# -*- coding: utf-8 -*-
# written by Ralf Biehl at the Forschungszentrum Jülich ,
# Jülich Center for Neutron Science 1 and Institute of Complex Systems 1
# Jscatter is a program to read, analyse and plot data
# Copyright (C) 2015-2019 Ralf Biehl
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""
Fluid like and crystal like structure factors (sf) and directly related functions for scattering
related to interaction potentials between particles.
Fluid like include hard core SF or charged sphere sf and more.
For RMSA an improved algorithm is used based on the original idea (see Notes in RMSA).
For lattices of ordered mesoscopic materials (see :ref:`Lattice`) the analytic sf can be calculated in
powder average or as oriented lattice with domain rotation.
Additional the structure factor of atomic lattices can be calculated using atomic scattering length.
Using coordinates from CIF (Crystallographic Information Format) file allow calculation of atomic crystal lattices.
"""
import sys
import os
import numbers
import inspect
import math
import numpy as np
from numpy import linalg as la
import scipy
import scipy.integrate
import scipy.fft
import scipy.constants as constants
import scipy.special as special
from .dataarray import dataArray as dA
from .dataarray import dataList as dL
from . import parallel
from .graceplot import GracePlot as grace
from . import formel
from . import formfactor as ff
from .lattice import lattice, rhombicLattice, bravaisLattice, scLattice, bccLattice, \
fccLattice, diamondLattice, hexLattice, hcpLattice, pseudoRandomLattice, sqLattice, \
hex2DLattice, lamLattice, randomLattice
from .lattice import latticeFromCIF, latticeVectorsFromLatticeConstants
from .libs import Two_Yukawa
try:
from . import fscatter
useFortran = True
except ImportError:
useFortran = False
_path_ = os.path.realpath(os.path.dirname(__file__))
# variable to allow printout for debugging as if debug:print 'message'
# set it to integer value above debuglevel
debug = False
def _sqcoefOriginalHP(ir, eta, gek, ak, a=0., b=0., c=0., f=0., u=0., v=0., gamk=0., seta=0., sgek=0., sak=0., scal=0.,
g1=0.):
"""
CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING COEFFICIENTS
This is only for documenting the difference to the old algorithm.
This is the iterative part to find rescaling parameter to get G(1+)>0 (Gillian condition) if G(1+)>0
Returns:
ir,eta,gek,ak,a,b,c,f,u,v,gamk,seta,sgek,sak,scal,g1
seta IS THE RESCALED VOLUME FRACTION.
sgek IS THE RESCALED CONTACT POTENTIAL.
sak IS THE RESCALED SCREENING CONSTANT.
a,b,c,f,u,v ARE THE MSA COEFFICIENTS.
g1=G(1+) IS THE CONTACT VALUE OF G(R/SIG);
FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
ZERO INDICATES THE COMPUTATIONAL ACCURACY.
IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS.
< 0: FAILED TO CONVERGE.
This is equivalent to the original HP Fortran code.
The different conditions might have saved computing time in 1981.
For some parameter conditions the rescaling is needed but not done.
Also for some parameter contributions the wrong root for Fwww is used.
"""
# set to zero to get debug messages; debuglevel>10 no messages
debuglevel = 1
itm = 40 # original 40
acc = 5.e-6
if debug > debuglevel: print('-- ')
if ak >= (1 + 8. * eta):
# for large screening (scl is small and ak is large)
# ix=1 SOLVE FOR LARGE K, RETURN G(1+)
ix, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
_sqfun(1, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
if debug > debuglevel: print('large screening ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v)
if ir < 0 or g1 >= 0: # error or already a good solution is returned
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
else:
# we have to rescale the solution in the later as here g+<0
pass
seta = min(eta, 0.2)
if ak >= (1 + 8. * eta) or gamk >= 0.15:
# find a rescaled eta with g+>=0 for strong coupling or low volume fraction
j = 0.
f1 = 0.
f2 = 0.
while True: # loop for Newton iteration to find g+=0
j += 1
if j > itm:
return -1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
if seta <= 0.0: seta = eta / j # g+<0 -> rescale eta
if seta > 0.6: seta = 0.35 / j # rescaled eta>0.6 rescale to smaller value
e1 = seta # e1 first eta
# ix=2 RETURN FUNCTION TO SOLVE FOR ETA(GILLAN)
ix, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
_sqfun(2, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
e2 = seta * 1.01 # increase scaled eta
ix, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
_sqfun(2, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
e2 = e1 - (e2 - e1) * f1 / (f2 - f1) # new approximation for scaled eta
seta = e2 # save for next iteration or as result
delta = abs((e2 - e1) / e1) # relative change
if delta < acc: break # if changes are small enough then break
if debug > debuglevel: print('rescaling with %i iterations leads to scaling by %.3g' % (j, seta / eta))
# ix=4 RETURN G(1+) FOR ETA=ETA(GILLAN).
ix, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g11 = \
_sqfun(4, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
ir = j
# ---------------end of Newton loop
if debug > debuglevel: print('rescaled ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v, 'ak>,seta>eta ',
ak >= (1 + 8. * eta), seta >= eta)
if ak >= (1 + 8. * eta): # in this case return anyway
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
else:
if seta >= eta: # seta>eta indicates successful rescaling with g1 as zero
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
ix, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
_sqfun(3, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
if debug > debuglevel: print('after scaling ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v)
if ir >= 0:
if g1 < 0.: ir = -3 # rescaling not successful
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
def _sqcoef(ir, eta, gek, ak, a=0., b=0., c=0., f=0., u=0., v=0., gamk=0., seta=0., sgek=0., sak=0., scal=0., g1=0.):
"""
CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING COEFFICIENTS
This is the iterative part to find rescaling parameter to get G(1+)>0 (Gillian condition) if G(1+)>0
Returns:
ir,eta,gek,ak,a,b,c,f,u,v,gamk,seta,sgek,sak,scal,g1
seta IS THE RESCALED VOLUME FRACTION.
sgek IS THE RESCALED CONTACT POTENTIAL.
sak IS THE RESCALED SCREENING CONSTANT.
a,b,c,f,u,v ARE THE MSA COEFFICIENTS.
g1=G(1+) IS THE CONTACT VALUE OF G(R/SIG);
FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
ZERO INDICATES THE COMPUTATIONAL ACCURACY.
IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS.
< 0: FAILED TO CONVERGE.
This is a shorter version of sqcoef which is easier to understand and allows
no bypassing between the conditions in original code which leads to errors for harmless parameter settings.
The idea is the original idea (see [2]_) to calculate the MSA and to rescale if g+<0 .
"""
# set to zero to get debug messages; debuglevel>10 no messages
debuglevel = 1
itm = 80 # original 40
acc = 5.e-6
fix = 0.5
if debug > debuglevel: print('-- ')
# just try to solve
ix, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
_sqfun(1, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
if debug > debuglevel: print('first try ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v)
if ir == -2:
# FAILED TO CONVERGE in Newton algorith to find zero, only in classical HP solution,
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
elif ir == -4:
# no root found in first try
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
elif g1 < 0:
# we have to rescale the solution in the later as here g+<0
pass
elif g1 >= 0: # already a good solution is returned
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
seta = min(eta, 0.2)
# find a rescaled eta with g+>=0 for strong coupling or low volume fraction
j = 0.
f1 = 0.
f2 = 0.
while True: # loop for Newton iteration to find g+=0
j += 1
if j > itm:
return -1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
if seta <= 0.0: seta = eta / j # g+<0 -> rescale eta
if seta > 0.6: seta = 0.35 / j # rescaled eta>0.6 rescale to smaller value
e1 = seta # e1 first eta
# ix=2 RETURN FUNCTION TO SOLVE FOR ETA(GILLAN)
ix, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
_sqfun(2, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
e2 = seta * 1.01 # increase scaled eta
ix, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
_sqfun(2, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
e2 = e1 - (e2 - e1) * f1 / (f2 - f1) # new approximation for scaled eta
seta = e2 # save for next iteration or as result
delta = abs((e2 - e1) / e1) # relative change
if delta < acc: break # changes are small enough then break
if debug > debuglevel: print('rescaling with %i iterations leads to scaling by %.3g' % (j, seta / eta))
# ix=4 RETURN G(1+) FOR ETA=ETA(GILLAN) with all parameters.
ix, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g11 = \
_sqfun(4, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
if (seta > 0.64) or (seta < eta):
ir = -3 # rescaling not successful
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
ir = j
# ---------------end of Newton loop
if debug > debuglevel: print('rescaled ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v, 'ak>,seta,eta ',
ak >= (fix + 8. * eta), seta, eta)
return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
def _sqfun(ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=False):
"""
CALCULATES VARIOUS COEFFICIENTS AND FUNCTION VALUES FOR _sqcoef
this is the NOT rescaled solution! == MSA
Options
ix =1: SOLVE FOR LARGE K, RETURN G(1+).
2: RETURN FUNCTION TO SOLVE FOR ETA(GILLAN).
3: ASSUME NEAR GILLAN, SOLVE, RETURN G(1+).
4: RETURN G(1+) FOR ETA=ETA(GILLAN).
SETA IS THE RESCALED VOLUME FRACTION.
SGEK IS THE RESCALED CONTACT POTENTIAL.
SAK IS THE RESCALED SCREENING CONSTANT.
A,B,C,F,U,V ARE THE MSA COEFFICIENTS.
G1=G(1+) IS THE CONTACT VALUE OF G(R/SIG);
FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
ZERO INDICATES THE COMPUTATIONAL ACCURACY.
IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS.
< 0: FAILED TO CONVERGE.
The root of the quartic F = w4*fa**4+w3*fa**3+w2*fa**2+w1*fa+w0 needs to be found.
in this code we have two choices in the source code.
