
Creating Excel files with Python and
XlsxWriter

Release 0.0.6

John McNamara

February 23, 2013

CONTENTS

1 Introduction 3

2 Getting Started with XlsxWriter 5
2.1 Installing XlsxWriter . 5
2.2 Running a sample program . 6
2.3 Documentation . 7

3 Tutorial 1: Create a simple XLSX file 9

4 Tutorial 2: Adding formatting to the XLSX File 13

5 Tutorial 3: Writing different types of data to the XLSX File 17

6 The Workbook Class 23
6.1 Constructor . 23
6.2 workbook.add_worksheet() . 24
6.3 workbook.add_format() . 25
6.4 workbook.close() . 25

7 The Worksheet Class 27
7.1 worksheet.write() . 27
7.2 worksheet.write_string() . 29
7.3 worksheet.write_number() . 30
7.4 worksheet.write_formula() . 31
7.5 worksheet.write_array_formula() . 32
7.6 worksheet.write_blank() . 33
7.7 worksheet.write_datetime() . 33
7.8 worksheet.set_row() . 34
7.9 worksheet.set_column() . 35
7.10 worksheet.activate() . 37
7.11 worksheet.select() . 37

8 The Worksheet Class (Page Setup) 39
8.1 worksheet.set_landscape() . 39
8.2 worksheet.set_portrait() . 39
8.3 worksheet.set_page_view() . 39
8.4 worksheet.set_paper() . 40
8.5 center_horizontally() . 41
8.6 center_vertically() . 41
8.7 worksheet.set_margins() . 41

i

8.8 set_header() . 42
8.9 set_footer() . 44
8.10 repeat_rows() . 44
8.11 repeat_columns() . 44
8.12 hide_gridlines() . 45
8.13 print_row_col_headers() . 45
8.14 worksheet.print_across() . 46

9 The Format Class 47
9.1 format.set_font_name() . 47
9.2 format.set_font_size() . 48
9.3 format.set_font_color() . 48
9.4 format.set_bold() . 48
9.5 format.set_italic() . 49
9.6 format.set_underline() . 49
9.7 format.set_font_strikeout() . 49
9.8 format.set_font_script() . 49
9.9 format.set_num_format() . 49
9.10 format.set_locked() . 52
9.11 format.set_hidden() . 53
9.12 format.set_align() . 53
9.13 format.set_center_across() . 54
9.14 format.set_text_wrap() . 54
9.15 format.set_rotation() . 54
9.16 format.set_indent() . 55
9.17 format.set_shrink() . 55
9.18 format.set_text_justlast() . 55
9.19 format.set_pattern() . 55
9.20 format.set_bg_color() . 56
9.21 format.set_fg_color() . 56
9.22 format.set_border() . 57
9.23 format.set_bottom() . 57
9.24 format.set_top() . 58
9.25 format.set_left() . 58
9.26 format.set_right() . 58
9.27 format.set_border_color() . 58
9.28 format.set_bottom_color() . 58
9.29 format.set_top_color() . 59
9.30 format.set_left_color() . 59
9.31 format.set_right_color() . 59

10 Working with Cell Notation 61

11 Working with Formats 63
11.1 Creating and using a Format object . 63
11.2 Format methods and Format properties . 63
11.3 Format Colors . 64
11.4 Format Defaults . 65
11.5 Modifying Formats . 65

12 Working with Dates and Time 67

13 Excel::Writer::XLSX 71
13.1 Compatibility with Excel::Writer::XLSX . 72

ii

14 Alternative modules for handling Excel files 75
14.1 XLWT . 75
14.2 XLRD . 75
14.3 Openpyxl . 75

15 Known Issues and Bugs 77
15.1 ‘unknown encoding: utf-8’ Error . 77
15.2 Formula results not displaying in Excel . 77
15.3 Formula results displaying as zero in non-Excel apps . 77

16 Reporting Bugs 79
16.1 Upgrade to the latest version of the module . 79
16.2 Read the documentation . 79
16.3 Look at the example programs . 79
16.4 Use the official XlsxWriter Issue tracker on GitHub . 79
16.5 Pointers for submitting a bug report . 79

17 Frequently Asked Questions 81
17.1 Q. Can XlsxWriter use an existing Excel file as a template? . 81
17.2 Q. Why do my formulas show a zero result in some, non-Excel applications? 81
17.3 Q. Can I apply a format to a range of cells in one go? . 81
17.4 Q. Is feature X supported or will it be supported? . 81
17.5 Q. Is there an “AutoFit” option for columns? . 82
17.6 Q. Do people actually ask these questions frequently, or at all? . 82

18 Changes in XlsxWriter 83
18.1 Release 0.0.6 - February 22 2013 . 83
18.2 Release 0.0.5 - February 21 2013 . 83
18.3 Release 0.0.4 - February 20 2013 . 83
18.4 Release 0.0.3 - February 19 2013 . 84
18.5 Release 0.0.2 - February 18 2013 . 84
18.6 Release 0.0.1 - February 17 2013 . 84

19 Author 85

20 License 87

Index 89

iii

iv

Creating Excel files with Python and XlsxWriter, Release 0.0.6

XlsxWriter is a Python module for creating Excel XLSX files.

XlsxWriter supports the following features:

• 100% compatible Excel XLSX files.

• Write text, numbers, formulas, dates.

• Full cell formatting.

• Multiple worksheets.

• Python 2/3 support.

Here is a small example:

from xlsxwriter.workbook import Workbook

Create an new Excel file and add a worksheet.
workbook = Workbook(’demo.xlsx’)
worksheet = workbook.add_worksheet()

Widen the first column to make the text clearer.
worksheet.set_column(’A:A’, 20)

Add a bold format to highlight cell text.
bold = workbook.add_format({’bold’: 1})

Write some simple text.
worksheet.write(’A1’, ’Hello’)

Text with formatting.
worksheet.write(’A2’, ’World’, bold)

Write some numbers, with row/column notation.
worksheet.write(2, 0, 123)
worksheet.write(3, 0, 123.456)

workbook.close()

Which generates a worksheet like this:

CONTENTS 1

Creating Excel files with Python and XlsxWriter, Release 0.0.6

This document explains how to install and use the XlsxWriter module.

Contents:

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

XlsxWriter is a Python module for writing files in the Excel 2007+ XLSX file format.

The XLSX file format is the Office Open XML (OOXML) format used by Excel 2007 and later.

Multiple worksheets can be added to a workbook and formatting can be applied to cells. Text, numbers, and formulas
can be written to the cells.

This module cannot be used to modify or write to an existing Excel XLSX file. Modifying Excel files is not, and never
was, part of the design scope. There are some Alternative modules for handling Excel files that do that.

The XlsxWriter module is a port of the Perl Excel::Writer::XLSX module. The porting is a work in progress. See
the Excel::Writer::XLSX section for a list of currently ported features.

XlsxWriter is written by John McNamara who also wrote the perl modules Excel::Writer::XLSX and Spread-
sheet::WriteExcel and who is the maintainer of Spreadsheet::ParseExcel.

XlsxWriter is intended to have a high degree of compatibility with files produced by Excel. In most cases the files
produced are 100% equivalent to files produced by Excel. In fact the test suite contains a range of test cases that verify
the output of XlsxWriter against actual files created in Excel.

XlsxWriter is licensed under a BSD License and is available as a git repository on GitHub.

3

http://search.cpan.org/~jmcnamara/Excel-Writer-XLSX/
http://search.cpan.org/~jmcnamara/Spreadsheet-WriteExcel/
http://search.cpan.org/~jmcnamara/Spreadsheet-WriteExcel/
http://search.cpan.org/~jmcnamara/Spreadsheet-ParseExcel/
https://github.com/jmcnamara/XlsxWriter/tree/master/xlsxwriter/test/comparison
http://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 0.0.6

4 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED WITH
XLSXWRITER

Here are some easy instructions to get you up and running with the XlsxWriter module.

2.1 Installing XlsxWriter

The first step is to install the XlsxWriter module. There are several ways to do this.

2.1.1 Using PIP

The pip installer is the preferred method for installing Python modules from PyPI, the Python Package Index:

$ sudo pip install XlsxWriter

Note: Windows users can omit sudo at the start of the command.

2.1.2 Using Easy_Install

If pip doesn’t work you can try easy_install:

$ sudo easy_install install XlsxWriter

2.1.3 Installing from a tarball

If you download a tarball of the latest version of XlsxWriter you can install it as follows (change the version number
to suit):

$ tar -zxvf XlsxWriter-1.2.3.tar.gz

$ cd XlsxWriter-1.2.3
$ sudo python setup.py install

A tarball of the latest code can be downloaded from GitHub as follows:

5

http://www.pip-installer.org/en/latest/index.html
http://pypi.python.org/pypi
http://peak.telecommunity.com/DevCenter/EasyInstall

Creating Excel files with Python and XlsxWriter, Release 0.0.6

$ curl -O -L http://github.com/jmcnamara/XlsxWriter/archive/master.tar.gz

$ tar zxvf master.tar.gz
$ cd XlsxWriter-master/
$ sudo python setup.py install

2.1.4 Cloning from GitHub

The XlsxWriter source code and bug tracker is in the XlsxWriter repository on GitHub. You can clone the repository
and install from it as follows:

$ git clone https://github.com/jmcnamara/XlsxWriter.git

$ cd XlsxWriter
$ sudo python setup.py install

2.2 Running a sample program

If the installation went correctly you can create a small sample program like the following to verify that the module
works correctly:

from xlsxwriter.workbook import Workbook

workbook = Workbook(’hello.xlsx’)
worksheet = workbook.add_worksheet()

worksheet.write(’A1’, ’Hello world’)

workbook.close()

Save this to a file called hello.py and run it as follows:

$ python hello.py

This will output a file called hello.xlsx which should look something like the following:

6 Chapter 2. Getting Started with XlsxWriter

http://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 0.0.6

If you downloaded a tarball or cloned the repo, as shown above, you should also have a directory called examples with
some sample applications that demonstrate different features of XlsxWriter.

2.3 Documentation

The latest version of this document is hosted on Read The Docs. It is available in several formats such as Html, PDF
and ePub.

Once you are happy that the module is installed and operational you can have a look at the rest of the XlsxWriter
documentation. Tutorial 1: Create a simple XLSX file is a good place to start.

2.3. Documentation 7

https://github.com/jmcnamara/XlsxWriter/tree/master/examples
https://xlsxwriter.readthedocs.org/en/latest/
https://readthedocs.org/projects/xlsxwriter/downloads/
https://readthedocs.org/projects/xlsxwriter/downloads/

Creating Excel files with Python and XlsxWriter, Release 0.0.6

8 Chapter 2. Getting Started with XlsxWriter

CHAPTER

THREE

TUTORIAL 1: CREATE A SIMPLE XLSX
FILE

Let’s start by creating a simple spreadsheet using Python and the XlsxWriter module.

Say that we have some data on monthly outgoings that we want to convert into an Excel XLSX file:

expenses = (
[’Rent’, 1000],
[’Gas’, 100],
[’Food’, 300],
[’Gym’, 50],

)

To do that we can start with a small program like the following:

from xlsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook(’Expenses01.xlsx’)
worksheet = workbook.add_worksheet()

Some data we want to write to the worksheet.
expenses = (

[’Rent’, 1000],
[’Gas’, 100],
[’Food’, 300],
[’Gym’, 50],

)

Start from the first cell. Rows and columns are zero indexed.
row = 0
col = 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

Write a total using a formula.
worksheet.write(row, 0, ’Total’)
worksheet.write(row, 1, ’=SUM(B1:B4)’)

workbook.close()

9

Creating Excel files with Python and XlsxWriter, Release 0.0.6

If we run this program we should get a spreadsheet that looks like this:

This is a simple example but the steps involved are representative of all programs that use XlsxWriter, so let’s break it
down into separate parts.

The first step is to import the module and the main method that we will call:

from xlsxwriter.workbook import Workbook

The next step is to create a new workbook object using the Workbook() constructor.

Workbook() takes one, non-optional, argument which is the filename that we want to create:

workbook = Workbook(’Expenses01.xlsx’)

Note: XlsxWriter can only create new files. It cannot read or modify existing files.

The workbook object is then used to add a new worksheet via the add_worksheet() method:

worksheet = workbook.add_worksheet()

By default worksheet names in the spreadsheet will be Sheet1, Sheet2 etc., but we can also specify a name:

worksheet1 = workbook.add_worksheet() # Defaults to Sheet1.
worksheet2 = workbook.add_worksheet(’Data’) # Data.
worksheet3 = workbook.add_worksheet() # Defaults to Sheet3.

