1 2 R
2p p 1 

2 Rs −Ri 

�

�

�

rp− + R −

i r 
p−
�

cos pθ 

r > R2 (81) 
       

  
�  M0 p

 
�

1−p 1 p 2p p 1+p 1+p   Hr = � −R rp� R −R − R + R −1
 + R2pr −p−1 co

p  s pθ 
2p 2p −− 1 1 2

�

i p + 1 

�

2 1

�

�

�

s
2 Rs Ri 

�

The case of p = 1 appears to be a bit troublesome here, but is easily handled by noting that: 

  p 1−p 1−p R2
lim R1 −R2 = log 
p→1 p − 1 R

� �

� � 

� � 

� � 

� � 

1 

Now: there are a number of special cases to consider. 
For the iron-free case, Ri → 0 and R2 → ∞, this becomes, simply, for r < R1: 

Hr = 
M0 p

R1
1 
−p 

−R2
1−p rp−1 cos pθ (82) 

2 p − 1


Note that for the case of p = 1, the limit of this is


M0 R2
Hr = log cos θ 

2 R1 

and for r > R2: 

Hr = 
M0 p

Rp+1 
−Rp+1 r −(p+1) cos pθ 

2 p + 1 2 1 

For the case of a machine with iron boundaries and windings in slots, we are interested in the 
fields at the boundaries. In such a case, usually, either Ri = R1 or Rs = R2. The fields are: 
at the outer boundary: r = Rs: 

Hr = M0 
Rs
p−1 p � 

Rp+1 
−Rp+1 

� 
+ 

p
R2p 

� 
R1−p 

−R1−p 
� 

cos pθ 
Rs 

2p 
−Ri 

2p p + 1 2 1 p − 1 i 1 2 

or at the inner boundary: r = Ri: 

Ri
p−1 p � 

Rp+1 
−Rp+1 

� p
R2p 

� 
1−p 1−p 

� 
Hr = M0 2p 2p 2 1 + s R1 −R2 cos pθ 

Rs −Ri p + 1 p − 1 
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