One for documentation and the second as the correct solution:
1. to use the original HayterPenfold algorithm from the Fortran code as also eg used in SASVIEW and SASFIT
with an estimate for the root of Fwww which is refined by Newton algorithm
which results under specific conditions in the wrong root
test with e.g.
for scl in np.r_[1:10]:p.plot(js.sf.RMSA(q=x,R=3.1,scl=scl, gamma=1.1, eta=0.5),legend='%.3g' %scl)
the correct branch can be verified by using the Percus-Yevick as limit
2. original idea from Hayter paper [1]_ as *default solution*
find all roots (by numpy.roots) and take the physical root with g(r/diameter<1)=0
in this code there is no difference between ix=1 and 3
with structurefactor.debug=11 you get output for g(r) and the zeros of Fwww (see source code)
"""
# set to zero to get debug messages; debuglevel>10 no messages
debuglevel = 1
acc = 1e-6 # stop criterion for Newton
itm = 40 # max number of iterations
# needed parameters with changes for iteration
eta = evar # volume fraction
scal = (reta / evar) ** (1 / 3.) # scaling factor
sak = rak / scal # scaled dimensionless screening constant
val = rgek if abs(rgek) > 1e-9 else 1e-9 # prevent zero and just take small value
sgek = val * scal * math.exp(rak - sak) # scaled contact potential
gek = sgek
ak = sak
# -----------------reproduce original fortran code
# using these variables is important to reduce the dependency on accuracy of float64
# and maybe it makes it a bit faster
eta2 = eta ** 2
eta3 = eta2 * eta
e12 = 12. * eta
e24 = e12 + e12
ak2 = ak ** 2
ak1 = 1 + ak
dak2 = 1.0 / ak2
dak4 = dak2 * dak2
d = 1 - eta
d2 = d * d
dak = d / ak
dd2 = 1.0 / d2
dd4 = dd2 * dd2
dd45 = dd4 * 2.0e-1
eta3d = 3. * eta
eta6d = eta3d + eta3d
eta32 = eta3 + eta3
eta2d = eta + 2.0
eta2d2 = eta2d * eta2d
eta21 = 2.0 * eta + 1.0
eta22 = eta21 * eta21
# all coefficients from appendix in the paper [1]
al1 = -eta21 * dak
al2 = (14 * eta2 - 4 * eta - 1) * dak2
al3 = 36 * eta2 * dak4
b1 = -(eta2 + 7. * eta + 1.) * dak
b2 = 9. * eta * (eta2 + 4. * eta - 2.) * dak2
b3 = 12. * eta * (2 * eta2 + 8. * eta - 1.) * dak4
n1 = -(eta3 + 3. * eta2 + 45. * eta + 5.) * dak
n2 = (eta32 + 3. * eta2 + 42. * eta - 20.) * dak2
n3 = (eta32 + 30. * eta - 5.) * dak4
n4 = n1 + 24. * eta * ak * n3
n5 = eta6d * (n2 + 4. * n3)
f1 = eta6d / ak
f2 = d - 12. * eta * dak2
ff1 = f1 * f1
ff2 = f2 * f2
ff = ff1 + ff2
f1f2 = 2. * f1 * f2
t1 = (eta + 5.) / (5. * ak)
t2 = eta2d * dak2
t3 = -12. * eta * gek * (t1 + t2)
t4 = eta3d * ak2 * (t1 * t1 - t2 * t2)
t5 = eta3d * (eta + 8.) * 0.1 - 2. * eta22 * dak2
# ------------
a1 = (e24 * gek * (al1 + al2 + ak1 * al3) - eta22) * dd4
bb1 = (1.5 * eta * eta2d2 - 12. * eta * gek * (b1 + b2 + ak1 * b3)) * dd4
v1 = (eta21 * (eta2 - 2. * eta + 10.) * 0.25 - gek * (n4 + n5)) * dd45
p1 = (gek * (ff1 + ff2 - f1f2) - 0.5 * eta2d) * dd2
T1 = t3 + t4 * a1 + t5 * bb1
if (sak > 15) and (ix == 1):
if debug > debuglevel: print('(sak>15) and (ix==1)', ak)
# this corresponds to ibig=1 in original Hayter-Penfold code for large screening
# large screening means the screening length 1/kappa is small compared to 2R and we are in the hard sphere limit
# if ak is big -> cosh = sinh and a lot simplifies in asymptotic solution
# but at same time cosh(ak) may exceeds numerical limits for really large ak
a3 = e24 * (eta22 * dak2 - 0.5 * d2 - al3) * dd4
bb3 = e12 * (0.5 * d2 * eta2d - eta3d * eta2d2 * dak2 + b3) * dd4
v3 = ((eta3 - 6. * eta2 + 5.) * d - eta6d * (2. * eta3 - 3. * eta2 + 18. * eta + 10.) * dak2 + e24 * n3) * dd45
p3 = (ff1 - ff2) * dd2
T3 = t4 * a3 + t5 * bb3 + e12 * t2 - 0.4 * eta * (eta + 10.) - 1.
M6 = T3 * a3 - e12 * v3 * v3
M5 = T1 * a3 + a1 * T3 - e24 * v1 * v3
M4 = T1 * a1 - e12 * v1 * v1
L6 = e12 * p3 * p3
L5 = e24 * p1 * p3 - 2. * bb3 - ak2
L4 = e12 * p1 * p1 - 2. * bb1
W56 = M5 * L6 - L5 * L6
W46 = M4 * L6 - L4 * M6
fa = -W46 / W56
ca = -fa
f = fa
c = ca
b = bb1 + bb3 * fa
a = a1 + a3 * fa
v = v1 + v3 * fa
g1 = -(p1 + p3 * fa)
fval = g1 if g1 > 1e-3 else 0.
seta = evar
# g24 = e24*gek*math.exp(ak) # prevent math range error in exp for large ak (-> small scl)
# u = (ak2*ak*ca-g24)/(ak2*g24) # so we rewrite this to have exp(-ak)
u = ak * ca / e24 / gek * math.exp(-ak) - 1 / ak2 # same as above two lines but this prevents math range error
return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
# small sak for the remaining
sk = math.sinh(ak)
ck = math.cosh(ak)
ckma = ck - 1. - ak * sk
skma = sk - ak * ck
a2 = e24 * (al3 * skma + al2 * sk - al1 * ck) * dd4
a3 = e24 * (eta22 * dak2 - 0.5 * d2 + al3 * ckma - al1 * sk + al2 * ck) * dd4
bb2 = e12 * (-b3 * skma - b2 * sk + b1 * ck) * dd4
bb3 = e12 * (0.5 * d2 * eta2d - eta3d * eta2d2 * dak2 - b3 * ckma + b1 * sk - b2 * ck) * dd4
v2 = (n4 * ck - n5 * sk) * dd45
v3 = ((eta3 - 6. * eta2 + 5.) * d - eta6d * (
2. * eta3 - 3. * eta2 + 18. * eta + 10.) * dak2 + e24 * n3 + n4 * sk - n5 * ck) * dd45
# define...
p2 = (ff * sk + f1f2 * ck) * dd2
p3 = (ff * ck + f1f2 * sk + ff1 - ff2) * dd2
T2 = t4 * a2 + t5 * bb2 + e12 * (t1 * ck - t2 * sk)
T3 = t4 * a3 + t5 * bb3 + e12 * (t1 * sk - t2 * (ck - 1.)) - 0.4 * eta * (eta + 10.) - 1.
M1 = T2 * a2 - e12 * v2 * v2
M2 = T1 * a2 + T2 * a1 - e24 * v1 * v2
M3 = T2 * a3 + T3 * a2 - e24 * v2 * v3
M4 = T1 * a1 - e12 * v1 * v1
M5 = T1 * a3 + T3 * a1 - e24 * v1 * v3
M6 = T3 * a3 - e12 * v3 * v3
# ix is defined from the _sqcoef
# large k or close to GILLAN CONDITION g1==0 as explained in [1]
if ix == 1 or ix == 3:
# YES - G(X=1+) = 0
# COEFFICIENTS AND FUNCTION VALUE
L1 = e12 * p2 * p2
L2 = e24 * p1 * p2 - 2. * bb2
L3 = e24 * p2 * p3
L4 = e12 * p1 * p1 - 2. * bb1
L5 = e24 * p1 * p3 - 2. * bb3 - ak2
L6 = e12 * p3 * p3
W16 = M1 * L6 - L1 * M6
W15 = M1 * L5 - L1 * M5
W14 = M1 * L4 - L1 * M4
W13 = M1 * L3 - L1 * M3
W12 = M1 * L2 - L1 * M2
W26 = M2 * L6 - L2 * M6
W25 = M2 * L5 - L2 * M5
W24 = M2 * L4 - L2 * M4
W36 = M3 * L6 - L3 * M6
W35 = M3 * L5 - L3 * M5
W34 = M3 * L4 - L3 * M4
W32 = M3 * L2 - L3 * M2
W46 = M4 * L6 - L4 * M6
W56 = M5 * L6 - L5 * M6
# QUARTIC COEFFICIENTS W(I)
# these are used in
# fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa =w4*fa**4+w3*fa**3+w2*fa**2+w1*fa+w0
w4 = W16 * W16 - W13 * W36
w3 = 2. * W16 * W15 - W13 * (W35 + W26) - W12 * W36
w2 = W15 * W15 + 2. * W16 * W14 - W13 * (W34 + W25) - W12 * (W35 + W26)
w1 = 2. * W15 * W14 - W13 * W24 - W12 * (W34 + W25)
w0 = W14 * W14 - W12 * W24
# now find root of fun
if useHP:
# this documents the original HayterPenfold algorithm as found in original fortran code
# to find the correct root an estimate is used and refined by Newton method
# fails eg for R=3.1 gam=1.1 eta=0.5 when scl 6.1999 -> 6,2 as sak changes over 1
# or scl=1.37382379588 R=2.5 gam=5.1 eta=0.6 as the found root results in g(r<1)>0
# reason: in Newton refining an arbitrary root is found
if ix == 1: # large screening
# LARGE K estimate for the zero of Fwww
fap = (W14 - W34 - W46) / (W12 - W15 + W35 - W26 + W56 - W32)