We can then use the worksheet object to write data via the write() method:

10 Chapter 3. Tutorial 1: Create a simple XLSX file

Creating Excel files with Python and XlsxWriter, Release 0.0.6

worksheet.write(row, col, some_data)

Note: Throughout XlsxWriter, rows and columns are zero indexed. The first cell in a worksheet, A1, is (0, 0).

So in our example we iterate over our data and write it out as follows:

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

We then add a formula to calculate the total of the items in the second column:

worksheet.write(row, 1, ’=SUM(B1:B4)’)

Finally, we close the Excel file via the close() method:

workbook.close()

Like most file objects in Python an XlsxWriter file is closed implicitly when it goes out of scope or is no longer
referenced in the program. As such this line is generally optional unless you need to close the file explicitly.

And that’s it. We now have a file that can be read by Excel and other spreadsheet applications.

In the next sections we will see how we can use the XlsxWriter module to add formatting and other Excel features.

11

Creating Excel files with Python and XlsxWriter, Release 0.0.6

12 Chapter 3. Tutorial 1: Create a simple XLSX file

CHAPTER

FOUR

TUTORIAL 2: ADDING FORMATTING
TO THE XLSX FILE

In the previous section we created a simple spreadsheet using Python and the XlsxWriter module.

This converted the required data into an Excel file but it looked a little bare. In order to make the information clearer
we would like to add some simple formatting, like this:

The differences here are that we have added Item and Cost column headers in a bold font, we have formatted the
currency in the second column and we have made the Total string bold.

To do this we can extend our program like this (the significant changes are shown with a red line):

13

Creating Excel files with Python and XlsxWriter, Release 0.0.6

from xlsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook(’Expenses02.xlsx’)
worksheet = workbook.add_worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add_format({’bold’: True})

Add a number format for cells with money.
money = workbook.add_format({’num_format’: ’$#,##0’})

Write some data header.
worksheet.write(’A1’, ’Item’, bold)
worksheet.write(’B1’, ’Cost’, bold)

Some data we want to write to the worksheet.
expenses = (

[’Rent’, 1000],
[’Gas’, 100],
[’Food’, 300],
[’Gym’, 50],

)

Start from the first cell below the headers.
row = 1
col = 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost, money)
row += 1

Write a total using a formula.
worksheet.write(row, 0, ’Total’, bold)
worksheet.write(row, 1, ’=SUM(B2:B5)’, money)

workbook.close()

The main difference between this and the previous program is that we have added two Format objects that we can use
to format cells in the spreadsheet.

Format objects represent all of the formatting properties that can be applied to a cell in Excel such as fonts, number
formatting, colors and borders. This is explained in more detail in The Format Class and Working with Formats.

For now we will avoid the getting into the details and just use a limited amount of the format functionality to add some
simple formatting:

Add a bold format to use to highlight cells.
bold = workbook.add_format({’bold’: True})

Add a number format for cells with money.
money = workbook.add_format({’num_format’: ’$#,##0’})

We can then pass these formats as an optional third parameter to the worksheet.write() method to format the data
in the cell:

14 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 0.0.6

write(row, column, token, [format])

Like this:

worksheet.write(row, 0, ’Total’, bold)

Which leads us to another new feature in this program. To add the headers in the first row of the worksheet we used
write() like this:

worksheet.write(’A1’, ’Item’, bold)
worksheet.write(’B1’, ’Cost’, bold)

So, instead of (row, col) we used the Excel ’A1’ style notation. See Working with Cell Notation for more details
but don’t be too concerned about it for now. It is just a little syntactic sugar to help with laying out worksheets.

In the next section we will look at handling more data types.

15

Creating Excel files with Python and XlsxWriter, Release 0.0.6

16 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

CHAPTER

FIVE

TUTORIAL 3: WRITING DIFFERENT
TYPES OF DATA TO THE XLSX FILE

In the previous section we created a simple spreadsheet with formatting using Python and the XlsxWriter module.

This time let’s extend the data we want to write to include some dates:

expenses = (
[’Rent’, ’2013-01-13’, 1000],
[’Gas’, ’2013-01-14’, 100],
[’Food’, ’2013-01-16’, 300],
[’Gym’, ’2013-01-20’, 50],

)

The corresponding spreadsheet will look like this:

17

Creating Excel files with Python and XlsxWriter, Release 0.0.6

The differences here are that we have added a Date column, formatted the dates and made column ‘B’ a little wider to
accommodate the dates.

To do this we can extend our program like this (the significant changes are shown with a red line):

from datetime import datetime
from xlsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook(’Expenses03.xlsx’)
worksheet = workbook.add_worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add_format({’bold’: 1})

Add a number format for cells with money.
money_format = workbook.add_format({’num_format’: ’$#,##0’})

Add an Excel date format.
date_format = workbook.add_format({’num_format’: ’mmmm d yyyy’})

Adjust the column width.
worksheet.set_column(1, 1, 15)

Write some data headers.
worksheet.write(’A1’, ’Item’, bold)
worksheet.write(’B1’, ’Date’, bold)

18 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 0.0.6

worksheet.write(’C1’, ’Cost’, bold)

Some data we want to write to the worksheet.
expenses = (

[’Rent’, ’2013-01-13’, 1000],
[’Gas’, ’2013-01-14’, 100],
[’Food’, ’2013-01-16’, 300],
[’Gym’, ’2013-01-20’, 50],

)

Start from the first cell below the headers.
row = 1
col = 0

for item, date_str, cost in (expenses):
Convert the date string into a datetime object.
date = datetime.strptime(date_str, "%Y-%m-%d")

worksheet.write_string (row, col, item)
worksheet.write_datetime(row, col + 1, date, date_format)
worksheet.write_number (row, col + 2, cost, money_format)
row += 1

Write a total using a formula.
worksheet.write(row, 0, ’Total’, bold)
worksheet.write(row, 2, ’=SUM(C2:C5)’, money_format)

workbook.close()

The main difference between this and the previous program is that we have added a new Format object for dates and
we have additional handling for data types.

Excel treats different types of input data differently, although it generally does it transparently to the user. To illustrate
this, open up a new Excel spreadsheet, make the first column wider and enter the following data:

123
123.456
1234567890123456
Hello
World
2013/01/01
2013/01/01 (But change the format from Date to General)
01234

You should see something like the following:

19

Creating Excel files with Python and XlsxWriter, Release 0.0.6

There are a few things to notice here. The first is that the numbers in the first three rows are stored as numbers and are
aligned to the right of the cell. The second is that the strings in the following rows are stored as strings and are aligned
to the left. The third is that the date string format has changed and that it is aligned to the right. The final thing to
notice is that Excel has stripped the leading 0 from 012345.

Let’s look at each of these in more detail.

Numbers are stored as numbers: In general Excel stores data as either strings or numbers. So it shouldn’t be
surprising that it stores numbers as numbers. Within a cell a number is right aligned by default. Internally Excel
handles numbers as IEEE-754 64-bit double-precision floating point. This means that, in most cases, the maximum
number of digits that can be stored in Excel without losing precision is 15. This can be seen in cell ’A3’ where the
16 digit number has lost precision in the last digit.

Strings are stored as strings: Again not so surprising. Within a cell a string is left aligned by default. Excel 2007+
stores strings internally as UTF-8.

Dates are stored as numbers: The first clue to this is that the dates are right aligned like numbers. More explicitly,
the data in cell ’A7’ shows that if you remove the date format the underlying data is a number. When you enter a
string that looks like a date Excel converts it to a number and applies the default date format to it so that it is displayed
as a date. This is explained in more detail in Working with Dates and Time.

Things that look like numbers are stored as numbers: In cell ’A8’ we entered 012345 but Excel converted it to
the number 12345. This is something to be aware of if you are writing ID numbers or Zip codes. In order to preserve
the leading zero(es) you need to store the data as either a string or a number with a format.

XlsxWriter tries to mimic the way Excel works via the worksheet.write() method and separates Python data into
types that Excel recognises. The write() method acts as a general alias for several more specific methods:

20 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 0.0.6

• write_string()

• write_number()

• write_datetime()

• write_blank()

• write_formula()

So, let’s see how all of this affects our program.

The main change in our example program is the addition of date handling. As we saw above Excel stores dates as
numbers. XlsxWriter makes the required conversion if the date and time are Python datetime.datetime objects.
To convert the date strings in our example to datetime.datetime objects we use the datetime.strptime
function. We then use the write_datetime() function to write it to a file. However, since the date is converted to
a number we also need to add a number format to ensure that Excel displays it as as date:

from datetime import datetime
...

date_format = workbook.add_format({’num_format’: ’mmmm d yyyy’})
...

for item, date_str, cost in (expenses):
Convert the date string into a datetime object.
date = datetime.strptime(date_str, "%Y-%m-%d")
...
worksheet.write_datetime(row, col + 1, date, date_format)
...

The other thing to notice in our program is that we have used explicit write methods for different types of data:

worksheet.write_string (row, col, item)
worksheet.write_datetime(row, col + 1, date, date_format)
worksheet.write_number (row, col + 2, cost, money_format)

This is mainly to show that if you need more control over the type of data you write to a worksheet you can use
the appropriate method. In this simplified example the write() method would have worked just as well but it is
important to note that in cases where write() doesn’t do the right thing, such as the number with leading zeroes
discussed above, you will need to be explicit.

Finally, the last addition to our program is the set_column() method to adjust the width of column ‘B’ so that the
dates are more clearly visible:

Adjust the column width.
worksheet.set_column(’B:B’, 15)

The set_column() and corresponding set_row() methods are explained in more detail in The Worksheet Class.

Next, let’s look at The Workbook Class in more detail.

21

http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime

Creating Excel files with Python and XlsxWriter, Release 0.0.6

22 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

CHAPTER

SIX

THE WORKBOOK CLASS

The Workbook class is the main class exposed by the XlsxWriter module and it is the only class that you will need to
instantiate directly.

The Workbook class represents the entire spreadsheet as you see it in Excel and internally it represents the Excel file
as it is written on disk.

6.1 Constructor

Workbook(filename)
Create a new XlsxWriter Workbook object.

Parameters filename (string) – The name of the new Excel file to create.

Return type A Workbook object.

The Workbook() constructor is used to create a new Excel workbook with a given filename:

from xlsxwriter import Workbook

workbook = Workbook(’filename.xlsx’)
worksheet = workbook.add_worksheet()

worksheet.write(0, 0, ’Hello Excel’)

23

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

It is recommended that you always use an .xlsx extension in the filename or Excel will generate a warning when the
file is opened.

Note: A later version of the module will support writing to filehandles like Excel::Writer::XLSX.

6.2 workbook.add_worksheet()

add_worksheet([sheetname])
Add a new worksheet to a workbook.

Parameters sheetname (string) – Optional worksheet name, defaults to Sheet1, etc.

Return type A Worksheet object.

The add_worksheet() method adds a new worksheet to a workbook.

At least one worksheet should be added to a new workbook. The Worksheet object is used to write data and configure
a worksheet in the workbook.

The sheetname parameter is optional. If it is not specified the default Excel convention will be followed, i.e. Sheet1,
Sheet2, etc.:

worksheet1 = workbook.add_worksheet() # Sheet1
worksheet2 = workbook.add_worksheet(’Foglio2’) # Foglio2

24 Chapter 6. The Workbook Class

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

worksheet3 = workbook.add_worksheet(’Data’) # Data
worksheet4 = workbook.add_worksheet() # Sheet4

The worksheet name must be a valid Excel worksheet name, i.e. it cannot contain any of the characters ’[]:*?/\’
and it must be less than 32 characters. In addition, you cannot use the same, case insensitive, sheetname for more
than one worksheet.

6.3 workbook.add_format()

add_format([properties])
Create a new Format object to formats cells in worksheets.

Parameters properties (dictionary) – An optional dictionary of format properties.

Return type A Format object.

The add_format() method can be used to create new Format objects which are used to apply formatting to a cell.
You can either define the properties at creation time via a dictionary of property values or later via method calls:

format1 = workbook.add_format(props); # Set properties at creation.
format2 = workbook.add_format(); # Set properties later.

See the The Format Class and Working with Formats sections for more details about Format properties and how to set
them.

6.4 workbook.close()

close()
Close the Workbook object and write the XLSX file.

In general your Excel file will be closed automatically when your program ends or when the Workbook object goes
out of scope, however the close() method can be used to explicitly close an Excel file:

workbook.close()

An explicit close() is required if the file must be closed prior to performing some external action on it such as
copying it, reading its size or attaching it to an email.

6.3. workbook.add_format() 25

Creating Excel files with Python and XlsxWriter, Release 0.0.6

In addition, close() may be occasionally required to prevent Python’s garbage collector from disposing of the
Workbook, Worksheet and Format objects in the wrong order.

