Skip to content

choo_siow module

The components of the derivative of the entropy for the Choo and Siow homoskedastic model.

e0_fun_choo_siow(muhat)

Returns the values of e_0 for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
np.ndarray

the (X,Y) matrix of the first derivative of the entropy

Source code in cupid_matching/choo_siow.py
145
146
147
148
149
150
151
152
153
154
155
def e0_fun_choo_siow(muhat: Matching) -> np.ndarray:
    """Returns the values of $e_0$ for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the (X,Y) matrix of the first derivative of the entropy
    """
    entropy_res = _entropy_choo_siow(muhat, deriv=1)
    return entropy_res[1]

e0_fun_choo_siow_corrected(muhat)

Returns the values of e_0 for the Choo and Siow model, using the finite-sample correction log(p+(1-p)/(2N))

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
np.ndarray

the (X,Y) matrix of the first derivative of the entropy

Source code in cupid_matching/choo_siow.py
158
159
160
161
162
163
164
165
166
167
168
169
170
def e0_fun_choo_siow_corrected(muhat: Matching) -> np.ndarray:
    """Returns the values of $e_0$ for the Choo and Siow model,
    using the finite-sample correction log(p+(1-p)/(2N))

    Args:
        muhat: a Matching

    Returns:
        the (X,Y) matrix of the first derivative of the entropy
    """
    e0_val_corrected \
        = _der_entropy_choo_siow_corrected(muhat, hessian=False)
    return e0_val_corrected

hessian_mumu_choo_siow(muhat)

Returns the derivatives of e_0 in \mu for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
ThreeArrays

the three components of the hessian wrt (\mu,\mu) of the entropy

Source code in cupid_matching/choo_siow.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def hessian_mumu_choo_siow(muhat: Matching) -> ThreeArrays:
    """Returns the derivatives of $e_0$ in $\\mu$
    for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the three components of the hessian wrt $(\\mu,\\mu)$ of the entropy
    """
    entropy_res = _entropy_choo_siow(muhat, deriv=2)
    hessmumu = entropy_res[2]
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_x = np.zeros((X, Y, Y))
    hess_y = np.zeros((X, Y, X))
    hess_xy = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2xy = hessmumu[x, y, :, :]
            hess_x[x, y, :] = d2xy[x, :]
            hess_y[x, y, :] = d2xy[:, y]
            hess_xy[x, y] = d2xy[x, y]
    return hess_x, hess_y, hess_xy

hessian_mumu_choo_siow_corrected(muhat)

Returns the derivatives of e_0 in \mu for the Choo and Siow model, with the small sample correction

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
ThreeArrays

the three components of the hessian wrt (\mu,\mu) of the entropy

Source code in cupid_matching/choo_siow.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def hessian_mumu_choo_siow_corrected(muhat: Matching) -> ThreeArrays:
    """Returns the derivatives of $e_0$ in $\\mu$
    for the Choo and Siow model, with the small sample correction

    Args:
        muhat: a Matching

    Returns:
        the three components of the hessian wrt $(\\mu,\\mu)$ of the entropy
    """
    _, hessmumu, _ \
        = _der_entropy_choo_siow_corrected(muhat, hessian=True)
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_x = np.zeros((X, Y, Y))
    hess_y = np.zeros((X, Y, X))
    hess_xy = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2xy = hessmumu[x, y, :, :]
            hess_x[x, y, :] = d2xy[x, :]
            hess_y[x, y, :] = d2xy[:, y]
            hess_xy[x, y] = d2xy[x, y]
    return hess_x, hess_y, hess_xy

hessian_mur_choo_siow(muhat)

Returns the derivatives of e_0 in r for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
TwoArrays

the two components of the hessian wrt (\mu,r) of the entropy

Source code in cupid_matching/choo_siow.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def hessian_mur_choo_siow(muhat: Matching) -> TwoArrays:
    """Returns the derivatives of $e_0$ in $r$
    for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the two components of the hessian wrt $(\\mu,r)$ of the entropy
    """
    entropy_res = _entropy_choo_siow(muhat, deriv=2)
    hessmur = entropy_res[3]
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_nx = np.zeros((X, Y))
    hess_my = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2r = hessmur[x, y, :]
            hess_nx[x, y] = d2r[x]
            hess_my[x, y] = d2r[X + y]
    return hess_nx, hess_my

hessian_mur_choo_siow_corrected(muhat)

Returns the derivatives of e_0 in r for the Choo and Siow model, with the small sample correction

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
TwoArrays

the two components of the hessian wrt (\mu,r) of the entropy

Source code in cupid_matching/choo_siow.py
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def hessian_mur_choo_siow_corrected(muhat: Matching) -> TwoArrays:
    """Returns the derivatives of $e_0$ in $r$
    for the Choo and Siow model, with the small sample correction

    Args:
        muhat: a Matching

    Returns:
        the two components of the hessian wrt $(\\mu,r)$ of the entropy
    """
    _, _, hessmur \
        = _der_entropy_choo_siow_corrected(muhat, hessian=True)
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_nx = np.zeros((X, Y))
    hess_my = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2r = hessmur[x, y, :]
            hess_nx[x, y] = d2r[x]
            hess_my[x, y] = d2r[X + y]
    return hess_nx, hess_my