else: # ix=3 no large screening
# ASSUME NOT TOO FAR FROM GILLAN CONDITION.
# IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE.of the zero of Fwww
g1 = 0.5 * eta2d * dd2 * math.exp(-gek)
pg = p1 + g1
ca = ak2 * pg + 2. * (bb3 * pg - bb1 * p3) + e12 * g1 * g1 * p3
ca = -ca / (ak2 * p2 + 2. * (bb3 * p2 - bb2 * p3))
fap2 = -(pg + p2 * ca) / p3
if (gek > 0) and (sgek <= 2.0) and (sak <= 1.0):
# gek>0 as this is only for positive contact potentials
# this was introduced in the SASFIT conversion (C code)
e24g = e24 * gek * math.exp(ak)
pwk = math.sqrt(e24g)
qpw = (1. - math.sqrt(1. + 2. * d2 * d * pwk / eta22)) * eta21 / d
g1 = -qpw * qpw / e24 + 0.5 * eta2d * dd2
pg = p1 + g1
ca = ak2 * pg + 2. * (bb3 * pg - bb1 * p3) + e12 * g1 * g1 * p3
ca = -ca / (ak2 * p2 + 2. * (bb3 * p2 - bb2 * p3))
fap = -(pg + p2 * ca) / p3
# print('PWEstimate',fap,fap2,( sgek<=2.0) and ( sak<=1.0))
# now find a better estimate of the zero by Newton iteration
# RB: this algorithm finds different roots dependent on sgek and sak
# the roots are somehow arbitrary in the 4 possible ones,
# the main time it is one of the two centered which make no
# big jumps but the outer ones make large jumps in the result
ii = 0
while True:
ii += 1
if ii > itm: # FAILED TO CONVERGE IN ITM ITERATIONS
ir = -2
return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
fa = fap # estimated zero pole of fun
fun = w0 + (w1 + (w2 + (w3 + w4 * fa) * fa) * fa) * fa # function to minimize
fund = w1 + (2. * w2 + (3. * w3 + 4. * w4 * fa) * fa) * fa # derivative of fun
fap = fa - fun / fund # new value as next estimate
if fa == 0: continue # fa is 0 if gek is zero
delta = abs((fap - fa) / fa) # difference
if delta < acc: break
# found one and use this zero
ir = ir + ii
fa = fap
ca = -(W16 * fa * fa + W15 * fa + W14) / (W13 * fa + W12)
g1 = -(p1 + p2 * ca + p3 * fa)
else:
# original idea from Hayter paper [1]_
# take all roots and use the physical root with g(r/diameter<1)=0
# in this code there is no difference between ix=1 or 3
# The algorithm relies on computing the eigenvalues of the companion matrix
x0 = np.roots(
[w4, w3, w2, w1, w0]) # 114µs slower than direct calculation, but this is not the bottle neck
if np.all((x0.imag / x0.real) < 1e-3):
# if the imaginary part of complex roots is small use also these
# in some cases this is the correct solution in gr
fa = x0.real
else:
fa = x0[np.isreal(x0)].real # 6.5µs
fa.sort() # we have up to 4 real roots and each of the following has up to 4 values
ca = -(W16 * fa * fa + W15 * fa + W14) / (W13 * fa + W12)
g1 = -(p1 + p2 * ca + p3 * fa)
b = bb1 + bb2 * ca + bb3 * fa
a = a1 + a2 * ca + a3 * fa
# choose the correct root by calculating g(r) (sin transform) and using the one with g(r<1)=0
# here i choose explicitly 1-delta
delta = 0.05
nn = (2 ** 13 + 0) # n number of points to get reliable fft
dqr2 = np.r_[0, delta:nn * delta:delta] # points to calculate S(dqr2)
kk = 1 // delta # index of last point smaller 1
# calc the value of g(x) with x=1-delta=kk*delta in equ.12 of[1]_
gr1 = [delta * np.sum(
(_SQMSA(dqr2, scal, eta, ak, gek, aa, bb, cca, ffa) - 1) * dqr2 * np.sin(kk * delta * dqr2))
for aa, bb, cca, ffa in zip(a, b, ca, fa)]
grval = [1 + ggr / (12 * np.pi * eta * kk * delta) for ggr in gr1]
if len(fa) == 0 or np.min(grval) > 0.1:
# no real root found or not grval close to zero
ir = -4
return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, \
g1.max() if np.size(g1) else g1
# chose the one with grval close to zero
chooseone = np.argmin(np.abs(grval))
if debug > debuglevel:
# this writes the calculated g(r) to a file for checking of g(r)
rrr = 2 * np.pi * np.fft.rfftfreq(len(dqr2), d=delta) # points in r domain from rfft r/diameter
# doing sin transform with rfft results in minus in front of imag part
# compared to equation 12 in HP paper [1]
# delta* is to get correct integral
# gr=[delta*np.fft.rfft((_SQMSA(dqr2,scal,eta,ak,gek,aa,bb,cca,ffa)-1)*dqr2).imag
# for aa,bb,cca,ffa in zip(a,b,ca,fa)]
gr = [delta * scipy.fft.dst(_SQMSA(dqr2, scal, eta, ak, gek, aa, bb, cca, ffa) - 1) * dqr2
for aa, bb, cca, ffa in zip(a, b, ca, fa)]
# [1:] to avoid rrr=zero
gr = [1 - ggr[1:] / (12 * np.pi * eta * rrr[1:]) for ggr in gr]
# choose one with minimum mean value g(r) for rrr<1 which should be zero
# above we use only one value and choose smallest grval
# here we choose the smallest mean value which is often not correct but here it is only for demo
grval = [grr[rrr[1:] < 0.9][1:].mean() for grr in gr]
print('grval ', grval)
temp = dL()
for i, grr in enumerate(gr):
temp.append(np.c_[rrr[1:], grr].T)
temp[-1].choosen = chooseone
temp[-1].zero = fa[i]
temp[-1].g1 = g1[i]
temp[-1].legend = 'g(r<1)= %.3g' % (grval[i])
temp.savetxt('testgr.dat')
print('zeros,g1,choosen zero', fa, g1, chooseone)
fa = fa[chooseone]
ca = ca[chooseone]
g1 = -(p1 + p2 * ca + p3 * fa)
# end searching the root- recalculating final result------------------------
fval = (g1 if abs(g1) > 1e-3 else 0.)
seta = evar
f = fa
c = ca
b = bb1 + bb2 * ca + bb3 * fa
a = a1 + a2 * ca + a3 * fa
v = (v1 + v2 * ca + v3 * fa) / a
else:
# -> ix==2 or ix==4
ca = ak2 * p1 + 2. * (bb3 * p1 - bb1 * p3)
ca = -ca / (ak2 * p2 + 2.0 * (bb3 * p2 - bb2 * p3))
fa = -(p1 + p2 * ca) / p3
# fval will contain g1 for Newton iteration ix=2,4
if ix == 2: fval = M1 * ca * ca + (M2 + M3 * fa) * ca + M4 + M5 * fa + M6 * fa * fa
if ix == 4: fval = -(p1 + p2 * ca + p3 * fa)
f = fa
c = ca
b = bb1 + bb2 * ca + bb3 * fa
a = a1 + a2 * ca + a3 * fa
v = (v1 + v2 * ca + v3 * fa) / a
g24 = e24 * gek * math.exp(ak)
u = (ak2 * ak * ca - g24) / (ak2 * g24)
return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
def _SQMSA(qR2, scal, eta, ak, gek, a, b, c, f):
"""
equation 14 Hayter-Penfold paper [1] in sfRMSA to calculate the final structure factor
"""
K = np.where(qR2 == 0, 1e-15, qR2 / scal) # catch zero
if ak > 25: # c==-f and
# avoid to large ak to prevent math range error
# ak>15 has f=-c from sqfun so the sinh and cosh terms cancel for large ak
sinhsk = 0.
coshsk = 0.
else:
sinhsk = math.sinh(ak)
coshsk = math.cosh(ak)
sink = np.sin(K)
cosk = np.cos(K)
K2 = K * K
K3 = K2 * K
K4 = K3 * K
KK2ak2 = 1 / K / (K2 + ak ** 2)
a_K = a * (sink - K * cosk) / K3 \
+ b * ((2. / K ** 2 - 1) * K * cosk + 2 * sink - 2. / K) / K3 \
+ a * eta * (24. / K3 + 4. * (1 - 6. / K2) * sink - (1 - 12. / K2 + 24. / K4) * K * cosk) / 2. / K3 \
+ c * (ak * coshsk * sink - K * sinhsk * cosk) * KK2ak2 \
+ f * (ak * sinhsk * sink - K * (coshsk * cosk - 1)) * KK2ak2 \
+ f * (cosk - 1) / K2 \
- gek * (ak * sink + K * cosk) * KK2ak2
msa = 1 / (1 - 24. * eta * a_K)
MSA = np.where(qR2 == 0, -1 / a, msa) # -1/a is correct solution for qR2==zero
return MSA
[docs]def RMSA(q, R, scl, gamma, molarity=None, eta=None, useHP=False):
r"""
Structure factor for a screened coulomb interaction (single Yukawa) in rescaled mean spherical approximation (RMSA).
Structure factor according to Hayter-Penfold [1]_ [2]_ .
Consider a scattering system consisting of macro ions, counter ions and solvent.
Here an improved algorithm [3]_ is used based on the original idea described in [1]_ (see Notes).
Parameters
----------
q : array; N dim
Scattering vector; units 1/nm
R : float
Radius of the object; units nm
molarity : float
Number density n in units mol/l. Overrides eta, if both given.
scl : float>0
Screening length; units nm; negative values evaluate to scl=0.
gamma : float
Contact potential :math:`\gamma` in units kT.
- :math:`\gamma=Z_m/(\pi \epsilon \epsilon_0 R (2+\kappa R))`
- :math:`Z_m = Z^*` effective surface charge
- :math:`\epsilon_0,\epsilon` free permittivity and dielectric constant
- :math:`\kappa=1/scl` inverse screening length of Debye-Hückel potential
eta : float
Volume fraction as eta=:math:`4/3piR^3n` with number density n.
useHP : True, default False
To use the original Hayter/Penfold algorithm. This gives wrong results for some parameter conditions.
It should ONLY be used for testing.
See example examples/test_newRMSAAlgorithm.py for a direct comparison.
Returns
-------
dataArray
- .volumeFraction = eta
- .rescaledVolumeFraction
- .screeningLength
- .gamma=gamma
- .contactpotential
- .S0 structure factor at q=0
- .scalingfactor factor for rescaling to get g+1=0; if =1 nothing was scaled and it is MSA
Notes
-----
The repulsive potential between two identical spherical macroions of diameter :math:`\sigma` is (DLVO model)
in dimensionless form
.. math:: \frac{U(x)}{k_BT} = \gamma \frac{e^{-kx}}{x} \; for \; x>1
- :math:`x = r/\sigma, k=\kappa\sigma, K=Q\sigma`
- :math:`k_BT` thermal energy
- :math:`\gamma e^{-k} = \frac{\pi \epsilon_0 \epsilon \sigma }{k_BT} \psi^2_0` contact potential in kT units
- The potential is completed by :math:`U(x)/kT=\infty , x<1`
- From [1]_:
This potential is valid for colloid systems provided k < 6.
There is no theoretical restriction on k in what follows, however, and for general studies
of one component plasmas any value may be used.
- In the limit :math:`\gamma \rightarrow 0` or :math:`k\rightarrow\infty` the Percus-Yevick hard sphere is reached.
- Why is is named **rescaled MSA**:
From [1]_:
Note that in general, however, the MSA fails at low density; letting :math:`n\rightarrow0` yields
:math:`g(x)\rightarrow 1-lU(x)/kT` for x> 1. Since U(x) is generally larger than thermal energies
for small interparticle separations, g(x) will generally be negative (and hence unphysical)
near the particle at very low densities.
This does not present a problem for many colloid studies of current interest, where volume fractions are
generally greater than 1%.
To solve this the radius is rescaled to get :math:`g(\sigma +)=0` according to [2]:
...by increasing the particle diameter from its physical value `a` to an effective hard core value `a'`,
while maintaining the Coulomb coupling constant. ...
If :math:`g(\sigma +)>=0` no rescaling is done.
Improved algorithm (see [3]_ fig. 6)
The Python code is deduced from the original Hayter-Penfold Fortran code (1981, ILL Grenoble).
This is also used in other common SAS programs as SASfit or SASview (translated to C).
The original algorithm determines the root of a quartic F(w1,w2,w3,w4) by an estimate (named PW estimate),
refining it by a Newton algorithm. As the PW estimate is sometimes not good enough this results in an
arbitrary root of the quartic in the Newton algorithm. The solution therefore jumps between different
possibilities by small changes of the parameters.
We use here the original idea from [1]_ to calculate G(r<0) for all four roots of F(w1,w2,w3,w4) and use
the physical solution with G(r<R)=0.
See examples/test_newRMSAAlgorithm.py for a direct comparison or [3]_ fig. 6.