In general, if an XlsxWriter file is created with a size of 0 bytes or fails to be created for some unknown silent reason
you should add close() to your program.

26 Chapter 6. The Workbook Class

CHAPTER

SEVEN

THE WORKSHEET CLASS

The worksheet class represents an Excel worksheet. It handles operations such as writing data to cells or formatting
worksheet layout.

A worksheet object isn’t instantiated directly. Instead a new worksheet is created by calling the add_worksheet()
method from a Workbook() object:

workbook = Workbook(’filename.xlsx’)

worksheet1 = workbook.add_worksheet()
worksheet2 = workbook.add_worksheet()

worksheet1.write(’A1’, 123)

7.1 worksheet.write()

write(row, col, data[, cell_format])
Write generic data to a worksheet cell.

Parameters

• row (integer) – The cell row (zero indexed).

• col (integer) – The cell column (zero indexed).

27

Creating Excel files with Python and XlsxWriter, Release 0.0.6

• data – Cell data to write. Variable types.

• cell_format (Format) – Optional Format object.

Excel makes a distinction between data types such as strings, numbers, blanks, formulas and hyperlinks. To simplify
the process of writing data to an XlsxWriter file the write() method acts as a general alias for several more specific
methods:

• write_string()

• write_number()

• write_blank()

• write_formula()

The general rule is that if the data looks like a something then a something is written. Here are some examples:

worksheet.write(0, 0, ’Hello’) # write_string()
worksheet.write(1, 0, ’World’) # write_string()
worksheet.write(2, 0, 2) # write_number()
worksheet.write(3, 0, 3.00001) # write_number()
worksheet.write(4, 0, ’=SIN(PI()/4)’) # write_formula()
worksheet.write(5, 0, ’’) # write_blank()
worksheet.write(6, 0, None) # write_blank()

This creates a worksheet like the following:

The write() method supports two forms of notation to designate the position of cells: Row-column notation and
A1 notation:

28 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 0.0.6

These are equivalent.
worksheet.write(0, 0, ’Hello’)
worksheet.write(’A1’, ’Hello’)

See Working with Cell Notation for more details.

The cell_format parameter is used to apply formatting to the cell. This parameter is optional but when present is
should be a valid Format object:

cell_format = workbook.add_format({’bold’: True, ’italic’: True})

worksheet.write(0, 0, ’Hello’, cell_format) # Cell is bold and italic.

The write() method will ignore empty strings or None unless a format is also supplied. As such you needn’t worry
about special handling for empty or None values in your data. See also the write_blank() method.

One problem with the write() method is that occasionally data looks like a number but you don’t want it treated
as a number. For example, Zip codes or ID numbers or often start with a leading zero. If you write this data as a
number then the leading zero(s) will be stripped. In this case you shouldn’t use the write() method and should use
write_string() instead.

7.2 worksheet.write_string()

write_string(row, col, string[, cell_format])
Write a string to a worksheet cell.

Parameters

• row (integer) – The cell row (zero indexed).

• col (integer) – The cell column (zero indexed).

• string (string) – String to write to cell.

• cell_format (Format) – Optional Format object.

The write_string() method writes a string to the cell specified by row and column:

worksheet.write_string(0, 0, ’Your text here’)
worksheet.write_string(’A2’, ’or here’)

Both row-column and A1 style notation are support. See Working with Cell Notation for more details.

The cell_format parameter is used to apply formatting to the cell. This parameter is optional but when present is
should be a valid Format object.

Unicode strings are supported in UTF-8 encoding. This generally requires that your source file in also UTF-8 encoded:

* coding: utf-8

worksheet.write(’A1’, u’Some UTF-8 text’)

7.2. worksheet.write_string() 29

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Alternatively, you can read data from an encoded file, convert it to UTF-8 during reading and then write the data
to an Excel file. There are several sample unicode_*.py programs like this in the examples directory of the
XlsxWriter source tree.

The maximum string size supported by Excel is 32,767 characters. Strings longer than this will be truncated by
write_string().

Note: Even though Excel allows strings of 32,767 characters in a cell, Excel can only display 1000. All 32,767
characters are displayed in the formula bar.

In general it is sufficient to use the write() method when dealing with string data. However, you may sometimes
need to use write_string() to write data that looks like a number but that you don’t want treated as a number.
For example, Zip codes or phone numbers:

Write ID number as a plain string.
worksheet.write_string(’A1’, ’01209’)

However, if the user edits this string Excel may convert it back to a number. To get around this you can use the Excel
text format ’@’:

Format as a string. Doesn’t change to a number when edited
str_format = workbook.add_format({’num_format’, ’@’})
worksheet.write_string(’A1’, ’01209’, str_format)

This behaviour, while slightly tedious, is unfortunately consistent with the way Excel handles string data that looks
like numbers. See Tutorial 3: Writing different types of data to the XLSX File.

7.3 worksheet.write_number()

write_number(row, col, number[, cell_format])
Write a number to a worksheet cell.

Parameters

• row (integer) – The cell row (zero indexed).

• col (integer) – The cell column (zero indexed).

30 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 0.0.6

• number (int or float) – Number to write to cell.

• cell_format (Format) – Optional Format object.

The write_number() method writes an integer or a float to the cell specified by row and column:

worksheet.write_number(0, 0, 123456)
worksheet.write_number(’A2’, 2.3451)

Both row-column and A1 style notation are support. See Working with Cell Notation for more details.

The cell_format parameter is used to apply formatting to the cell. This parameter is optional but when present is
should be a valid Format object.

Excel handles numbers as IEEE-754 64-bit double-precision floating point. This means that, in most cases, the maxi-
mum number of digits that can be stored in Excel without losing precision is 15.

7.4 worksheet.write_formula()

write_formula(row, col, formula[, cell_format[, value]])
Write a formula to a worksheet cell.

Parameters

• row (integer) – The cell row (zero indexed).

• col (integer) – The cell column (zero indexed).

• formula (string) – Formula to write to cell.

• cell_format (Format) – Optional Format object.

The write_formula() method writes a formula or function to the cell specified by row and column:

worksheet.write_formula(0, 0, ’=B3 + B4’)
worksheet.write_formula(1, 0, ’=SIN(PI()/4)’)
worksheet.write_formula(2, 0, ’=SUM(B1:B5)’)
worksheet.write_formula(’A4’, ’=IF(A3>1,"Yes", "No")’)
worksheet.write_formula(’A5’, ’=AVERAGE(1, 2, 3, 4)’)
worksheet.write_formula(’A6’, ’=DATEVALUE("1-Jan-2013")’)

Array formulas are also supported:

worksheet.write_formula(’A7’, ’{=SUM(A1:B1*A2:B2)}’)

See also the write_array_formula() method below.

Both row-column and A1 style notation are support. See Working with Cell Notation for more details.

The cell_format parameter is used to apply formatting to the cell. This parameter is optional but when present is
should be a valid Format object.

XlsxWriter doesn’t calculate the value of a formula and instead stores the value 0 as the formula result. It then
sets a global flag in the XLSX file to say that all formulas and functions should be recalculated when the file is
opened. This is the method recommended in the Excel documentation and in general it works fine with spreadsheet
applications. However, applications that don’t have a facility to calculate formulas, such as Excel Viewer, or some
mobile applications will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the options value parameter. This
is occasionally necessary when working with non-Excel applications that don’t calculate the value of the formula. The
calculated value is added at the end of the argument list:

7.4. worksheet.write_formula() 31

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

worksheet.write(’A1’, ’=2+2’, num_format, 4)

Note: Some early versions of Excel 2007 do not display the calculated values of formulas written by XlsxWriter.
Applying all available Office Service Packs should fix this.

7.5 worksheet.write_array_formula()

write_array_formula(first_row, first_col, last_row, last_col, formula[, cell_format[, value]])
Write an array formula to a worksheet cell.

Parameters

• first_row (integer) – The first row of the range. (All zero indexed.)

• first_col (integer) – The first column of the range.

• last_row (integer) – The last row of the range.

• last_col (integer) – The last col of the range.

• formula (string) – Array formula to write to cell.

• cell_format (Format) – Optional Format object.

The write_array_formula() method write an array formula to a cell range. In Excel an array formula is a
formula that performs a calculation on a set of values. It can return a single value or a range of values.

An array formula is indicated by a pair of braces around the formula: {=SUM(A1:B1*A2:B2)}. If the array formula
returns a single value then the first_ and last_ parameters should be the same:

worksheet.write_array_formula(’A1:A1’, ’{=SUM(B1:C1*B2:C2)}’)

It this case however it is easier to just use the write_formula() or write() methods:

Same as above but more concise.
worksheet.write(’A1’, ’{=SUM(B1:C1*B2:C2)}’)
worksheet.write_formula(’A1’, ’{=SUM(B1:C1*B2:C2)}’)

For array formulas that return a range of values you must specify the range that the return values will be written to:

worksheet.write_array_formula(’A1:A3’, ’{=TREND(C1:C3,B1:B3)}’)
worksheet.write_array_formula(0, 0, 2, 0, ’{=TREND(C1:C3,B1:B3)}’)

As shown above, both row-column and A1 style notation are support. See Working with Cell Notation for more details.

The cell_format parameter is used to apply formatting to the cell. This parameter is optional but when present is
should be a valid Format object.

If required, it is also possible to specify the calculated value of the formula. This is occasionally necessary when
working with non-Excel applications that don’t calculate the value of the formula. The calculated value is added at
the end of the argument list:

worksheet.write_array_formula(’A1:A3’, ’{=TREND(C1:C3,B1:B3)}’, format, 105)

In addition, some early versions of Excel 2007 don’t calculate the values of array formulas when they aren’t supplied.
Installing the latest Office Service Pack should fix this issue.

32 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

7.6 worksheet.write_blank()

write_blank(row, col, blank[, cell_format])
Write a blank worksheet cell.

Parameters

• row (integer) – The cell row (zero indexed).

• col (integer) – The cell column (zero indexed).

• blank – None or empty string. The value is ignored.

• cell_format (Format) – Optional Format object.

Write a blank cell specified by row and column:

worksheet.write_blank(0, 0, None, format)

This method is used to add formatting to a cell which doesn’t contain a string or number value.

Excel differentiates between an “Empty” cell and a “Blank” cell. An “Empty” cell is a cell which doesn’t contain data
whilst a “Blank” cell is a cell which doesn’t contain data but does contain formatting. Excel stores “Blank” cells but
ignores “Empty” cells.

As such, if you write an empty cell without formatting it is ignored:

worksheet.write(’A1’, None, format) # write_blank()
worksheet.write(’A2’, None) # Ignored

This seemingly uninteresting fact means that you can write arrays of data without special treatment for None or empty
string values.

As shown above, both row-column and A1 style notation are support. See Working with Cell Notation for more details.

7.7 worksheet.write_datetime()

write_datetime(row, col, datetime[, cell_format])
Write a date or time to a worksheet cell.

Parameters

• row (integer) – The cell row (zero indexed).

• col (integer) – The cell column (zero indexed).

• datetime (datetime.datetime) – A datetime.datetime object.

• cell_format (Format) – Optional Format object.

The write_datetime() method can be used to write a date or time to the cell specified by row and column:

worksheet.write_datetime(0, 0, datetime, date_format)

The datetime.datetime class is part of the standard Python datetime library.

There are many way to create a datetime object but the most common is to use the datetime.strptime method:

date_time = datetime.strptime(’2013-01-23’, ’%Y-%m-%d’)

A date should always have a cell_format of type Format, otherwise it will appear as a number:

7.6. worksheet.write_blank() 33

http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime

Creating Excel files with Python and XlsxWriter, Release 0.0.6

date_format = workbook.add_format({’num_format’: ’d mmmm yyyy’})

worksheet.write_datetime(’A1’, date_time, date_format)

See Working with Dates and Time for more details.

7.8 worksheet.set_row()

set_row(row, height, cell_format, options)
Set properties for a row of cells.

Parameters

• row (int) – The worksheet row (zero indexed).

• height (int) – The row height.

• cell_format (Format) – Optional Format object.

• options (dict) – Optional row parameters: hidden, level, collapsed.

The set_row() method is used to change the default properties of a row. The most common use for this method is
to change the height of a row:

worksheet.set_row(0, 20) # Set the height of Row 1 to 20.

The other common use for set_row() is to set the Format for all cells in the row:

cell_format = workbook.add_format({’bold’: True})

worksheet.set_row(0, 20, cell_format)

If you wish to set the format of a row without changing the height you can pass None as the height parameter or use
the default row height of 15:

worksheet.set_row(1, None, cell_format)
worksheet.set_row(1, 15, cell_format) # Same as this.

The cell_format parameter will be applied to any cells in the row that don’t have a format. As with Excel it is
overidden by an explicit cell format. For example:

worksheet.set_row(0, None, format1) # Row 1 has format1.

worksheet.write(’A1’, ’Hello’) # Cell A1 defaults to format1.
worksheet.write(’B1’, ’Hello’, format2) # Cell B1 keeps format2.

The options parameter is a dictionary with the following possible keys:

• ’hidden’

• ’level’

• ’collapsed’

Options can be set as follows:

worksheet.set_row(0, 20, cell_format, {’hidden’: 1})

Or use defaults for other properties and set the options only.
worksheet.set_row(0, None, None, {’hidden’: 1})

34 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.0.6

The ’hidden’ option is used to hide a row. This can be used, for example, to hide intermediary steps in a complicated
calculation:

worksheet.set_row(0, 20, cell_format, {’hidden’: 1})

The ’level’ parameter is used to set the outline level of the row. Outlines are described in “Working with Outlines
and Grouping”. Adjacent rows with the same outline level are grouped together into a single outline. (Note: This
feature is not implemented yet).

The following example sets an outline level of 1 for some rows:

worksheet.set_row(0, None, None, {’level’: 1})
worksheet.set_row(1, None, None, {’level’: 1})
worksheet.set_row(2, None, None, {’level’: 1})

Note: Excel allows up to 7 outline levels. The ’level’ parameter should be in the range 0 <= level <= 7.

The ’hidden’ parameter can also be used to hide collapsed outlined rows when used in conjunction with the
’level’ parameter:

worksheet.set_row(1, None, None, {’hidden’: 1, ’level’: 1})
worksheet.set_row(2, None, None, {’hidden’: 1, ’level’: 1})

The ’collapsed’ parameter is used in collapsed outlines to indicate which row has the collapsed ’+’ symbol:

worksheet.set_row(3, None, None, {’collapsed’: 1})

7.9 worksheet.set_column()

set_column(first_col, last_col, width, cell_format, hidden, level, collapsed)
Set properties for one or more columns of cells.

Parameters

• first_col (int) – First column (zero-indexed).

• last_col (int) – Last column (zero-indexed). Can be same as firstcol.

• width (int) – The width of the column(s).

• cell_format (Format) – Optional Format object.

• options (dict) – Optional parameters: hidden, level, collapsed.

The set_column() method can be used to change the default properties of a single column or a range of columns:

worksheet.set_column(1, 3, 30) # Width of columns B:D set to 30.

If set_column() is applied to a single column the value of first_col and last_col should be the same:

worksheet.set_column(1, 1, 30) # Width of column B set to 30.

It is also possible, and generally clearer, to specify a column range using the form of A1 notation used for columns.
See Working with Cell Notation for more details.

Examples:

7.9. worksheet.set_column() 35

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.0.6

worksheet.set_column(0, 0, 20) # Column A width set to 20.
worksheet.set_column(1, 3, 30) # Columns B-D width set to 30.
worksheet.set_column(’E:E’, 20) # Column E width set to 20.
worksheet.set_column(’F:H’, 30) # Columns F-H width set to 30.

The width corresponds to the column width value that is specified in Excel. It is approximately equal to the length of
a string in the default font of Calibri 11. Unfortunately, there is no way to specify “AutoFit” for a column in the Excel
file format. This feature is only available at runtime from within Excel. It is possible to simulate “AutoFit” by tracking
the width of the data in the column as your write it.

As usual the cell_format Format parameter is optional. If you wish to set the format without changing the width
you can pass None as the width parameter:

cell_format = workbook.add_format({’bold’: True})

worksheet.set_column(0, 0, None, cell_format)

The cell_format parameter will be applied to any cells in the column that don’t have a format. For example:

worksheet.set_column(’A:A’, None, format1) # Col 1 has format1.

worksheet.write(’A1’, ’Hello’) # Cell A1 defaults to format1.
worksheet.write(’A2’, ’Hello’, format2) # Cell A2 keeps format2.

A row format takes precedence over a default column format:

worksheet.set_row(0, None, format1) # Set format for row 1.
worksheet.set_column(’A:A’, None, format2) # Set format for col 1.

worksheet.write(’A1’, ’Hello’) # Defaults to format1
worksheet.write(’A2’, ’Hello’) # Defaults to format2

The options parameter is a dictionary with the following possible keys:

• ’hidden’

• ’level’

• ’collapsed’

Options can be set as follows:

worksheet.set_column(’D:D’, 20, cell_format, {’hidden’: 1})

Or use defaults for other properties and set the options only.
worksheet.set_column(’E:E’, None, None, {’hidden’: 1})

The ’hidden’ option is used to hide a column. This can be used, for example, to hide intermediary steps in a
complicated calculation:

worksheet.set_column(’D:D’, 20, cell_format, {’hidden’: 1})

The ’level’ parameter is used to set the outline level of the column. Outlines are described in “Working with
Outlines and Grouping”. Adjacent columns with the same outline level are grouped together into a single outline.
(Note: This feature is not implemented yet).

The following example sets an outline level of 1 for columns B to G:

worksheet.set_column(’B:G’, None, None, {’level’: 1})

Note: Excel allows up to 7 outline levels. The ’level’ parameter should be in the range 0 <= level <= 7.

36 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 0.0.6

The ’hidden’ parameter can also be used to hide collapsed outlined columns when used in conjunction with the
’level’ parameter:

worksheet.set_column(’B:G’, None, None, {’hidden’: 1, ’level’: 1})

The ’collapsed’ parameter is used in collapsed outlines to indicate which column has the collapsed ’+’ symbol:

worksheet.set_column(’H:H’, None, None, {’collapsed’: 1})

7.10 worksheet.activate()

activate()
Make a worksheet the active, i.e., visible worksheet.

The activate() method is used to specify which worksheet is initially visible in a multi-sheet workbook:

worksheet1 = workbook.add_worksheet()
worksheet2 = workbook.add_worksheet()
worksheet3 = workbook.add_worksheet()

worksheet3.activate()

More than one worksheet can be selected via the select() method, see below, however only one worksheet can be
active.

The default active worksheet is the first worksheet.

7.11 worksheet.select()

select()
Set a worksheet tab as selected.

The select() method is used to indicate that a worksheet is selected in a multi-sheet workbook:

7.10. worksheet.activate() 37

Creating Excel files with Python and XlsxWriter, Release 0.0.6

worksheet1.activate()
worksheet2.select()
worksheet3.select()

A selected worksheet has its tab highlighted. Selecting worksheets is a way of grouping them together so that, for
example, several worksheets could be printed in one go. A worksheet that has been activated via the activate()
method will also appear as selected.

38 Chapter 7. The Worksheet Class

CHAPTER

EIGHT

THE WORKSHEET CLASS (PAGE
SETUP)

Page set-up methods affect the way that a worksheet looks when it is printed. They control features such as paper size,
orientation, page headers and margins.

These methods are really just standard worksheet methods. They are documented separately for the sake of clarity.

8.1 worksheet.set_landscape()

set_landscape()
Set the page orientation as landscape.

This method is used to set the orientation of a worksheet’s printed page to landscape:

worksheet.set_landscape()

8.2 worksheet.set_portrait()

set_portrait()
Set the page orientation as portrait.

This method is used to set the orientation of a worksheet’s printed page to portrait. The default worksheet orientation
is portrait, so you won’t generally need to call this method:

worksheet.set_portrait()

8.3 worksheet.set_page_view()

set_page_view()
Set the page view mode.

This method is used to display the worksheet in “Page View/Layout” mode:

worksheet.set_page_view()

39

Creating Excel files with Python and XlsxWriter, Release 0.0.6

8.4 worksheet.set_paper()

set_paper(index)
Set the paper type.

Parameters index (int) – The Excel paper format index.

This method is used to set the paper format for the printed output of a worksheet. The following paper styles are
available:

Index Paper format Paper size
0 Printer default
1 Letter 8 1/2 x 11 in
2 Letter Small 8 1/2 x 11 in
3 Tabloid 11 x 17 in
4 Ledger 17 x 11 in
5 Legal 8 1/2 x 14 in
6 Statement 5 1/2 x 8 1/2 in
7 Executive 7 1/4 x 10 1/2 in
8 A3 297 x 420 mm
9 A4 210 x 297 mm
10 A4 Small 210 x 297 mm
11 A5 148 x 210 mm
12 B4 250 x 354 mm
13 B5 182 x 257 mm
14 Folio 8 1/2 x 13 in
15 Quarto 215 x 275 mm
16 10x14 in
17 11x17 in
18 Note 8 1/2 x 11 in
19 Envelope 9 3 7/8 x 8 7/8
20 Envelope 10 4 1/8 x 9 1/2
21 Envelope 11 4 1/2 x 10 3/8
22 Envelope 12 4 3/4 x 11
23 Envelope 14 5 x 11 1/2
24 C size sheet
25 D size sheet
26 E size sheet
27 Envelope DL 110 x 220 mm
28 Envelope C3 324 x 458 mm
29 Envelope C4 229 x 324 mm
30 Envelope C5 162 x 229 mm
31 Envelope C6 114 x 162 mm
32 Envelope C65 114 x 229 mm
33 Envelope B4 250 x 353 mm
34 Envelope B5 176 x 250 mm
35 Envelope B6 176 x 125 mm
36 Envelope 110 x 230 mm
37 Monarch 3.875 x 7.5 in
38 Envelope 3 5/8 x 6 1/2 in
39 Fanfold 14 7/8 x 11 in
40 German Std Fanfold 8 1/2 x 12 in

Continued on next page

40 Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Table 8.1 – continued from previous page
Index Paper format Paper size

41 German Legal Fanfold 8 1/2 x 13 in

Note, it is likely that not all of these paper types will be available to the end user since it will depend on the paper
formats that the user’s printer supports. Therefore, it is best to stick to standard paper types:

worksheet.set_paper(1) # US Letter
worksheet.set_paper(9) # A4

If you do not specify a paper type the worksheet will print using the printer’s default paper style.

8.5 center_horizontally()

center_horizontally()
Center the printed page horizontally.

Center the worksheet data horizontally between the margins on the printed page:

worksheet.center_horizontally()

8.6 center_vertically()

center_vertically()
Center the printed page vertically.

Center the worksheet data vertically between the margins on the printed page:

worksheet.center_vertically()

8.7 worksheet.set_margins()

set_margins([left=0.7,] right=0.7,] top=0.75,] bottom=0.75]]])
Set the worksheet margins for the printed page.

Parameters

• left (float) – Left margin in inches. Default 0.7.

• right (float) – Right margin in inches. Default 0.7.

• top (float) – Top margin in inches. Default 0.75.

• bottom (float) – Bottom margin in inches. Default 0.75.

The set_margins() method is used to set the margins of the worksheet when it is printed. The units are in inches.
All parameters are optional and have default values corresponding to the default Excel values.

8.5. center_horizontally() 41

http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float

Creating Excel files with Python and XlsxWriter, Release 0.0.6

8.8 set_header()

set_header([header=’‘,] margin=0.3]])
Set the printed page header caption and optional margin.

Parameters

• header (string) – Header string with Excel control characters.

• margin (float) – Header margin in inches. Default 0.3.

Headers and footers are generated using a string which is a combination of plain text and control characters.

The available control character are:

Control Category Description
&L Justification Left
&C Center
&R Right
&P Information Page number
&N Total number of pages
&D Date
&T Time
&F File name
&A Worksheet name
&Z Workbook path
&fontsize Font Font size
&”font,style” Font name and style
&U Single underline
&E Double underline
&S Strikethrough
&X Superscript
&Y Subscript
&& Miscellaneous Literal ampersand &

Text in headers and footers can be justified (aligned) to the left, center and right by prefixing the text with the control
characters &L, &C and &R.