Validity
The calculation of charge at the surface or screening length from a solute ion concentration is explicitly dedicate
to the user. The Debye-Hückel theory for a macro ion in screened solution is a far field theory as a linearization
of the Poisson-Boltzmann (PB) theory and from limited validity (far field or low charge -> linearization).
Things like reverting charge layer, ion condensation at the surface, pH changes at the surface or other things
might appear. Before calculating please take these things into account. Close to the surface the PB
has to be solved. The DH theory can still be used if the charge is thus an effective charge named Z*,
which might be different from the real surface charge.
See Ref [4]_ for details.
Examples
--------
::
import jscatter as js
R = 6
phi = 0.05
depth = 15
q = js.loglist(0.01, 5, 200)
p = js.grace(1,1)
p.multi(2,1)
for scl in [0.1,1,5,10,20]:
rmsa = js.sf.RMSA(q, R, scl=scl, gamma=depth, eta=phi)
p[0].plot(rmsa, symbol=0, line=[1, 2, -3], legend=f'screening length ={scl:.1f}')
for eta in [0.01,0.05,0.1,0.2,0.3,0.4]:
rmsa = js.sf.RMSA(q, R, scl=5, gamma=depth, eta=eta)
p[1].plot(rmsa, symbol=0, line=[1, 2, -3], legend=f'eta ={eta:.1f}')
p[0].yaxis(min=0.0, max=1.5, label='S(Q)', charsize=1.5)
p[0].legend(x=1, y=0.9)
p[0].xaxis(min=0, max=1.5)
p[1].yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5)
p[1].legend(x=1.3, y=1.2)
p[1].xaxis(min=0, max=1.5, label=r'Q / nm\S-1')
p[0].title('RMSA structure factor')
p[0].subtitle(f'R={R:.1f} gamma={depth:.1f} eta={phi:.2f} ')
#p.save(js.examples.imagepath+'/rmsa.jpg')
.. image:: ../../examples/images/rmsa.jpg
:width: 50 %
:align: center
:alt: rmsa
References
----------
.. [1] J. B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1981).
.. [2] J.-P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (2006).
.. [3] Jscatter, a program for evaluation and analysis of experimental data
R.Biehl, PLOS ONE, 14(6), e0218789, 2019, https://doi.org/10.1371/journal.pone.0218789
.. [4] L. Belloni, J. Phys. Condens. Matter 12, R549 (2000).
"""
"""
Original Doc of the Hayter Penfold Fortran routine::
seta is the rescaled volume fraction.
sgek is the rescaled contact potential.
sak is the rescaled screening constant.
a,b,c,f,u,v are the msa coefficients.
g1=g(1+) is the contact value of g(r/sig);
for the Gillan condition, the difference from
zero indicates the computational accuracy.
ROUTINE TO CALCULATE S(Q*SIG) FOR A SCREENED COULOMB
POTENTIAL BETWEEN FINITE PARTICLES OF DIAMETER 'SIG'
AT ANY VOLUME FRACTION. THIS ROUTINE IS MUCH MORE POWER-
FUL THAN "SQHP" AND SHOULD BE USED TO REPLACE THE LATTER
IN EXISTING PROGRAMS. NOTE THAT THE COMMON AREA IS
CHANGED; IN PARTICULAR, THE POTENTIAL IS PASSED
DIRECTLY AS 'GEK' = GAMMA*EXP(-K) IN THE PRESENT ROUTINE.
JOHN B.HAYTER (I.L.L.) 19-AUG-81
CALLING SEQUENCE:
CALL SQHPA(QQ,SQ,NPT,IERR)
QQ: ARRAY OF DIMENSION NPT CONTAINING THE VALUES OF Q*SIG AT WHICH S(Q*SIG) WILL BE CALCULATED.
SQ: ARRAY OF DIMENSION NPT INTO WHICH VALUES OF S(Q*SIG) WILL BE RETURNED.
NPT: NUMBER OF VALUES OF Q*SIG.
IERR > 0: NORMAL EXIT; IERR=NUMBER OF ITERATIONS.
-1: NEWTON ITERATION NON-CONVERGENT IN "SQCOEF"
-2: NEWTON ITERATION NON-CONVERGENT IN "SQFUN".
-3: CANNOT RESCALE TO G(1+) > 0.
ON ENTRY:
ETA: VOLUME FRACTION
GEK: THE CONTACT POTENTIAL GAMMA*EXP(-K)
AK: THE DIMENSIONLESS SCREENING CONSTANT
AK = KAPPA*SIG WHERE KAPPA IS THE INVERSE SCREENING
LENGTH AND SIG IS THE PARTICLE DIAMETER.
ON EXIT:
GAMK IS THE COUPLING: 2*GAMMA*S*EXP(-K/S), S=ETA**(1/3).
SETA, SGEK AND SAK ARE THE RESCALED INPUT PARAMETERS.
SCAL IS THE RESCALING FACTOR: (ETA/SETA)**(1/3).
G1=G(1+), THE CONTACT VALUE OF G(R/SIG).
A,B,C,F,U,V ARE THE CONSTANTS APPEARING IN THE ANALYTIC
SOLUTION OF THE MSA (HAYTER-PENFOLD; MOL.PHYS. 42: 109 (1981))
NOTES:
(A) AFTER THE FIRST CALL TO SQHPA, S(Q*SIG) MAY BE EVALUATED
AT OTHER Q*SIG VALUES BY REDEFINING THE ARRAY QQ AND CALLING
"SQHCAL" DIRECTLY FROM THE MAIN PROGRAM.
(B) THE RESULTING S(Q*SIG) MAY BE TRANSFORMED TO G(R/SIG)
USING THE ROUTINE "TROGS".
(C) NO ERROR CHECKING OF INPUT PARAMETERS IS PERFORMED;
IT IS THE RESPONSIBILITY OF THE CALLING PROGRAM TO VERIFY
VALIDITY.
SUBROUTINES REQUIRED BY SQHPA:
(1) SQCOEF RESCALES THE PROBLEM AND CALCULATES THE
APPROPRIATE COEFFICIENTS FOR "SQHCAL".
(2) SQFUN CALCULATES VARIOUS VALUES FOR "SQCOEF".
(3) SQHCAL CALCULATES H-P S(Q*SIG) GIVEN A,B,C,F.
"""
R = abs(R)
error = {-1: 'NEWTON ITERATION NON-CONVERGENT IN _sqcoef',
-2: 'NEWTON ITERATION NON-CONVERGENT IN _sqfun',
-3: 'CANNOT RESCALE TO G(1+) > 0.',
-4: 'no physical root with G(r<1) < 0.1 in _sqfun found'} # added for new algorithm
# get volume fraction eta from number density and radius R
if isinstance(molarity, numbers.Number):
molarity = abs(molarity)
numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3
eta = 4 / 3. * np.pi * R ** 3 * numdens
elif isinstance(eta, numbers.Number):
numdens = eta / (4 / 3. * np.pi * R ** 3)
molarity = numdens / (constants.N_A * 1e-24)
else:
raise Exception('one of molarity/eta needs to be given.') # dimensionless screening constant ak
if eta <= 0.: eta = 1e-10
# if eta>1: raise Exception('eta needs to be smaller 1.')
if scl <= 0:
ak = 1e20
else:
ak = 2 * R / scl
# to large ak make math error in exp , anyway then we have a hard sphere
if ak > 200: ak = 200
# the contact potential in kT
gek = gamma * math.exp(-ak)
# coupling
gamk = 2. * eta ** (1 / 3.) * gek * math.exp(ak - ak / eta ** (1 / 3.))
# ----------do the rescaling in _sqcoef--------------------
# _sqcoef does the rescaling to satisfy the Gillian condition with g1==0 according to [2]
# therein _sqfun calculates the NOT rescaled solution described in [1]
if useHP:
ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = _sqcoefOriginalHP(ir=0, eta=eta, gek=gek,
ak=ak, gamk=gamk)
else:
ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = _sqcoef(ir=0, eta=eta, gek=gek, ak=ak,
gamk=gamk)
# catch error
if ir < 0:
print(ir, error[ir], 'g+ =', g1, 'ak=', ak)
return ir
# dimensionless q scale
q = np.atleast_1d(q)
qR2 = 2 * R * q
# calc values by _SQMSA
sq = _SQMSA(qR2, scal, seta, sak, sgek, a, b, c, f)
result = dA(np.r_[[q, sq]])
result.setColumnIndex(iey=None)
# add important parameters
result.volumeFraction = eta
result.rescaledVolumeFraction = seta
result.molarity = molarity
result.screeningLength = scl
result.gamma = gamma
result.contactpotential = gek
result.S0 = -1 / a
result.scalingfactor = scal
result.gplus1 = [g1, ir]
result.modelname = inspect.currentframe().f_code.co_name
result._coefficients = {key: value for (value, key) in
zip([ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1],
['ir', 'eta', 'gek', 'ak', 'a', 'b', 'c', 'f', 'u', 'v', 'gamk', 'seta', 'sgek', 'sak',
'scal', 'g1'])}
return result
[docs]def sq2gr(Sq, R, interpolatefactor=2):
r"""
Radial distribution function g(r) from structure factor S(q).
The result strongly depends on quality of S(Q) (number of data points, Q range, smoothness).
Read [2]_ for details of this inversion problem and why it may fail.
Parameters
----------
Sq : dataArray
Structure factor e.g. in units as [Q]=1/nm
- .X wavevector
- .Y structure factor
- **Advice** : Use more than :math:`2^12` points and :math:`q_{max}R>=100` for accurate results.
R : float
Estimate for the radius of the particles.
interpolatefactor : int
Number of points between points in interpolation for rfft.
2 doubles the points
Returns
-------
dataArray
.n0 approximated from :math:`2\pi^2 n_0=\int_0^{Q_{max}} [S(Q) -1]Q^2 dQ`
Notes
-----
One finds that
.. math:: g(r)-1=(2\pi^2 n_0 r)^{-1} \int_0^\infty [S(Q) -1]Qsin(qr)dQ
with :math:`2\pi^2 n_0=\int_0^\infty [S(Q) -1]Q^2 dQ` defining :math:`n_0`.
As we have only a limited Q range (:math:`0 < Q < \infty` ), limited accuracy and number of Q values
we require that :math:`mean(g(R/2<r<R3/4))=0`.