For example (with ASCII art representation of the results):

worksheet.set_header(’&LHello’)

| |
| Hello |
| |

$worksheet->set_header(’&CHello’);

| |
| Hello |
| |

$worksheet->set_header(’&RHello’);

42 Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/functions.html#float

Creating Excel files with Python and XlsxWriter, Release 0.0.6

| |
| Hello |
| |

For simple text, if you do not specify any justification the text will be centred. However, you must prefix the text with
&C if you specify a font name or any other formatting:

worksheet.set_header(’Hello’)

| |
| Hello |
| |

You can have text in each of the justification regions:

worksheet.set_header(’&LCiao&CBello&RCielo’)

| |
| Ciao Bello Cielo |
| |

The information control characters act as variables that Excel will update as the workbook or worksheet changes.
Times and dates are in the users default format:

worksheet.set_header(’&CPage &P of &N’)

| |
| Page 1 of 6 |
| |

worksheet.set_header(’&CUpdated at &T’)

| |
| Updated at 12:30 PM |
| |

You can specify the font size of a section of the text by prefixing it with the control character &n where n is the font
size:

worksheet1.set_header(’&C&30Hello Big’)
worksheet2.set_header(’&C&10Hello Small’)

You can specify the font of a section of the text by prefixing it with the control sequence &"font,style" where
fontname is a font name such as “Courier New” or “Times New Roman” and style is one of the standard Windows
font descriptions: “Regular”, “Italic”, “Bold” or “Bold Italic”:

worksheet1.set_header(’&C&"Courier New,Italic"Hello’)
worksheet2.set_header(’&C&"Courier New,Bold Italic"Hello’)
worksheet3.set_header(’&C&"Times New Roman,Regular"Hello’)

It is possible to combine all of these features together to create sophisticated headers and footers. As an aid to setting
up complicated headers and footers you can record a page set-up as a macro in Excel and look at the format strings
that VBA produces. Remember however that VBA uses two double quotes "" to indicate a single double quote. For
the last example above the equivalent VBA code looks like this:

8.8. set_header() 43

Creating Excel files with Python and XlsxWriter, Release 0.0.6

.LeftHeader = ""

.CenterHeader = "&""Times New Roman,Regular""Hello"

.RightHeader = ""

To include a single literal ampersand & in a header or footer you should use a double ampersand &&:

worksheet1.set_header(’&CCuriouser and Curiouser - Attorneys at Law’)

As stated above the margin parameter is optional. As with the other margins the value should be in inches. The default
header and footer margin is 0.3 inch. The header and footer margin size can be set as follows:

worksheet.set_header(’&CHello’, 0.75)

The header and footer margins are independent of the top and bottom margins.

Note, the header or footer string must be less than 255 characters. Strings longer than this will not be written and an
exception will be thrown.

8.9 set_footer()

set_header([footer=’‘,] margin=0.3]])
Set the printed page footer caption and optional margin.

Parameters

• footer (string) – Footer string with Excel control characters.

• margin (float) – Footer margin in inches. Default 0.3.

The syntax of the set_footer() method is the same as set_header().

8.10 repeat_rows()

repeat_rows(first_row[, last_row])
Set the number of rows to repeat at the top of each printed page.

Parameters

• first_row (int) – First row of repeat range.

• last_row (int) – Last row of repeat range. Optional.

For large Excel documents it is often desirable to have the first row or rows of the worksheet print out at the top of
each page.

This can be achieved by using the repeat_rows() method. The parameters first_row and last_row are zero
based. The last_row parameter is optional if you only wish to specify one row:

worksheet1.repeat_rows(0) # Repeat the first row.
worksheet2.repeat_rows(0, 1) # Repeat the first two rows.

8.11 repeat_columns()

repeat_columns(first_col[, last_col])
Set the columns to repeat at the left hand side of each printed page.

44 Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Parameters

• first_col (int) – First column of repeat range.

• last_col (int) – Last column of repeat range. Optional.

For large Excel documents it is often desirable to have the first column or columns of the worksheet print out at the
left hand side of each page.

This can be achieved by using the repeat_columns() method. The parameters first_column and
last_column are zero based. The last_column parameter is optional if you only wish to specify one column.
You can also specify the columns using A1 column notation, see Working with Cell Notation for more details.:

worksheet1.repeat_columns(0) # Repeat the first column.
worksheet2.repeat_columns(0, 1) # Repeat the first two columns.
worksheet3.repeat_columns(’A:A’) # Repeat the first column.
worksheet4.repeat_columns(’A:B’) # Repeat the first two columns.

8.12 hide_gridlines()

set_header([option=1])
Set the option to hide gridlines on the screen and the printed page.

Parameters option (int) – Hide gridline options. See below.

This method is used to hide the gridlines on the screen and printed page. Gridlines are the lines that divide the cells on
a worksheet. Screen and printed gridlines are turned on by default in an Excel worksheet.

If you have defined your own cell borders you may wish to hide the default gridlines:

worksheet.hide_gridlines()

The following values of option are valid:

0. Don’t hide gridlines.

1. Hide printed gridlines only.

2. Hide screen and printed gridlines.

If you don’t supply an argument the default option is 1, i.e. only the printed gridlines are hidden.

8.13 print_row_col_headers()

print_row_col_headers()
Set the option to print the row and column headers on the printed page.

When you print a worksheet from Excel you get the data selected in the print area. By default the Excel row and
column headers (the row numbers on the left and the column letters at the top) aren’t printed.

The print_row_col_headers() method sets the printer option to print these headers:

worksheet.print_row_col_headers()

8.12. hide_gridlines() 45

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.0.6

8.14 worksheet.print_across()

print_across()
Set the order in which pages are printed.

The print_across method is used to change the default print direction. This is referred to by Excel as the sheet
“page order”:

worksheet.print_across()

The default page order is shown below for a worksheet that extends over 4 pages. The order is called “down then
across”:

[1] [3]
[2] [4]

However, by using the print_across method the print order will be changed to “across then down”:

[1] [2]
[3] [4]

46 Chapter 8. The Worksheet Class (Page Setup)

CHAPTER

NINE

THE FORMAT CLASS

This section describes the methods and properties that are available for formatting cells in Excel.

The properties of a cell that can be formatted include: fonts, colours, patterns, borders, alignment and number format-
ting.

9.1 format.set_font_name()

set_font_name(fontname)
Set the font used in the cell.

47

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Parameters fontname (string) – Cell font.

Specify the font used used in the cell format:

cell_format.set_font_name(’Times New Roman’)

Excel can only display fonts that are installed on the system that it is running on. Therefore it is best to use the fonts
that come as standard such as ‘Calibri’, ‘Times New Roman’ and ‘Courier New’.

The default font for an unformatted cell in Excel 2007+ is ‘Calibri’.

9.2 format.set_font_size()

set_font_size(size)
Set the size of the font used in the cell.

Parameters size (int) – The cell font size.

Set the font size of the cell format:

format = workbook.add_format()
format.set_font_size(30)

Excel adjusts the height of a row to accommodate the largest font size in the row. You can also explicitly specify the
height of a row using the set_row() worksheet method.

9.3 format.set_font_color()

set_font_color(color)
Set the color of the font used in the cell.

Parameters color (string) – The cell font color.

Set the font colour:

format = workbook.add_format()

format.set_font_color(’red’)

worksheet.write(0, 0, ’wheelbarrow’, format)

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format Colors.

Note: The set_font_color() method is used to set the colour of the font in a cell. To set the colour of a cell use
the set_bg_color() and set_pattern() methods.

9.4 format.set_bold()

set_bold()
Turn on bold for the format font.

Set the bold property of the font:

format.set_bold()

48 Chapter 9. The Format Class

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

9.5 format.set_italic()

set_italic()
Turn on italic for the format font.

Set the italic property of the font:

format.set_italic()

9.6 format.set_underline()

set_underline()
Turn on underline for the format.

Parameters style (int) – Underline style.

Set the underline property of the format:

format.set_underline()

The available underline styles are:

• 1 = Single underline (the default)

• 2 = Double underline

• 33 = Single accounting underline

• 34 = Double accounting underline

9.7 format.set_font_strikeout()

set_font_strikeout()
Set the strikeout property of the font.

9.8 format.set_font_script()

set_font_script()
Set the superscript/subscript property of the font.

The available options are:

• 1 = Superscript

• 2 = Subscript

9.9 format.set_num_format()

set_num_format(format_string)
Set the number format for a cell.

Parameters format_string (string) – The cell number format.

9.5. format.set_italic() 49

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

This method is used to define the numerical format of a number in Excel. It controls whether a number is displayed as
an integer, a floating point number, a date, a currency value or some other user defined format.

The numerical format of a cell can be specified by using a format string or an index to one of Excel’s built-in formats:

format1 = workbook.add_format()
format2 = workbook.add_format()

format1.set_num_format(’d mmm yyyy’) # Format string.
format2.set_num_format(0x0F) # Format index.

Format strings can control any aspect of number formatting allowed by Excel:

format01.set_num_format(’0.000’)
worksheet.write(1, 0, 3.1415926, format01) # -> 3.142

format02.set_num_format(’#,##0’)
worksheet.write(2, 0, 1234.56, format02) # -> 1,235

format03.set_num_format(’#,##0.00’)
worksheet.write(3, 0, 1234.56, format03) # -> 1,234.56

format04.set_num_format(’0.00’)
worksheet.write(4, 0, 49.99, format04) # -> 49.99

format05.set_num_format(’mm/dd/yy’)
worksheet.write(5, 0, 36892.521, format05) # -> 01/01/01

format06.set_num_format(’mmm d yyyy’)
worksheet.write(6, 0, 36892.521, format06) # -> Jan 1 2001

format07.set_num_format(’d mmmm yyyy’)
worksheet.write(7, 0, 36892.521, format07) # -> 1 January 2001

format08.set_num_format(’dd/mm/yyyy hh:mm AM/PM’)
worksheet.write(8, 0, 36892.521, format08) # -> 01/01/2001 12:30 AM

format09.set_num_format(’0 "dollar and" .00 "cents"’)
worksheet.write(9, 0, 1.87, format09) # -> 1 dollar and .87 cents

Conditional numerical formatting.
format10.set_num_format(’[Green]General;[Red]-General;General’)
worksheet.write(10, 0, 123, format10) # > 0 Green
worksheet.write(11, 0, -45, format10) # < 0 Red
worksheet.write(12, 0, 0, format10) # = 0 Default colour

Zip code.
format11.set_num_format(’00000’)
worksheet.write(13, 0, 1209, format11)

50 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 0.0.6

The number system used for dates is described in Working with Dates and Time.

The colour format should have one of the following values:

[Black] [Blue] [Cyan] [Green] [Magenta] [Red] [White] [Yellow]

For more information refer to the Microsoft documentation on cell formats.

Excel’s built-in formats are shown in the following table:

Index Index Format String
0 0x00 General
1 0x01 0
2 0x02 0.00
3 0x03 #,##0
4 0x04 #,##0.00
5 0x05 ($#,##0_);($#,##0)
6 0x06 ($#,##0_);[Red]($#,##0)
7 0x07 ($#,##0.00_);($#,##0.00)
8 0x08 ($#,##0.00_);[Red]($#,##0.00)
9 0x09 0%
10 0x0a 0.00%
11 0x0b 0.00E+00
12 0x0c # ?/?
13 0x0d # ??/??

Continued on next page

9.9. format.set_num_format() 51

http://office.microsoft.com/en-gb/assistance/HP051995001033.aspx

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Table 9.1 – continued from previous page
Index Index Format String

14 0x0e m/d/yy
15 0x0f d-mmm-yy
16 0x10 d-mmm
17 0x11 mmm-yy
18 0x12 h:mm AM/PM
19 0x13 h:mm:ss AM/PM
20 0x14 h:mm
21 0x15 h:mm:ss
22 0x16 m/d/yy h:mm
...
37 0x25 (#,##0_);(#,##0)
38 0x26 (#,##0_);[Red](#,##0)
39 0x27 (#,##0.00_);(#,##0.00)
40 0x28 (#,##0.00_);[Red](#,##0.00)
41 0x29 _(* #,##0_);_(* (#,##0);_(* "-"_);_(@_)
42 0x2a _($* #,##0_);_($* (#,##0);_($* "-"_);_(@_)
43 0x2b _(* #,##0.00_);_(* (#,##0.00);_(* "-"??_);_(@_)
44 0x2c _($* #,##0.00_);_($* (#,##0.00);_($* "-"??_);_(@_)
45 0x2d mm:ss
46 0x2e [h]:mm:ss
47 0x2f mm:ss.0
48 0x30 ##0.0E+0
49 0x31 @

Note: Numeric formats 23 to 36 are not documented by Microsoft and may differ in international versions.

Note: The dollar sign appears as the defined local currency symbol.

9.10 format.set_locked()

set_locked(state)
Set the cell locked state.

Parameters state (bool) – Turn cell locking on or off. Defaults to True.

This property can be used to prevent modification of a cells contents. Following Excel’s convention, cell lock-
ing is turned on by default. However, it only has an effect if the worksheet has been protected, see the worksheet
protect() method (not implemented yet):

locked = workbook.add_format()
locked.set_locked(True)

unlocked = workbook.add_format()
locked.set_locked(False)

Enable worksheet protection
worksheet.protect()

52 Chapter 9. The Format Class

http://docs.python.org/2/library/functions.html#bool

Creating Excel files with Python and XlsxWriter, Release 0.0.6

This cell cannot be edited.
worksheet.write(’A1’, ’=1+2’, locked)

This cell can be edited.
worksheet.write(’A2’, ’=1+2’, unlocked)

9.11 format.set_hidden()

set_hidden()
Hide formulas in a cell.

This property is used to hide a formula while still displaying its result. This is generally used to hide complex
calculations from end users who are only interested in the result. It only has an effect if the worksheet has been
protected, see the worksheet protect() method (not implemented yet):

hidden = workbook.add_format()
hidden.set_hidden()

Enable worksheet protection
worksheet.protect()

The formula in this cell isn’t visible
worksheet.write(’A1’, ’=1+2’, hidden)

9.12 format.set_align()

set_align(alignment)
Set the alignment for data in the cell.

Parameters alignment (string) – The vertical and or horizontal alignment direction.

This method is used to set the horizontal and vertical text alignment within a cell. The following are the available
horizontal alignments:

Horizontal alignment
center
right
fill
justify
center_across

The following are the available vertical alignments:

Vertical alignment
top
vcenter
bottom
vjustify

As in Excel, vertical and horizontal alignments can be combined:

format = workbook.add_format()

format.set_align(’center’)
format.set_align(’vcenter’)

9.11. format.set_hidden() 53

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

worksheet.set_row(0, 30)
worksheet.write(0, 0, ’Some Text’, format)

Text can be aligned across two or more adjacent cells using the ’center_across’ property. However, for genuine
merged cells it is better to use the merge_range() worksheet method (not implemented yet).

The ’vjustify’ (vertical justify) option can be used to provide automatic text wrapping in a cell. The height of the
cell will be adjusted to accommodate the wrapped text. To specify where the text wraps use the set_text_wrap()
method.

9.13 format.set_center_across()

set_center_across()
Centre text across adjacent cells.

Text can be aligned across two or more adjacent cells using the set_center_across() method. This is an alias
for the set_align(’center_across’) method call.

Only one cell should contain the text, the other cells should be blank:

format = workbook.add_format()
format.set_center_across()

worksheet.write(1, 1, ’Center across selection’, format)
worksheet.write_blank(1, 2, format)

For actual merged cells it is better to use the merge_range() worksheet method.

9.14 format.set_text_wrap()

set_text_wrap()
Wrap text in a cell.

Turn text wrapping on for text in a cell:

format = workbook.add_format()
format.set_text_wrap()

worksheet.write(0, 0, "Some long text to wrap in a cell", format)

If you wish to control where the text is wrapped you can add newline characters to the string:

format = workbook.add_format()
format.set_text_wrap()

worksheet.write(0, 0, "It’s\na bum\nwrap", format)

Excel will adjust the height of the row to accommodate the wrapped text. A similar effect can be obtained without
newlines using the set_align(’vjustify’) method.

9.15 format.set_rotation()

set_rotation(angle)
Set the rotation of the text in a cell.

54 Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Parameters angle (int) – Rotation angle in the range -90 to 90 and 270.

Set the rotation of the text in a cell. The rotation can be any angle in the range -90 to 90 degrees:

format = workbook.add_format()
format.set_rotation(30)

worksheet.write(0, 0, ’This text is rotated’, format)

The angle 270 is also supported. This indicates text where the letters run from top to bottom.

9.16 format.set_indent()

set_indent(level)
Set the cell text indentation level.

Parameters level (int) – Indentation level.

This method can be used to indent text in a cell. The argument, which should be an integer, is taken as the level of
indentation:

format = workbook.add_format()
format.set_indent(2)

worksheet.write(0, 0, ’This text is indented’, format)

Indentation is a horizontal alignment property. It will override any other horizontal properties but it can be used in
conjunction with vertical properties.

9.17 format.set_shrink()

set_shrink()
Turn on the text “shrink to fit” for a cell.

This method can be used to shrink text so that it fits in a cell:

format = workbook.add_format()
format.set_shrink()

worksheet.write(0, 0, ’Honey, I shrunk the text!’, format)

9.18 format.set_text_justlast()

set_text_justlast()
Turn on the justify last text property.

Only applies to Far Eastern versions of Excel.

9.19 format.set_pattern()

set_pattern(index)

9.16. format.set_indent() 55

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Parameters index (int) – Pattern index. 0 - 18.

Set the background pattern of a cell.

The most common pattern is 1 which is a solid fill of the background color.

9.20 format.set_bg_color()

set_bg_color(color)
Set the color of the background pattern in a cell.

Parameters color (string) – The cell font color.

The set_bg_color() method can be used to set the background colour of a pattern. Patterns are defined via the
set_pattern() method. If a pattern hasn’t been defined then a solid fill pattern is used as the default.

Here is an example of how to set up a solid fill in a cell:

format = workbook.add_format()

format.set_pattern(1) # This is optional when using a solid fill.
format.set_bg_color(’green’)

worksheet.write(’A1’, ’Ray’, format)

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format Colors.

9.21 format.set_fg_color()

set_fg_color(color)
Set the color of the foreground pattern in a cell.

Parameters color (string) – The cell font color.

The set_fg_color() method can be used to set the foreground colour of a pattern.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format Colors.

56 Chapter 9. The Format Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

9.22 format.set_border()

set_border(style)
Set the cell border style.

Parameters style (int) – Border style index. Default is 1.

Individual border elements can be configured using the following methods with the same parameters:

• set_bottom()

• set_top()

• set_left()

• set_right()

A cell border is comprised of a border on the bottom, top, left and right. These can be set to the same value using
set_border() or individually using the relevant method calls shown above.

The following shows the border styles sorted by XlsxWriter index number:

Index Name Weight Style
0 None 0
1 Continuous 1 -----------
2 Continuous 2 -----------
3 Dash 1 - - - - - -
4 Dot 1
5 Continuous 3 -----------
6 Double 3 ===========
7 Continuous 0 -----------
8 Dash 2 - - - - - -
9 Dash Dot 1 - . - . - .
10 Dash Dot 2 - . - . - .
11 Dash Dot Dot 1 - . . - . .
12 Dash Dot Dot 2 - . . - . .
13 SlantDash Dot 2 / - . / - .

The following shows the borders in the order shown in the Excel Dialog:

Index Style Index Style
0 None 12 - . . - . .
7 ----------- 13 / - . / - .
4 10 - . - . - .
11 - . . - . . 8 - - - - - -
9 - . - . - . 2 -----------
3 - - - - - - 5 -----------
1 ----------- 6 ===========

9.23 format.set_bottom()

set_bottom(style)
Set the cell bottom border style.

Parameters style (int) – Border style index. Default is 1.

Set the cell bottom border style. See set_border() for details on the border styles.

9.22. format.set_border() 57

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.0.6

9.24 format.set_top()

set_top(style)
Set the cell top border style.

Parameters style (int) – Border style index. Default is 1.

Set the cell top border style. See set_border() for details on the border styles.

9.25 format.set_left()

set_left(style)
Set the cell left border style.

Parameters style (int) – Border style index. Default is 1.

Set the cell left border style. See set_border() for details on the border styles.

9.26 format.set_right()

set_right(style)
Set the cell right border style.

Parameters style (int) – Border style index. Default is 1.

Set the cell right border style. See set_border() for details on the border styles.

9.27 format.set_border_color()

set_border_color(color)
Set the color of the cell border.

Parameters color (string) – The cell border color.

Individual border elements can be configured using the following methods with the same parameters:

• set_bottom_color()

• set_top_color()

• set_left_color()

• set_right_color()

Set the colour of the cell borders. A cell border is comprised of a border on the bottom, top, left and right. These
can be set to the same colour using set_border_color() or individually using the relevant method calls shown
above.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format Colors.

9.28 format.set_bottom_color()

set_bottom_color(color)
Set the color of the bottom cell border.

58 Chapter 9. The Format Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Parameters color (string) – The cell border color.

See set_border_color() for details on the border colors.

9.29 format.set_top_color()

set_top_color(color)
Set the color of the top cell border.

Parameters color (string) – The cell border color.

See set_border_color() for details on the border colors.

9.30 format.set_left_color()

set_left_color(color)
Set the color of the left cell border.

Parameters color (string) – The cell border color.

See set_border_color() for details on the border colors.

9.31 format.set_right_color()

set_right_color(color)
Set the color of the right cell border.

Parameters color (string) – The cell border color.

See set_border_color() for details on the border colors.

9.29. format.set_top_color() 59

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.0.6

60 Chapter 9. The Format Class

CHAPTER

TEN

WORKING WITH CELL NOTATION

XlsxWriter supports two forms of notation to designate the position of cells: Row-column notation and A1 notation.

Row-column notation uses a zero based index for both row and column while A1 notation uses the standard Excel
alphanumeric sequence of column letter and 1-based row. For example:

(0, 0) # Row-column notation.
(’A1’) # The same cell in A1 notation.

(6, 2) # Row-column notation.
(’C7’) # The same cell in A1 notation.

Row-column notation is useful if you are referring to cells programmatically:

for row in range(0, 5):
worksheet.write(row, 0, ’Hello’)

A1 notation is useful for setting up a worksheet manually and for working with formulas:

worksheet.write(’H1’, 200)
worksheet.write(’H2’, ’=H1+1’)

In general when using the XlsxWriter module you can use A1 notation anywhere you can use row-column notation:

These are equivalent.
worksheet.write(0, 7, 200)
worksheet.write(’H1’, 200)

The XlsxWriter utility contains several helper functions for dealing with A1 notation, for example:

from utility import xl_cell_to_rowcol, import xl_rowcol_to_cell

(row, col) = xl_cell_to_rowcol(’C2’) # -> (1, 2)
string = xl_rowcol_to_cell(1, 2) # -> C2

Note: In Excel it is also possible to use R1C1 notation. This is not supported by XlsxWriter.

61

Creating Excel files with Python and XlsxWriter, Release 0.0.6

62 Chapter 10. Working with Cell Notation

CHAPTER

ELEVEN

WORKING WITH FORMATS

The methods and properties used to add formatting to a cell are shown in The Format Class.

This section provides some additional information about working with formats.

11.1 Creating and using a Format object

Cell formatting is defined through a Format object. Format objects are created by calling the workbook
add_format() method as follows:

format1 = workbook.add_format() # Set properties later.
format2 = workbook.add_format(props) # Set properties at creation.

Once a Format object has been constructed and its properties have been set it can be passed as an argument to the
worksheet write methods as follows:

worksheet.write (0, 0, ’Foo’, format)
worksheet.write_string(1, 0, ’Bar’, format)
worksheet.write_number(2, 0, 3, format)
worksheet.write_blank (3, 0, ’’, format)

Formats can also be passed to the worksheet set_row() and set_column() methods to define the default prop-
erty for a row or column:

worksheet.set_row(0, 18, format)
worksheet.set_column(’A:D’, 20, format)

11.2 Format methods and Format properties

The following table shows the Excel format categories, the formatting properties that can be applied and the equivalent
object method:

Category Description Property Method Name
Font Font type ’font_name’ set_font_name()

Font size ’font_size’ set_font_size()
Font color ’font_color’ set_font_color()
Bold ’bold’ set_bold()
Italic ’italic’ set_italic()

Continued on next page

63

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Table 11.1 – continued from previous page
Category Description Property Method Name

Underline ’underline’ set_underline()
Strikeout ’font_strikeout’ set_font_strikeout()
Super/Subscript ’font_script’ set_font_script()

Number Numeric format ’num_format’ set_num_format()
Protection Lock cells ’locked’ set_locked()

Hide formulas ’hidden’ set_hidden()
Alignment Horizontal align ’align’ set_align()

Vertical align ’valign’ set_align()
Rotation ’rotation’ set_rotation()
Text wrap ’text_wrap’ set_text_wrap()
Justify last ’text_justlast’ set_text_justlast()
Center across ’center_across’ set_center_across()
Indentation ’indent’ set_indent()
Shrink to fit ’shrink’ set_shrink()

Pattern Cell pattern ’pattern’ set_pattern()
Background color ’bg_color’ set_bg_color()
Foreground color ’fg_color’ set_fg_color()

Border Cell border ’border’ set_border()
Bottom border ’bottom’ set_bottom()
Top border ’top’ set_top()
Left border ’left’ set_left()
Right border ’right’ set_right()
Border color ’border_color’ set_border_color()
Bottom color ’bottom_color’ set_bottom_color()
Top color ’top_color’ set_top_color()
Left color ’left_color’ set_left_color()
Right color ’right_color’ set_right_color()

There are two ways of setting Format properties: by using the object interface or by setting the property as a dictionary
of key/value pairs in the constructor. For example, a typical use of the object interface would be as follows:

format = workbook.add_format()
format.set_bold()
format.set_font_color(’red’)

By comparison the properties can be set by passing a dictionary of properties to the add_format() constructor:

format = workbook.add_format({’bold’: True, ’font_color’: ’red’})

The object method interface is mainly provided for backward compatibility with Excel::Writer::XLSX. The key/value
interface has proved to be more flexible in real world programs and is the recommended method for setting format
properties.