Examples
--------
::
import jscatter as js
import numpy as np
p=js.grace()
p.multi(2,1)
q=js.loglist(0.01,100,2**13)
p[0].clear();p[1].clear()
R=2.5
eta=0.3;scl=5
n=eta/(4/3.*np.pi*R**3) # unit 1/nm**3
sf=js.sf.RMSA(q=q,R=R,scl=scl, gamma=50, eta=eta)
gr=js.sf.sq2gr(sf,R,interpolatefactor=1)
sfcut=js.sf.RMSA(js.loglist(0.01,10,2**10),R=R,scl=scl, gamma=50, eta=eta)
grcut=js.sf.sq2gr(sfcut,R,interpolatefactor=5)
p[0].plot(sf.X*2*R,sf.Y,le=r'\xG=50')
p[1].plot(gr.X/2/R,gr[1],le=r'\xG=50')
p[1].plot(grcut.X/2/R,grcut[1],le=r'\xG=50 \f{}Q\smax\N=10')
sfh=js.sf.RMSA(q=q,R=R,scl=scl, gamma=0.01, eta=eta)
grh=js.sf.sq2gr(sfh,R,interpolatefactor=1)
p[0].plot(sfh.X*2*R,sfh.Y,le=r'\xG=0.01')
p[1].plot(grh.X/2/R,grh[1],le=r'\xG=0.01')
p[0].xaxis(max=20,label='2RQ')
p[1].xaxis(max=4*R,label='r/(2R)')
p[0].yaxis(max=2,min=0,label='S(Q)')
p[1].yaxis(max=2.5,min=0,label='g(r)')
p[0].legend(x=10,y=1.8)
p[1].legend(x=4,y=2.2)
p[0].title('Comparison RMSA')
p[0].subtitle('R=%.2g, eta=%.2g, scl=%.2g' %(R,eta,scl))
#p.save(js.examples.imagepath+'/sq2gr.jpg')
.. image:: ../../examples/images/sq2gr.jpg
:align: center
:height: 300px
:alt: sq2gr
References
----------
.. [1] Yarnell, J. L., Katz, M. J., Wenzel, R. G., & Koenig, S. H. (1973).
Structure factor and radial distribution function for liquid argon at 85 K.
Physical Review A, 7(6), 2130.
.. [2] On the determination of the pair correlation function from liquid structure factor measurements
A.K. Soper Chemical Physics 107, 61-74, (1986)
"""
nn = interpolatefactor * Sq.X.shape[0]
delta = Sq.X.max() / nn
Q = np.r_[0:Sq.X.max():1j * nn]
rrr = 2 * np.pi * scipy.fft.fftfreq(nn, delta)[1:nn // 2]
# interpolation for more or smoother points
Yminus1 = np.interp(Q, Sq.X, Sq.Y - 1)
# Yminus1=scipy.interpolate.interp1d(Sq.X,Sq.Y-1,kind=2)(Q)
# doing sine transform to solve the sin integral
Sqdst = scipy.fft.dst(Yminus1 * Q)
gr = 1 / (2 * np.pi ** 2 * rrr) * Sqdst[2::2] / (2 * np.pi)
# grminus=1/(2*np.pi**2*rrr)*Sqdst[3::2]/(2*np.pi)
n0 = -1 / (2 * np.pi ** 2) * scipy.integrate.simps(Sq.X ** 2 * (Sq.Y - 1), Sq.X)
factor = abs(gr[abs(rrr - R) < R / 2].mean())
gr = 1 + gr / factor
# grminus=1+grminus/factor
result = dA(np.c_[rrr, gr].T)
result.n0 = n0
result.modelname = inspect.currentframe().f_code.co_name
return result
[docs]def PercusYevick(q, R, molarity=None, eta=None):
"""
The Percus-Yevick structure factor of a hard sphere in 3D.
Structure factor for the potential U(r)= (inf for 0<r<R) and (0 for R<r).
Parameters
----------
q : array; N dim
scattering vector; units 1/(R[unit])
R : float
Radius of the object
eta : float
volume fraction as eta=4/3*pi*R**3*n with number density n in units or R
molarity : float
number density in mol/l and defines q and R units to 1/nm and nm to be correct
preferred over eta if both given
Returns
-------
dataArray
structure factor for given q
Examples
--------
::
import jscatter as js
R = 6
phi = 0.05
depth = 15
q = js.loglist(0.01, 2, 200)
p = js.grace(1,1)
for eta in [0.005,0.01,0.03,0.05,0.1,0.2,0.3,0.4]:
py = js.sf.PercusYevick(q, R, eta=eta)
p.plot(py, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}')
p.yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5)
p.legend(x=1, y=0.9)
p.xaxis(min=0, max=1.5)
p.title('3D Percus-Yevick structure factor')
#p.save(js.examples.imagepath+'/PercusYevick.jpg')
.. image:: ../../examples/images/PercusYevick.jpg
:width: 50 %
:align: center
:alt: PercusYevick
Notes
-----
Problem is given in [1]_; solution in [2]_ and best description of the solution is in [3]_.
References
----------
.. [1] J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
.. [2] M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).
.. [3] D. J. Kinning and E. L. Thomas, Macromolecules 17, 1712 (1984).
"""
q = np.atleast_1d(q)
R = abs(R)
# get volume fraction eta from number density and radius R
if isinstance(molarity, numbers.Number):
molarity = abs(molarity)
numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3
eta = 4 / 3. * np.pi * R ** 3 * numdens
elif isinstance(eta, numbers.Number):
eta = abs(eta)
numdens = eta / (4 / 3. * np.pi * R ** 3)
molarity = numdens / (constants.N_A * 1e-24)
else:
raise Exception('one of molarity/eta needs to be given.')
if R == 0 or eta == 0:
Sq = np.ones_like(q)
a = 1.
else:
u = q * R * 2
u = np.where(u >= 0.01, u, np.ones_like(u) * 0.01) # problems with number limits for to small u and avoid zero
a = (1 + 2 * eta) ** 2 / (1 - eta) ** 4
b = -3 / 2 * eta * (eta + 2) ** 2 / (1 - eta) ** 4
UU = (a * (np.sin(u) - u * np.cos(u)) +
b * ((2 / u ** 2 - 1) * u * np.cos(u) + 2 * np.sin(u) - 2 / u) +
eta * a / 2 * (24 / u ** 3 + 4 * (1 - 6 / u ** 2) * np.sin(u) -
(1 - 12 / u ** 2 + 24 / u ** 4) * u * np.cos(u)))
_Sq = 1 / (1 + 24 * eta / u ** 3 * UU)
Sq = np.where(u > 0.02, _Sq, np.ones_like(u) / a) # for low u we use the S(q=0) = 1/a
result = dA(np.r_[[q, Sq]])
result.setColumnIndex(iey=None)
result.modelname = inspect.currentframe().f_code.co_name
result.eta = eta
result.molarity = molarity
result.radius = R
result.Sq0 = 1 / a
return result
[docs]def PercusYevick2D(q, R=1, eta=0.1, a=None):
"""
The PercusYevick structure factor of a hard sphere in 2D.
Structure factor for the potential U(r)= (inf for 0<r<R) and (0 for R<r).
Parameters
----------
q : array; N dim
scattering vector; units 1/(R[unit])
R : float, default 1
Radius of the object
eta : float, default 0.1
packing fraction as eta=pi*R**2*n with number density n
maximum hexagonal closed = (np.pi*R**2)/(3/2.*3**0.5*a**2)
Rmax=a*3**0.5/2. with max packing of 0.9069
a : float, default None
hexagonal lattice constant
if not None the packing fraction in hexagonal lattice
as eta=(np.pi*R**2)/(3/2.*3**0.5*a**2) is used
Returns
-------
dataArray
Examples
--------
::
import jscatter as js
R = 6
phi = 0.05
depth = 15
q = js.loglist(0.01, 2, 200)
p = js.grace(1,1)
for eta in [0.005,0.01,0.03,0.05,0.1,0.2,0.3,0.4]:
py = js.sf.PercusYevick2D(q, R, eta=eta)
p.plot(py, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}')
p.yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5)
p.legend(x=1, y=0.9)
p.xaxis(min=0, max=1.5)
p.title('2D Percus-Yevick structure factor')
#p.save(js.examples.imagepath+'/PercusYevick2D.jpg')
.. image:: ../../examples/images/PercusYevick2D.jpg
:width: 50 %
:align: center
:alt: PercusYevick2D
References
----------
.. [1] Free-energy model for the inhomogeneous hard-sphere fluid in D dimensions:
Structure factors for the hard-disk (D=2) mixtures in simple explicit form
Yaakov Rosenfeld Phys. Rev. A 42, 5978
"""
if a is not None:
eta = (np.pi * R ** 2) / (3 / 2. * 3 ** 0.5 * a ** 2)
q = np.atleast_1d(q)
if R == 0 or eta == 0:
Sq = np.ones_like(q)
else:
qR = lambda q: q * R
u = np.piecewise(q, [q == 0], [1e-8, qR]) # exchange q=zero with small Q as limit
Xi = (1 + eta) / (1 - eta) ** 3
G = (1 - eta) ** -1
Z = (1 - eta) ** -2
A = (1 + (2 * eta - 1) * Xi + 2 * eta * G) / eta
B = ((1 - eta) * Xi - 1 - 3 * eta * G) / eta
UU = 4 * eta * (
A * (special.j1(u) / u) ** 2 + B * special.j0(u) * special.j1(u) / u + G * special.j1(2 * u) / u)
Sq = 1 / (1 + UU)
result = dA(np.r_[[q, Sq]])
result.setColumnIndex(iey=None)
result.packingfraction = eta
result.R = R
result.a = (np.pi * R ** 2 / (eta * 3 / 2. * 3 ** 0.5)) ** 0.5
result.modelname = inspect.currentframe().f_code.co_name
return result
[docs]def PercusYevick1D(q, R=1, eta=0.1):
"""
The PercusYevick structure factor of a hard sphere in 1D.
Structure factor for the potential U(r)= (inf for 0<r<R) and (0 for R<r).
Parameters
----------
q : array; N dim
scattering vector; units 1/(R[unit])
R : float
Radius of the object in nm.
eta : float
Packing fraction as eta=2*R*n with number density n.
Returns
-------
dataArray
[q,structure factor]
Examples
--------
::
import jscatter as js
R = 6
phi = 0.05
depth = 15
q = js.loglist(0.01, 2, 200)
p = js.grace(1,1)
for eta in [0.005,0.01,0.03,0.05,0.1,0.2,0.3,0.4]:
py = js.sf.PercusYevick1D(q, R, eta=eta)
p.plot(py, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}')
p.yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5)
p.legend(x=1, y=0.9)
p.xaxis(min=0, max=1.5)
p.title('1D Percus-Yevick structure factor')
#p.save(js.examples.imagepath+'/PercusYevick1D.jpg')
.. image:: ../../examples/images/PercusYevick1D.jpg
:width: 50 %
:align: center
:alt: PercusYevick1D
References
----------
.. [1] Exact solution of the Percus-Yevick equation for a hard-core fluid in odd dimensions
Leutheusser E Physica A 1984 vol: 127 (3) pp: 667-676
.. [2] On the equivalence of the Ornstein–Zernike relation and Baxter’s relations for a one-dimensional simple fluid
Chen M Journal of Mathematical Physics 1975 vol: 16 (5) pp: 1150
"""
q = np.atleast_1d(q)
D = 2. * R
nn = eta / D
if R == 0 or eta == 0:
Sq = np.ones_like(q)
else:
# exchange q=zero with small Q as limit
Q = np.piecewise(q, [q == 0], [1e-8, lambda q: q])
xi = (1 - D * nn)
cQ = -2 * (1. / Q / xi * np.sin(Q * D) + nn / Q ** 2 / xi ** 2 * (1 - np.cos(Q * D)))
Sq = (1 - cQ * nn) ** -1 # =1/A eq 6 and 8b of [1]_
result = dA(np.r_[[q, Sq]])
result.setColumnIndex(iey=None)
result.packingfraction = eta
result.R = R
result.nkTkappa = xi ** 2
result.modelname = inspect.currentframe().f_code.co_name
return result
[docs]def stickyHardSphere(q, R, width, depth, molarity=None, phi=None):
r"""
Structure factor of a square well potential with depth and width (sticky hard spheres).