11.3 Format Colors

Format property colors are specified using a Html sytle #RRGGBB index:

cell_format.set_font_color(’#FF0000’)

For backward compatibility with Excel::Writer::XLSX a limited number of color names are supported:

64 Chapter 11. Working with Formats

Creating Excel files with Python and XlsxWriter, Release 0.0.6

cell_format.set_font_color(’red’)

The color names and corresponding #RRGGBB indices are shown below:

Color name RGB color code
black #000000
blue #0000FF
brown #800000
cyan #00FFFF
gray #808080
green #008000
lime #00FF00
magenta #FF00FF
navy #000080
orange #FF6600
pink #FF00FF
purple #800080
red #FF0000
silver #C0C0C0
white #FFFFFF
yellow #FFFF00

11.4 Format Defaults

The default Excel 2007+ cell format is Calibri 11 with all other properties off.

In general a format method call without an argument will turn a property on, for example:

format1 = workbook.add_format()

format1.set_bold() # Turns bold on.
format1.set_bold(1) # Also turns bold on.

Since most properties are already off by default it isn’t generally required to turn them off. However, it is possible if
required:

format1.set_bold(0); # Turns bold off.

11.5 Modifying Formats

Each unique cell format in an XlsxWriter spreadsheet must have a corresponding Format object. It isn’t possible to
use a Format with a write() method and then redefine it for use at a later stage. This is because a Format is applied
to a cell not in its current state but in its final state. Consider the following example:

format = workbook.add_format({’bold’: True, ’font_color’: ’red’})
worksheet.write(’A1’, ’Cell A1’, format)

Later...
format.set_font_color(’green’)
worksheet.write(’B1’, ’Cell B1’, format)

11.4. Format Defaults 65

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Cell A1 is assigned a format which is initially has the font set to the colour red. However, the colour is subsequently
set to green. When Excel displays Cell A1 it will display the final state of the Format which in this case will be the
colour green.

66 Chapter 11. Working with Formats

CHAPTER

TWELVE

WORKING WITH DATES AND TIME

Dates and times in Excel are represented by real numbers, for example “Jan 1 2013 12:00 PM” is represented by the
number 41275.5.

The integer part of the number stores the number of days since the epoch and the fractional part stores the percentage
of the day.

A date or time in Excel is just like any other number. To display the number as a date you must apply an Excel number
format to it. Here are some examples:

from xlsxwriter.workbook import Workbook

workbook = Workbook(’date_examples.xlsx’)
worksheet = workbook.add_worksheet()

Widen column A for extra visibility.
worksheet.set_column(’A:A’, 30)

A number to convert to a date.
number = 41333.5

Write it as a number without formatting.
worksheet.write(’A1’, number) # 41333.5

format2 = workbook.add_format({’num_format’: ’dd/mm/yy’})
worksheet.write(’A2’, number, format2) # 28/02/13

format3 = workbook.add_format({’num_format’: ’mm/dd/yy’})
worksheet.write(’A3’, number, format3) # 02/28/13

format4 = workbook.add_format({’num_format’: ’d-m-yyyy’})
worksheet.write(’A4’, number, format4) # 28-2-2013

format5 = workbook.add_format({’num_format’: ’dd/mm/yy hh:mm’})
worksheet.write(’A5’, number, format5) # 28/02/13 12:00

format6 = workbook.add_format({’num_format’: ’d mmm yyyy’})
worksheet.write(’A6’, number, format6) # 28 Feb 2013

format7 = workbook.add_format({’num_format’: ’mmm d yyyy hh:mm AM/PM’})
worksheet.write(’A7’, number, format7) # Feb 28 2008 12:00 PM

workbook.close()

67

Creating Excel files with Python and XlsxWriter, Release 0.0.6

To make working with dates and times a little easier the XlsxWriter module provides a write_datetime()method
to write dates in datetime.datetime format.

The datetime.datetime class is part of the standard Python datetime library.

There are many way to create a a datetime object but the most common is to use the datetime.strptime method:

date_time = datetime.strptime(’2013-01-23’, ’%Y-%m-%d’)

We also need to create and apply a number format to format the date:

date_format = workbook.add_format({’num_format’: ’d mmmm yyyy’})
worksheet.write_datetime(’A1’, date_time, date_format)

Displays "23 January 2013"

Here is a longer example that displays the same date in a several different formats:

from datetime import datetime
from xlsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook(’datetimes.xlsx’)
worksheet = workbook.add_worksheet()
bold = workbook.add_format({’bold’: True})

Expand the first columns so that the date is visible.
worksheet.set_column(’A:B’, 30)

68 Chapter 12. Working with Dates and Time

http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Write the column headers.
worksheet.write(’A1’, ’Formatted date’, bold)
worksheet.write(’B1’, ’Format’, bold)

Create a datetime object to use in the examples.

date_time = datetime.strptime(’2013-01-23 12:30:05.123’,
’%Y-%m-%d %H:%M:%S.%f’)

Examples date and time formats.
date_formats = (

’dd/mm/yy’,
’mm/dd/yy’,
’dd m yy’,
’d mm yy’,
’d mmm yy’,
’d mmmm yy’,
’d mmmm yyy’,
’d mmmm yyyy’,
’dd/mm/yy hh:mm’,
’dd/mm/yy hh:mm:ss’,
’dd/mm/yy hh:mm:ss.000’,
’hh:mm’,
’hh:mm:ss’,
’hh:mm:ss.000’,

)

Start from first row after headers.
row = 1

Write the same date and time using each of the above formats.
for date_format_str in date_formats:

Create a format for the date or time.
date_format = workbook.add_format({’num_format’: date_format_str,

’align’: ’left’})

Write the same date using different formats.
worksheet.write_datetime(row, 0, date_time, date_format)

Also write the format string for comparison.
worksheet.write_string(row, 1, date_format_str)

row += 1

69

Creating Excel files with Python and XlsxWriter, Release 0.0.6

70 Chapter 12. Working with Dates and Time

CHAPTER

THIRTEEN

EXCEL::WRITER::XLSX

Excel::Writer::XLSX is a module written in Perl for creating Excel 2007+ XLSX files.

Excel::Writer::XLSX is an API compatible rewrite of an older Perl module called Spreadsheet::WriteExcel that creates
Excel XLS file.

In terms of features Excel::Writer::XLSX is one most complete open source libraries for writing Excel files. It sup-
ports:

• Multiple worksheets

• Strings and numbers

• Unicode text

• Cell formatting

• Formulas

• Images

• Charts

• Autofilters

• Data validation

• Conditional formatting

• Macros

• Tables

• Shapes

• Sparklines

• Hyperlinks

• Rich string formats

• Defined names

• Grouping/Outlines

• Cell comments

• Panes

• Page set-up and printing options

71

http://search.cpan.org/~jmcnamara/Excel-Writer-XLSX/
http://search.cpan.org/~jmcnamara/Spreadsheet-WriteExcel/

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Excel::Writer::XLSX has comprehensive documentation, a large number of example files and an extensive test suite.

Excel::Writer::XLSX and XlsxWriter are written by John McNamara.

13.1 Compatibility with Excel::Writer::XLSX

Porting of Excel::Writer::XLSX to XlsxWriter is a work in progress. The following table shows the level
of compatibility between the two module:

Workbook Methods XlsxWriter Excel::Writer::XLSX
new() Yes Yes
add_worksheet() Yes Yes
add_format() Yes Yes
add_chart() No Yes
add_shape() No Yes
add_vba_project() No Yes
close() Yes Yes
set_properties() No Yes
define_name() No Yes
set_tempdir() No Yes
set_custom_color() No Yes
sheets() No Yes
set_1904() No Yes
set_optimization() No Yes

Worksheet Methods XlsxWriter Excel::Writer::XLSX
write() Yes Yes
write_number() Yes Yes
write_string() Yes Yes
write_rich_string() Yes Yes
write_blank() Yes Yes
write_row() No Yes
write_col() No Yes
write_date_time() Yes Yes
write_url() No Yes
write_formula() Yes Yes
write_array_formula() Yes Yes
keep_leading_zeros() No Yes
write_comment() No Yes
show_comments() No Yes
set_comments_author() No Yes
add_write_handler() No Yes
insert_image() No Yes
insert_chart() No Yes
insert_shape() No Yes
insert_button() No Yes
data_validation() No Yes
conditional_formatting() No Yes
add_sparkline() No Yes
add_table() No Yes
get_name() No Yes

Continued on next page

72 Chapter 13. Excel::Writer::XLSX

http://search.cpan.org/~jmcnamara/Excel-Writer-XLSX/lib/Excel/Writer/XLSX/Examples.pm
https://github.com/jmcnamara

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Table 13.1 – continued from previous page
Worksheet Methods XlsxWriter Excel::Writer::XLSX

activate() Yes Yes
select() Yes Yes
set_first_sheet() No Yes
protect() No Yes
set_selection() No Yes
set_row() Yes Yes
set_column() Yes Yes
set_default_row() No Yes
outline_settings() No Yes
freeze_panes() No Yes
split_panes() No Yes
merge_range() No Yes
merge_range_type() No Yes
set_zoom() No Yes
right_to_left() No Yes
hide_zero() No Yes
set_tab_color() No Yes
autofilter() No Yes
filter_column() No Yes
filter_column_list() No Yes

Page Set-up Methods XlsxWriter Excel::Writer::XLSX
set_landscape() Yes Yes
set_portrait() Yes Yes
set_page_view() Yes Yes
set_paper() Yes Yes
center_horizontally() Yes Yes
center_vertically() Yes Yes
set_margins() Yes Yes
set_header() Yes Yes
set_footer() Yes Yes
repeat_rows() Yes Yes
repeat_columns() Yes Yes
hide_gridlines() Yes Yes
print_row_col_headers() Yes Yes
print_area() No Yes
print_across() Yes Yes
fit_to_pages() No Yes
set_start_page() No Yes
set_print_scale() No Yes
set_h_pagebreaks() No Yes
set_v_pagebreaks() No Yes

Format Methods XlsxWriter Excel::Writer::XLSX
set_font_name() Yes Yes
set_font_size() Yes Yes
set_font_color() Yes Yes
set_bold() Yes Yes
set_italic() Yes Yes

Continued on next page

13.1. Compatibility with Excel::Writer::XLSX 73

Creating Excel files with Python and XlsxWriter, Release 0.0.6

Table 13.2 – continued from previous page
Format Methods XlsxWriter Excel::Writer::XLSX

set_underline() Yes Yes
set_font_strikeout() Yes Yes
set_font_script() Yes Yes
set_font_outline() Yes Yes
set_font_shadow() Yes Yes
set_num_format() Yes Yes
set_locked() Yes Yes
set_hidden() Yes Yes
set_align() Yes Yes
set_rotation() Yes Yes
set_text_wrap() Yes Yes
set_text_justlast() Yes Yes
set_center_across() Yes Yes
set_indent() Yes Yes
set_shrink() Yes Yes
set_pattern() Yes Yes
set_bg_color() Yes Yes
set_fg_color() Yes Yes
set_border() Yes Yes
set_bottom() Yes Yes
set_top() Yes Yes
set_left() Yes Yes
set_right() Yes Yes
set_border_color() Yes Yes
set_bottom_color() Yes Yes
set_top_color() Yes Yes
set_left_color() Yes Yes
set_right_color() Yes Yes

74 Chapter 13. Excel::Writer::XLSX

CHAPTER

FOURTEEN

ALTERNATIVE MODULES FOR
HANDLING EXCEL FILES

The following are some Python alernatives to XlsxWriter.

14.1 XLWT

From the xlwt page on PyPI:

Library to create spreadsheet files compatible with MS Excel 97/2000/XP/2003 XLS files, on any plat-
form, with Python 2.3 to 2.7.

xlwt is a library for generating spreadsheet files that are compatible with Excel 97/2000/XP/2003,
OpenOffice.org Calc, and Gnumeric. xlwt has full support for Unicode. Excel spreadsheets can be gen-
erated on any platform without needing Excel or a COM server. The only requirement is Python 2.3 to
2.7.

14.2 XLRD

From the xlrd page on PyPI:

Library for developers to extract data from Microsoft Excel (tm) spreadsheet files Extract data from Excel
spreadsheets (.xls and .xlsx, versions 2.0 onwards) on any platform. Pure Python (2.6, 2.7, 3.2+). Strong
support for Excel dates. Unicode-aware.

14.3 Openpyxl

From the openpyxl page on PyPI:

A Python library to read/write Excel 2007 xlsx/xlsm files. Openpyxl is a pure python reader and writer of
Excel OpenXML files. It is ported from the PHPExcel project.

75

http://pypi.python.org/pypi/xlwt
http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/openpyxl

Creating Excel files with Python and XlsxWriter, Release 0.0.6

76 Chapter 14. Alternative modules for handling Excel files

CHAPTER

FIFTEEN

KNOWN ISSUES AND BUGS

This section lists known issues and bugs and gives some information on how to submit bug reports.

15.1 ‘unknown encoding: utf-8’ Error

The following error can occur on Windows if the close() method isn’t used at the end of the program:

Exception LookupError: ’unknown encoding: utf-8’ in <bound method
Workbook.__del__ of <xlsxwriter.workbook.Workbook objectat 0x022C1450>>

This appears to be an issue with the implicit destructor on Windows. It is under investigation. Use close() as a
workaround.

15.2 Formula results not displaying in Excel

Some early versions of Excel 2007 do not display the calculated values of formulas written by XlsxWriter. Applying
all available Service Packs to Excel should fix this.

15.3 Formula results displaying as zero in non-Excel apps

Due to wide range of possible formulas and interdependencies between them XlsxWriter doesn’t, and realistically
cannot, calculate the result of a formula when it is written to an XLSX file. Instead, it stores the value 0 as the formula
result. It then sets a global flag in the XLSX file to say that all formulas and functions should be recalculated when the
file is opened.

This is the method recommended in the Excel documentation and in general it works fine with spreadsheet applica-
tions. However, applications that don’t have a facility to calculate formulas, such as Excel Viewer, or several mobile
applications, will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optional value parameter in
write_formula():

worksheet.write_formula(’A1’, ’=2+2’, num_format, 4)

77

Creating Excel files with Python and XlsxWriter, Release 0.0.6

78 Chapter 15. Known Issues and Bugs

CHAPTER

SIXTEEN

REPORTING BUGS

Here are some tips on reporting bugs in XlsxWriter.

16.1 Upgrade to the latest version of the module

The bug you are reporting may already be fixed in the latest version of the module. Check the Changes in XlsxWriter
section as well.

16.2 Read the documentation

The XlsxWriter documentation has been refined in response to user questions. Therefore, if you have a question it is
possible that someone else has asked it before you and that it is already addressed in the documentation.

16.3 Look at the example programs

There are several example programs in the distribution. Many of these were created in response to user questions. Try
to identify an example program that corresponds to your query and adapt it to your needs.

16.4 Use the official XlsxWriter Issue tracker on GitHub

The official XlsxWriter Issue tracker is on GitHub.

16.5 Pointers for submitting a bug report

1. Describe the problem as clearly and as concisely as possible.

2. Include a sample program. This is probably the most important step. Also, it is often easier to describe a
problem in code than in written prose.

3. The sample program should be as small as possible to demonstrate the problem. Don’t copy and past large
sections of your program. The program should also be self contained and working.

A sample bug report is shown below. If you use this format then it will help to analyse your question and respond to it
more quickly.

79

https://github.com/jmcnamara/XlsxWriter/issues

Creating Excel files with Python and XlsxWriter, Release 0.0.6

XlsxWriter Issue with SOMETHING

I am using XlsxWriter and I have encountered a problem. I want it to do SOMETHING but the module
appears to do SOMETHING ELSE.

I am using Python version X.Y.Z and XlsxWriter x.y.z.

Here is some code that demonstrates the problem:

from xlsxwriter.workbook import Workbook

workbook = Workbook(’hello.xlsx’)
worksheet = workbook.add_worksheet()

worksheet.write(’A1’, ’Hello world’)

workbook.close()

80 Chapter 16. Reporting Bugs

CHAPTER

SEVENTEEN

FREQUENTLY ASKED QUESTIONS

The section outlines some answers to frequently asked questions.

17.1 Q. Can XlsxWriter use an existing Excel file as a template?

No.

XlsxWriter is designed only as a file writer. It cannot read or modify an existing Excel file.

17.2 Q. Why do my formulas show a zero result in some, non-Excel
applications?

Due to wide range of possible formulas and interdependencies between them XlsxWriter doesn’t, and realistically
cannot, calculate the result of a formula when it is written to an XLSX file. Instead, it stores the value 0 as the formula
result. It then sets a global flag in the XLSX file to say that all formulas and functions should be recalculated when the
file is opened.

This is the method recommended in the Excel documentation and in general it works fine with spreadsheet applica-
tions. However, applications that don’t have a facility to calculate formulas, such as Excel Viewer, or several mobile
applications, will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optional value parameter in
write_formula():

worksheet.write_formula(’A1’, ’=2+2’, num_format, 4)

17.3 Q. Can I apply a format to a range of cells in one go?

Currently no. However, it is a planned features to allow cell formats and data to be written separately.

17.4 Q. Is feature X supported or will it be supported?

All supported features are documented.

Future features will match features that are available in Excel::Writer::XLSX. Check the comparison matrix in the
Excel::Writer::XLSX section.

81

Creating Excel files with Python and XlsxWriter, Release 0.0.6

17.5 Q. Is there an “AutoFit” option for columns?

Unfortunately, there is no way to specify “AutoFit” for a column in the Excel file format. This feature is only available
at runtime from within Excel. It is possible to simulate “AutoFit” by tracking the width of the data in the column as
your write it.

17.6 Q. Do people actually ask these questions frequently, or at all?

Apart from this question, yes.

82 Chapter 17. Frequently Asked Questions

CHAPTER

EIGHTEEN

CHANGES IN XLSXWRITER

This section shows changes and bug fixes in the XlsxWriter module.

18.1 Release 0.0.6 - February 22 2013

• Added page setup method.

– print_row_col_headers

18.2 Release 0.0.5 - February 21 2013

• Added page setup methods.

– repeat_rows()

– repeat_columns()

18.3 Release 0.0.4 - February 20 2013

• Added Python 3 support with help from John Evans. Tested with:

– Python-2.7.2

– Python-2.7.3

– Python-3.2

– Python-3.3.0

• Added page setup methods.

– center_horizontally()

– center_vertically()

– set_header()

– set_footer()

– hide_gridlines()

83

Creating Excel files with Python and XlsxWriter, Release 0.0.6

18.4 Release 0.0.3 - February 19 2013

• Added page setup method.

– set_margins()

18.5 Release 0.0.2 - February 18 2013

• Added page setup methods.

– set_landscape()

– set_portrait()

– set_page_view()

– set_paper()

– print_across()

18.6 Release 0.0.1 - February 17 2013

• First public release.

84 Chapter 18. Changes in XlsxWriter

CHAPTER

NINETEEN

AUTHOR

XlsxWriter was written by John McNamara.

• GitHub repos

• Perl CPAN modules

• Twitter @jmcnamara13

• Coderwall

• Ohloh

You can contact me at jmcnamara@cpan.org.

85

https://github.com/jmcnamara
http://search.cpan.org/~jmcnamara/
https://twitter.com/jmcnamara13
https://coderwall.com/jmcnamara
https://www.ohloh.net/p/XlsxWriter/contributors/2717606196831029
mailto:jmcnamara@cpan.org

Creating Excel files with Python and XlsxWriter, Release 0.0.6

86 Chapter 19. Author

CHAPTER

TWENTY

LICENSE

XlsxWriter is release under a BSD license.

Copyright (c) 2013, John McNamara <jmcnamara@cpan.org> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

87

mailto:jmcnamara@cpan.org

Creating Excel files with Python and XlsxWriter, Release 0.0.6

88 Chapter 20. License

INDEX

A
activate() (built-in function), 37
add_format() (built-in function), 25
add_worksheet() (built-in function), 24

C
center_horizontally() (built-in function), 41
center_vertically() (built-in function), 41
close() (built-in function), 25

P
print_across() (built-in function), 46
print_row_col_headers() (built-in function), 45

R
repeat_columns() (built-in function), 44
repeat_rows() (built-in function), 44

S
select() (built-in function), 37
set_align() (built-in function), 53
set_bg_color() (built-in function), 56
set_bold() (built-in function), 48
set_border() (built-in function), 57
set_border_color() (built-in function), 58
set_bottom() (built-in function), 57
set_bottom_color() (built-in function), 58
set_center_across() (built-in function), 54
set_column() (built-in function), 35
set_fg_color() (built-in function), 56
set_font_color() (built-in function), 48
set_font_name() (built-in function), 47
set_font_script() (built-in function), 49
set_font_size() (built-in function), 48
set_font_strikeout() (built-in function), 49
set_header() (built-in function), 42, 44, 45
set_hidden() (built-in function), 53
set_indent() (built-in function), 55
set_italic() (built-in function), 49
set_landscape() (built-in function), 39
set_left() (built-in function), 58

set_left_color() (built-in function), 59
set_locked() (built-in function), 52
set_margins() (built-in function), 41
set_num_format() (built-in function), 49
set_page_view() (built-in function), 39
set_paper() (built-in function), 40
set_pattern() (built-in function), 55
set_portrait() (built-in function), 39
set_right() (built-in function), 58
set_right_color() (built-in function), 59
set_rotation() (built-in function), 54
set_row() (built-in function), 34
set_shrink() (built-in function), 55
set_text_justlast() (built-in function), 55
set_text_wrap() (built-in function), 54
set_top() (built-in function), 58
set_top_color() (built-in function), 59
set_underline() (built-in function), 49

W
Workbook() (built-in function), 23
write() (built-in function), 27
write_array_formula() (built-in function), 32
write_blank() (built-in function), 33
write_datetime() (built-in function), 33
write_formula() (built-in function), 31
write_number() (built-in function), 30
write_string() (built-in function), 29

89

	Introduction
	Getting Started with XlsxWriter
	Installing XlsxWriter
	Running a sample program
	Documentation

	Tutorial 1: Create a simple XLSX file
	Tutorial 2: Adding formatting to the XLSX File
	Tutorial 3: Writing different types of data to the XLSX File
	The Workbook Class
	Constructor
	workbook.add_worksheet()
	workbook.add_format()
	workbook.close()

	The Worksheet Class
	worksheet.write()
	worksheet.write_string()
	worksheet.write_number()
	worksheet.write_formula()
	worksheet.write_array_formula()
	worksheet.write_blank()
	worksheet.write_datetime()
	worksheet.set_row()
	worksheet.set_column()
	worksheet.activate()
	worksheet.select()

	The Worksheet Class (Page Setup)
	worksheet.set_landscape()
	worksheet.set_portrait()
	worksheet.set_page_view()
	worksheet.set_paper()
	center_horizontally()
	center_vertically()
	worksheet.set_margins()
	set_header()
	set_footer()
	repeat_rows()
	repeat_columns()
	hide_gridlines()
	print_row_col_headers()
	worksheet.print_across()

	The Format Class
	format.set_font_name()
	format.set_font_size()
	format.set_font_color()
	format.set_bold()
	format.set_italic()
	format.set_underline()
	format.set_font_strikeout()
	format.set_font_script()
	format.set_num_format()
	format.set_locked()
	format.set_hidden()
	format.set_align()
	format.set_center_across()
	format.set_text_wrap()
	format.set_rotation()
	format.set_indent()
	format.set_shrink()
	format.set_text_justlast()
	format.set_pattern()
	format.set_bg_color()
	format.set_fg_color()
	format.set_border()
	format.set_bottom()
	format.set_top()
	format.set_left()
	format.set_right()
	format.set_border_color()
	format.set_bottom_color()
	format.set_top_color()
	format.set_left_color()
	format.set_right_color()

	Working with Cell Notation
	Working with Formats
	Creating and using a Format object
	Format methods and Format properties
	Format Colors
	Format Defaults
	Modifying Formats

	Working with Dates and Time
	Excel::Writer::XLSX
	Compatibility with Excel::Writer::XLSX

	Alternative modules for handling Excel files
	XLWT
	XLRD
	Openpyxl

	Known Issues and Bugs
	`unknown encoding: utf-8' Error
	Formula results not displaying in Excel
	Formula results displaying as zero in non-Excel apps

	Reporting Bugs
	Upgrade to the latest version of the module
	Read the documentation
	Look at the example programs
	Use the official XlsxWriter Issue tracker on GitHub
	Pointers for submitting a bug report

	Frequently Asked Questions
	Q. Can XlsxWriter use an existing Excel file as a template?
	Q. Why do my formulas show a zero result in some, non-Excel applications?
	Q. Can I apply a format to a range of cells in one go?
	Q. Is feature X supported or will it be supported?
	Q. Is there an ``AutoFit'' option for columns?
	Q. Do people actually ask these questions frequently, or at all?

	Changes in XlsxWriter
	Release 0.0.6 - February 22 2013
	Release 0.0.5 - February 21 2013
	Release 0.0.4 - February 20 2013
	Release 0.0.3 - February 19 2013
	Release 0.0.2 - February 18 2013
	Release 0.0.1 - February 17 2013

	Author
	License
	Index