Sticky hard sphere model is derived using a perturbative solution of the factorized
form of the Ornstein-Zernike equation and the Percus-Yevick closure relation.
The perturbation parameter is width/(width+2R)
Parameters
----------
q : array; N dim
Scattering vector; units 1/(R[unit])
R : float
Radius of the hard sphere
phi : float
Volume fraction of the hard core particles
molarity : float
Number density in mol/l and defines q and R units to 1/nm and nm to be correct
Preferred over phi if both given.
depth : float
Potential well depth in kT
depth >0 (U<0); positive potential allowed (repulsive) see [1]_.
width : float
Width of the square well
Notes
-----
The potential U(r) is defined as
.. math:: U(r) &= \infty & r<2R \\
&= -depth[kT] & 2R<r<2R+width \\
&= 0 & r>2R+width
Other definitions include
- eps=width/(2*R+width)
- stickiness=exp(-depth)/12./eps
Examples
--------
::
import jscatter as js
R = 6
phi = 0.05
depth = 15
q = js.loglist(0.01, 2, 200)
p = js.grace(1,1)
for eta in [0.005,0.01,0.03,0.05,0.1,0.2]:
shs = js.sf.stickyHardSphere(q, R, 1, 3, phi=eta)
p.plot(shs, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}')
p.yaxis(min=0.0, max=3.2, label='S(Q)', charsize=1.5)
p.legend(x=1, y=3)
p.xaxis(min=0, max=1.5)
p.title('sticky hard sphere structure factor')
#p.save(js.examples.imagepath+'/stickyHardSphere.jpg')
.. image:: ../../examples/images/stickyHardSphere.jpg
:width: 50 %
:align: center
:alt: stickyHardSphere
References
----------
.. [1] S.V. G. Menon, C. Manohar, and K. S. Rao, J. Chem. Phys. 95, 9186 (1991)
.. [2] M. Sztucki, T. Narayanan, G. Belina, A. Moussaïd, F. Pignon, and H. Hoekstra, Phys. Rev. E 74, 051504 (2006)
.. [3] W.-R. Chen, S.-H. Chen, and F. Mallamace, Phys. Rev. E 66, 021403 (2002)
.. [4] G. Foffi, E. Zaccarelli, F. Sciortino, P. Tartaglia, and K. A. Dawson, J. Stat. Phys. 100, 363 (2000)
"""
# get volume fraction eta from number density and radius R
if isinstance(molarity, numbers.Number):
numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3
phi = 4 / 3. * np.pi * R ** 3 * numdens
elif isinstance(phi, numbers.Number):
numdens = phi / (4 / 3. * np.pi * R ** 3)
molarity = numdens / (constants.N_A * 1e-24)
else:
raise Exception('one of molarity/eta needs to be given.')
# to prevent math range error in fits
if depth < -200: depth = -200
q = np.atleast_1d(q)
Q = np.piecewise(q, [q == 0], [1e-8, lambda q: q]) # avoid zero
eps = width / (2 * R + width) # pertubation parameter
tau = math.exp(-depth) / 12. / eps # stickiness
eta = phi * (1 - eps) ** 3
lam = (1 + 0.5 * eta) / (1 - eta) ** 2 / (eta ** 2 / (1 - eta) - eta / 12. + tau)
mu = lam * eta * (1 - eta)
al = (1 + 2 * eta - mu) / (1 - eta) ** 2
be = (-3 * eta + mu) / 2. / (1 - eta) ** 2
k = Q * (2 * R + width)
sink = np.sin(k)
cosk = np.cos(k)
Ak = 1 + 12 * eta * (al * ((sink - k * cosk) / k ** 3) + be * (1 - cosk) / k ** 2 - lam / 12. * sink / k)
Bk = 12 * eta * (al * (0.5 / k - sink / k ** 2 + (1 - cosk) / k ** 3) + be * (1 / k - sink / k ** 2) - lam / 12. * (
(1 - cosk) / k))
Sk = 1. / (Ak * Ak + Bk * Bk)
result = dA(np.r_[[q, Sk]])
result.welldepth = depth
result.weelwidth = width
result.stickiness = tau
result.volumefraction = phi
result.eta = eta
result.molarity = molarity
result.modelname = inspect.currentframe().f_code.co_name
return result
[docs]def adhesiveHardSphere(q, R, tau, delta, molarity=None, eta=None):
r"""
Structure factor of a adhesive hard sphere potential (a square well potential)
Parameters
----------
q : array; N dim
scattering vector; units 1/(R[unit])
R : float
radius of the hard core
eta : float
volume fraction of the hard core particles
molarity : float
number density in mol/l and defines q and R units to 1/nm and nm to be correct
preferred over eta if both given
tau : float
stickiness
delta : float
width of the square well
Notes
-----
The potential U(r) is defined as
.. math:: U(r) &= \infty & r<2R \\
&=-depth=ln(12*tau*delta/(2R+delta)) & 2R<r<2R+width \\
&= 0 & r>2R+width
Examples
--------
::
import jscatter as js
R = 6
phi = 0.05
depth = 15
q = js.loglist(0.01, 2, 200)
p = js.grace(1,1)
for eta in [0.005,0.01,0.03,0.05,0.1,0.2]:
shs = js.sf.adhesiveHardSphere(q, R, 1, 3, eta=eta)
p.plot(shs, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}')
p.yaxis(min=0.0, max=3.2, label='S(Q)', charsize=1.5)
p.legend(x=1, y=3)
p.xaxis(min=0, max=1.5)
p.title('adhesive hard sphere structure factor')
#p.save(js.examples.imagepath+'/adhesiveHardSphere.jpg')
.. image:: ../../examples/images/adhesiveHardSphere.jpg
:width: 50 %
:align: center
:alt: adhesiveHardSphere
References
----------
.. [1] C. Regnaut and J. C. Ravey, J. Chem. Phys. 91, 1211 (1989).
.. [2] C. Regnaut and J. C. Ravey, J. Chem. Phys. 92 (5) (1990), 3250 Erratum
"""
# get volume fraction eta from number density and radius R
if isinstance(molarity, numbers.Number):
numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3
eta = 4 / 3. * np.pi * R ** 3 * numdens
elif isinstance(eta, numbers.Number):
numdens = eta / (4 / 3. * np.pi * R ** 3)
molarity = numdens / (constants.N_A * 1e-24)
else:
raise Exception('one of molarity/eta needs to be given.')
q = np.atleast_1d(q)
sigma = 2. * R + delta
k = np.piecewise(q, [q == 0], [1e-8, lambda q: q * sigma])
phi = eta * (sigma / (2 * R)) ** 3
lam = 6. * (tau / phi + 1.0 / (1. - phi))
try:
lam1 = lam + math.sqrt(lam ** 2 - 12. / phi * (1. + 0.5 * phi) / (1 - phi) ** 2)
lam2 = lam - math.sqrt(lam ** 2 - 12. / phi * (1. + 0.5 * phi) / (1 - phi) ** 2)
lambd = lam1 if abs(lam1) < abs(lam2) else lam2
except ValueError: # complex root
return -1
mu = lambd * phi * (1. - phi)
A = 0.5 * (1. + 2. * phi - mu) / (1. - phi) ** 2
B = 0.5 * sigma * (mu - 3. * phi) / (1. - phi) ** 2
C = -A * sigma ** 2 - B * sigma + lambd * sigma ** 2 / 12.
sink = np.sin(k)
cosk = np.cos(k)
I0 = sink / k
I1 = (cosk + k * sink - 1.0) / k ** 2
I2 = (k ** 2 * sink - 2.0 * sink + 2.0 * k * cosk) / k ** 3
J0 = (1 - cosk) / k
J1 = (sink - k * cosk) / k ** 2
J2 = (2. * sink * k + 2. * cosk - k ** 2 * cosk - 2.) / k ** 3
alpha = 1.0 - 12.0 * phi * (C / sigma ** 2 * I0 + B / sigma * I1 + A * I2)
beta = 12.0 * phi * (C / sigma ** 2 * J0 + B / sigma * J1 + A * J2)
SQ = 1. / (alpha * alpha + beta * beta)
result = dA(np.r_[[q, SQ]])
try:
result.welldepth = math.log(12 * tau * delta / sigma)
except ZeroDivisionError:
result.welldepth = -np.inf
result.wellwidth = delta
result.stickiness = tau
result.welldepth = math.log(12 * tau * delta / sigma) if 12 * tau * delta / sigma > 0 else np.inf
result.HSvolumefraction = eta
result.phi = phi
result.modelname = inspect.currentframe().f_code.co_name
return result
[docs]def criticalSystem(q, cl, itc):
r"""
Structure factor of a critical system according to the Ornstein-Zernike form.
Parameters
----------
q : array; N dim
Scattering vector; units 1/(cl[unit])
cl : float
Correlation length in units nm.
itc : float
Isothermal compressibility of the system.
Notes
-----
.. math:: S(q) = \frac{itc}{1+q^2 cl^2}
- The peaking of the structure factor near Q=0 region is due to attractive interaction.
- Away from it the structure factor should be close to the hard sphere structure factor.
- Near the critical point we should find
:math:`S(q)=S_{PY}(q)+S_{OZ}(q)`
- :math:`S_{PY}` Percus Yevick structure factor
- :math:`S_{OZ}` this function
References
----------
.. [1] Analysis of Critical Scattering Data from AOT/D2O/n-Decane Microemulsions
S. H. Chen, T. L. Lin, M. Kotlarchyk
Surfactants in Solution pp 1315-1330
"""
Q = np.atleast_1d(q)
result = dA(np.r_[[Q, itc / (1 + Q ** 2 * cl ** 2)]])
result.corrlength = cl
result.isothermalcompress = itc
result.modelname = inspect.currentframe().f_code.co_name
return result
def _LhklVoigt(q, center, lg, domainsize, asym):
# Voigt bragg peak shape
return formel.voigt(q, center=center, lg=lg, fwhm=2 * np.pi / domainsize, asym=asym).Y
[docs]def latticeStructureFactor(q, lattice=None, domainsize=1000, asym=0, lg=1, rmsd=0.02, beta=None,
hklmax=7, c=1., wavelength=None, corrections=[]):
r"""
Radial structure factor S(q) in powder average of a crystal lattice with particle asymmetry,
DebyeWaller factor, diffusive scattering and broadening due to domain size.
To get the full scattering the formfactor needs to be included (See Notes and Examples).
1-3 dimensional lattice structures with basis containing multiple atoms (see lattice).
Self absorption and self extinction are not included. Polarisation and Lorentz correction are optional.
Parameters
----------
q : array float
Norm of wavevectors in inverse units of lattice constant, units 1/nm
domainsize : float
Domainsize of the crystal, units as lattice constant of lattice.
According to Debye-Scherrer equation :math:`fwhm=2\pi/domainsize` the peak width is determined [2]_.
lattice : lattice object
The crystal structure as defined in a lattice object. The size of the lattice is ignored. One of
rhombicLattice, bravaisLattice, scLattice, bccLattice, fccLattice, diamondLattice, hexLattice, hcpLattice.
See respective definitions.
lg : float, default = 1
Lorenzian/gaussian fraction describes the contributions of gaussian and lorenzian
shape in peak shape (Voigt function).
- lorenzian/gaussian >> 1 lorenzian,
- lorenzian/gaussian ~ 1 central part gaussian, outside lorenzian wings
- lorenzian/gaussian << 1 gaussian
asym : float, default=0
Asymmetry factor in sigmoidal as :math:`2fwhm/(1+e^{asym*(x-center)})`
For asym=0 the Voigt is symmetric with fwhm. See formel.voigt .
rmsd : float, default=0.02
Root mean square displacement :math:`rmsd=<u^2>^{0.5}` determining the Debye Waller factor.
Units as domainsize and lattice units.
Here Debye Waller factor is used as :math:`DW(q)=e^{-q^2 rmsd^2 }`
beta : float, None, dataArray
Asymmetry factor of the formfactor or reduction due to polydispersity.
- None beta=1, No beta assumed (spherical symmetric formfactor, no polydispersity)
- dataArray explicitly given as dataArray with beta in .Y column.
Missing values are interpolated.
- An approximation for polydisperse beta can be found in [1]_ equ.17.
This can be realized by beta=js.dA(np.vstack(q,np.exp(-(q*sr*R)**2)))
with sr as relative standard deviation of gaussian distribution of the size R.
- See .formfactor for different formfactors which explicit calculation of beta.
hklmax : int
Maximum order of the Bragg peaks to include.
c : float, default=1
Porod constant. See 3.8 in [1]_.
wavelength : float, default = None
Wavelength of the measurement in units nm. If None .Braggtheta is not calculated.
For Xray Cu K_a it is 0.15406 nm.
corrections : list, default=[]
List of corrections to apply, which depend on the measurement type/geometry [5]_.
:math:`\theta` is here the scattering angle (not :math:`2\theta` as in diffraction is used)
- *'TP'* Thompson polarisation correction :math:`(1+cos^2(\theta)/2)` for electromagnetic
scattering as Xrays [4]_. For small angle scattering this is negligible but valid.
For polarised beams the polarisation has to be included.
- *'lh'* likelihood of a crystallite being in diffraction position :math:`cos(\theta/2)`.
- *'LC'* Lorentz correction :math:`\sin(\theta)^{-1}` due to integration
over the width of reciprocal Bragg peaks due to lattice imperfections and the width of the incoming
beam. Use for Debye-Scherrer (powder of crystallites) diffraction.
- *'area'* the intensity for a given diffraction peak is recorded on a narrow strip of
photographic film instead of over the entire diffraction cone :math:`\sin(\theta)^{-1}`.
- *'all'* common Lorentz and polarisation correction powder measurements of crystalline material.
Use all from above. NOT for flat transmission geometry (typical SAS) or non crystallite .
Corresponds to :math:`(1+cos^2(\theta)/2)/sin^2(\theta/2)/sin(\theta/2)`.
The correction for the pixel area presented to scattering solid angle is included in sasImage in
2D also correcting for offset detector positions of a flat detector,
which cannot use the scattering angle :math:`\theta` as the geometry changes.
Returns
-------
dataArray
Columns [q, Sq, DW, beta, Z0q, correction, theta]
- q wavevector
- Sq = S(q) = (1+beta(q)*(Z0(q)-1)*DW(q))*correction structure factor
- DW(q) Debye-Waller factor with (1-DW)=diffusive scattering.
- beta(q) asymmetry factor of the formfactor.
- Z0q lattice factor Z0(q)
optional
- correction [optional] factor polarisation from Thompson scattering
- theta scattering angle
Attributes
- .q_hkl peak positions
- .fhkl symmetry factor
- .mhkl multiplicity
- .Braggtheta Bragg angles
Notes
-----
Analytical expressions for the scattering functions of **atomic crystals and ordered mesoscopic materials** .
Ordered structures in 3D (fcc, bcc, hcp, sc), 2D (hex, sq) and lamellar structures are considered.
The expressions take into account particle size distributions and lattice point deviations, domain size,
core/shell structures, as well as peak shapes varying analytically between Lorentzian and Gaussian functions.
The expressions allow one to quantitatively describe high-resolution synchrotron small-angle X-ray (SAXS) and
neutron scattering (SANS) curves from lipid and block copolymer lyotropic phases, core/shell nanoparticle
superstructures, ordered nanocomposites, ordered mesoporous materials and atomic crystal structures
(see AgBe example).
- The scattering intensity of a crystal domain in powder average is
.. math:: I(q)={\Delta\rho}^2 n P(q) S(q)
with
- :math:`\Delta\rho` scattering length difference between matrix and particles
- :math:`n` number density (of elementary cells)
- :math:`P(q)` form factor
- :math:`S(q)` structure factor :math:`S(q)`
For inhomogeneous particles or atoms with different scattering length we can incorporate :math:`\Delta\rho(r)`
in the formfactor :math:`P(q)` if this includes the integrated scattering length differences.
- The structure factor is [1]_ :
.. math:: S(q)=1+ \beta(q)(Z_0(q)-1)*DW(Q)
with
- :math:`\beta(q)=<F(q)>^2/<F(q)^2>` as asymmetry factor [3]_ dependent on the
scattering amplitude :math:`F(q)` and particle polydispersity
- :math:`DW(q)` Debye Waller factor
- The lattice factor is [1]_ :
.. math :: Z_0(q) = \frac{(2\pi)^{d-1}c}{nv_dq^{d-1}} \sum\limits_{hkl}m_{hkl}f_{hkl}^2L_{hkl}(q)
with
- :math:`n` number of particles per unit cell
- :math:`f_{hkl}` unit cell structure factor that takes into account symmetry-related extinction rules
- :math:`v_d` volume of the d-dimensional unit cell
- :math:`hkl` reflections
- :math:`m_{hkl}` peak multiplicity
- :math:`c` Porod constant :math:`\simeq 1`
- Unit cell structure factors :math:`f_{hkl}` are normalised that the lattice factor is normalised for
infinite q to 1. With i as unit cell atoms at fractional position in the unit cell :math:`[x_i,y_i,z_i]`
and scattering amplitude :math:`b_i` we get :
.. math:: f_{hkl}^2 = \big(\sum_i b_i e^{-2\pi (hx_i+ky_i+lz_i)}\big)^2 / \sum_i b_i^2
- We use a Voigt function for the peak shape :math:`L_{hkl}(q)` (see formel.voigt).
- DW is a Debye Waller like factor as :math:`DW(q)=e^{-q^2<u^2>}` leading to a reduction
of scattered intensity and diffusive scattering.
It has contributions from thermal lattice disorder ( DW factor with 1/3 factor in 3D),
surface roughness and size polydispersity.
- For the limiting behaviour q->0 see the discussion in [1]_ in 3.9. :
"... The zero-order peak is not explicitly considered because of the q^(1-dim) singularity and
because its intensity depends also on the scattering length difference between the lattice inside and outside...
Due to the singularity and since structural features on length scales d > a,
such as packing defects, grain boundaries or fluctuations decaying on larger length scales
are only indirectly considered via the domain size D, eq 30 is not expected to give good agreement with
experimentally determined scattering curves in the range of scattering vectors q < 2π/a.
However, for q > 2π/a, this approach describes remarkably well experimentally measured
high-resolution scattering curves...."
A good description of the real scattering for low Q is shown in
example :ref:`A nano cube build of different lattices`.
Examples
--------
Structure factor for hexagonal lattice dependent on rmsd
::
import jscatter as js
import numpy as np
q = np.r_[0.02:1:800j]
a = 50.
R=15
sr=0.1
p = js.grace()
beta=js.dA(np.vstack([q,np.exp(-(q*sr*R)**2)]))
p.title('structure factor for hexagonal 2D lattice with a={0} nm'.format(a))
p.subtitle('with diffusive scattering and asymmetry factor beta')
for i,rmsd in enumerate([1., 3., 10., 30.],1):
grid=js.sf.scLattice(50,5)
hex = js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=500., beta=beta,lattice=grid)
p.plot(hex, li=[1, 2, i], sy=0, le='rmsd=$rmsd')
p.plot(hex.X,1-hex._DW, li=[3, 2, i], sy=0)
p.plot(hex.X, hex._beta, li=[2, 2, i], sy=0, le='beta')
p.text(r'broken lines \nshow diffusive scattering',x=0.4,y=6)
p.yaxis(label='S(q)')
p.xaxis(label='q / nm')
p.legend(x=0.6,y=4)
Comparison of sc, bcc, fcc for same cubic unit cell size to demonstrate selection rules.
::
import jscatter as js
import numpy as np
q=np.r_[js.loglist(0.1,3,200),3:40:800j]
unitcelllength=1.5
N=2
R=0.5
sr=0.1
beta=js.dA(np.vstack([q,np.exp(-(q*sr*R)**2)]))
rmsd=0.02
#
scgrid= js.lattice.scLattice(unitcelllength,N)
sc=js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=50., beta=beta,lattice=scgrid)
bccgrid= js.lattice.bccLattice(unitcelllength,N)
bcc=js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=50., beta=beta,lattice=bccgrid)
fccgrid= js.lattice.fccLattice(unitcelllength,N)
fcc=js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=50., beta=beta,lattice=fccgrid)
#
p=js.grace()
p.plot(sc,legend='sc')
p.plot(bcc,legend='bcc')
p.plot(fcc,legend='fcc')
p.yaxis(label='S(q)',scale='l',max=50,min=0.05)
p.xaxis(label='q / nm',scale='l',max=50,min=0.5)
p.legend(x=1,y=30,charsize=1.5)
# p.save(js.examples.imagepath+'/latticeStructureFactor2.jpg')
.. image:: ../../examples/images/latticeStructureFactor2.jpg
:align: center
:height: 300px
:alt: multiParDistributedAverage
A realistic example of a calibration measurement with AgBe.
We load the cif file of the crystal structure to build the lattice and find good agreement.
According to materialsproject.org calculated XRD tends to underestimate lattice parameters.
For AgBe the first peak is found at 1.07
::
import jscatter as js
#
# Look at raw calibration measurement
calibration = js.sas.sasImage(js.examples.datapath+'/calibration.tiff')
bc=calibration.center
calibration.mask4Polygon([bc[0]+8,bc[1]],[bc[0]-8,bc[1]],[bc[0]-8+60,0],[bc[0]+8+60,0])
# mask center
calibration.maskCircle(calibration.center, 18)
# mask outside shadow
calibration.maskCircle([500,320], 280,invert=True)
# calibration.show(axis='pixel',scale='log')
cal=calibration.radialAverage()
# lattice from crystallographic data in cif file.
agbe=js.sf.latticeFromCIF(js.examples.datapath + '/1507774.cif',size=[0,0,0])
sfagbe=js.sf.latticeStructureFactor(cal.X, lattice=agbe,
domainsize=50, rmsd=0.001, lg=1, hklmax=17,wavelength=0.15406)
p=js.grace()
p.plot(cal)
# add scaling and background (because of unscaled raw data)
p.plot(sfagbe.X,190*sfagbe.Y+1.9,sy=0,li=[1,3,4])
p.yaxis(scale='log',label='I(q) / counts/pixel')
p.xaxis(scale='log',label='q / nm|S-1',min=0.7,max=20)
p.title('AgBe reference measurements')
# p.save(js.examples.imagepath+'/latticeStructureFactor.jpg')
.. image:: ../../examples/images/latticeStructureFactor.jpg
:align: center
:height: 300px
:alt: multiParDistributedAverage
References
----------
.. [1] Scattering curves of ordered mesoscopic materials.
Förster, S. et al. J. Phys. Chem. B 109, 1347–1360 (2005).
.. [2] Patterson, A.
The Scherrer Formula for X-Ray Particle Size Determination
Phys. Rev. 56 (10): 978–982 (1939)
doi:10.1103/PhysRev.56.978.
.. [3] M. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).1
.. [4] https://en.wikipedia.org/wiki/Thomson_scattering
.. [5] Modern Physical Metallurgy chapter 5 Characterization and Analysis
R.E.SmallmanA.H.W.Ngan
https://doi.org/10.1016/B978-0-08-098204-5.00005-5
"""
if corrections == 'all' or 'all' in corrections:
corrections = ['TP', 'lh', 'LC', 'area']
qq = q.copy()
qq[q == 0] = min(q[q > 0]) * 1e-4 # avoid zero
n = len(lattice.unitCellAtoms)
vd = lattice.unitCellVolume
dim = len(lattice.latticeVectors)
qhkl, f2hkl, mhkl, hkl = lattice.getRadialReciprocalLattice(hklmax)
# lattice factor
if useFortran:
# factor 3 faster for single cpu, additional factor 3 for multiprocessing (on 6 core)
Z0q = fscatter.utils.sumlhklvoigt(qq, qhkl, f2hkl, mhkl, lg, domainsize, asym, dim, c, n, vd, 0)
else:
Z0q = np.c_[[m * f2 * _LhklVoigt(qq, qr, lg, domainsize, asym)
for qr, f2, m in zip(qhkl, f2hkl, mhkl)]].sum(axis=0)
Z0q *= (2 * np.pi) ** (dim - 1) * c / n / vd / qq ** (dim - 1)
# normalisation
Z0q = Z0q / np.sum(np.r_[lattice.unitCellAtoms_b]**2)
if beta is None:
beta = np.ones_like(q)
elif hasattr(beta, '_isdataArray'):
beta = beta.interp(q)
# Debye Waller factor
DW = np.exp(-q ** 2 * rmsd ** 2)
# structure factor
Sq = 1 + beta * (Z0q - 1) * DW
if wavelength is None:
# prepare result
result = dA(np.vstack([q, Sq, DW, beta, Z0q]))
result.columnname = 'q; Sq; DW; beta; Z0q'
else:
theta = 2 * np.arcsin(qq * wavelength / 4. / np.pi)
correction = np.ones_like(Sq)
if 'TP' in corrections:
correction = correction * (1 + np.cos(theta) ** 2) / 2
if 'LC' in corrections:
correction = correction / np.sin(theta)
if 'area' in corrections:
correction = correction / np.sin(theta)
if 'lh' in corrections:
correction = correction * np.cos(theta / 2)
# prepare result
result = dA(np.vstack([q, Sq * correction, DW, beta, Z0q, correction, theta]))
result.columnname = 'q; Sq; DW; beta; Z0q; TPf; theta'
result.setColumnIndex(iey=None)
result.q_hkl = qhkl
result.fhkl = f2hkl
result.sumfi2 = np.sum(np.r_[lattice.unitCellAtoms_b] ** 2)
result.mhkl = mhkl
result.hkl = hkl
if wavelength is not None:
result.Braggtheta = lattice.getScatteringAngle(size=hklmax, wavelength=wavelength)
result.latticeconstants = la.norm(lattice.latticeVectors, axis=1)
result.peakFWHM = 2 * np.pi / domainsize
result.peaksigma = (result.peakFWHM / (2 * np.sqrt(2 * np.log(2))))
result.peakAsymmetry = asym
result.domainsize = domainsize
result.rmsd = rmsd
result.lorenzianOverGaussian = lg
result.modelname = inspect.currentframe().f_code.co_name
return result
[docs]def radial3DLSF(qxyz, lattice=None, domainsize=1000, asym=0, lg=1, rmsd=0.02, beta=None,
hklmax=7, c=1., wavelength=None, corrections=[]):
r"""
3D structure factor S(q) in powder average of a crystal lattice
with particle asymmetry, DebyeWaller factor, diffusive scattering and broadening due to domain size.
The qxyz can be an arbitrary composition of points in reciprocal space.
Uses latticeStructureFactor. The peak shape is a Voigt function.
Parameters
----------
qxyz : 3xN array
Wavevector plane in inverse units of lattice constant, units 1/A or 1/nm.
domainsize : float
Domainsize of the crystal, units as lattice constant of lattice.
According to Debye-Scherrer equation :math:`fwhm=2\pi/domainsize` the peak width is determined [2]_.
lattice : lattice object
The crystal structure as defined in a lattice object. The size of the lattice is ignored. One of
rhombicLattice, bravaisLattice, scLattice, bccLattice, fccLattice, diamondLattice, hexLattice, hcpLattice.
See respective definitions.
lg : float, default = 1
Lorenzian/gaussian fraction describes the contributions of gaussian and lorenzian shape in peak shape.
- lorenzian/gaussian >> 1 lorenzian,
- lorenzian/gaussian ~ 1 central part gaussian, outside lorenzian wings
- lorenzian/gaussian << 1 gaussian
asym : float, default=0
Asymmetry factor in sigmoidal as :math:`2fwhm/(1+e^{asym*(x-center)})`
For asym=0 the Voigt is symmetric with fwhm. See formel.voigt .
rmsd : float, default=0.02
Root mean square displacement :math:`rmsd=<u^2>^{0.5}` determining the Debye Waller factor.
Units as domainsize and lattice units.
Here Debye Waller factor is used as :math:`DW(q)=e^{-q^2 rmsd^2 }`
beta : float, None, dataArray
Asymmetry factor of the formfactor or reduction due to polydispersity.
- None beta=1, No beta assumed (spherical symmetric formfactor, no polydispersity)
- dataArray explicitly given as dataArray with beta in .Y column.
Missing values are interpolated.
- An approximation for polydisperse beta can be found in [1]_ equ.17.
This can be realized by beta=js.dA(np.vstack(q,np.exp(-(q*sr*R)**2)))
with sr as relative standard deviation of gaussian distribution of the size R.
- See .formfactor for different formfactors which explicit calculation of beta.
hklmax : int
Maximum order of the Bragg peaks to include.
c : float, default=1
Porod constant. See 3.8 in [1]_.
wavelength : float, default = None
Wavelength of the measurement in units nm. If None .Braggtheta is not calculated.
For Xray Cu K_a it is 0.15406 nm.
corrections : list, default=[]
List of corrections to apply, which depend on the measurement type/geometry.
See :py:func:`~.sf.latticeStructureFactor`
Returns
-------
dataArray
Columns [qx,qz,qw,Sq]
- Sq = S(q) = 1+beta(q)*(Z0(q)-1)*DW(q) structure factor
Attributes
- .q_hkl peak positions
- .fhkl symmetry factor
- .mhkl multiplicity
Notes
-----
See latticeStructureFactor.
Examples
--------
::
import jscatter as js
import numpy as np
import matplotlib.pyplot as pyplot
from matplotlib import cm
from matplotlib import colors
norm=colors.LogNorm(clip=True)
# create lattice
sclattice = js.lattice.scLattice(2.1, 1)
ds = 50
# add flat detector xy plane
xzw = np.mgrid[-8:8:500j, -8:8:500j]
qxzw = np.stack([np.zeros_like(xzw[0]), xzw[0], xzw[1]], axis=0)
ff1 = js.sf.radial3DLSF(qxzw.reshape(3, -1).T, sclattice, domainsize=ds, rmsd=0.03, hklmax=7)
norm.autoscale(ff1.Y)
fig = pyplot.figure()
ax = fig.add_subplot(1, 1, 1)
im = ax.imshow(ff1.Y.reshape(500,-1),norm=norm)
fig.colorbar(im, shrink=0.8)
js.mpl.show()
Note that for to low number of points in the xzw plane moire patterns appear.
::
import jscatter as js
import numpy as np
import matplotlib.pyplot as pyplot
from matplotlib import cm
# Set the aspect ratio to 1 so our sphere looks spherical
fig = pyplot.figure(figsize=pyplot.figaspect(1.))
ax = fig.add_subplot(111, projection='3d')
# create lattice
sclattice = js.lattice.scLattice(2.1, 1)
ds = 50
# add flat detector xy plane
xzw = np.mgrid[-8:8:250j, -8:8:250j]
qxzw = np.stack([np.zeros_like(xzw[0]), xzw[0], xzw[1]], axis=0)
ff1 = js.sf.radial3DLSF(qxzw.reshape(3, -1).T, sclattice, domainsize=ds, rmsd=0.03, hklmax=7)
ffs1 = ff1.Y # np.log(ff1.Y)
fmax, fmin = ffs1.max(), ffs1.min()
ff1Y = (np.reshape(ffs1, xzw[0].shape) - fmin) / (fmax - fmin)
ax.plot_surface(qxzw[0], qxzw[1], qxzw[2], rstride=1, cstride=1, facecolors=cm.gist_ncar(ff1Y), alpha=0.3)
qxzw = np.stack([xzw[0]+8, np.zeros_like(xzw[0])+8, xzw[1]], axis=0)
ff2 = js.sf.radial3DLSF(qxzw.reshape(3, -1).T, sclattice, domainsize=ds, rmsd=0.03, hklmax=7)
ffs2 = ff2.Y #np.log(ff2.Y)
fmax, fmin = ffs2.max(), ffs2.min()
ff2Y = (np.reshape(ffs2, xzw[0].shape) - fmin) / (fmax - fmin)
ax.plot_surface(qxzw[0], qxzw[1], qxzw[2], rstride=1, cstride=1, facecolors=cm.gray(ff2Y), alpha=0.3)
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
fig.suptitle('Scattering planes of simple cubic lattice \nin powder average')
pyplot.show(block=False)
References
----------
.. [1] Scattering curves of ordered mesoscopic materials.
Förster, S. et al. J. Phys. Chem. B 109, 1347–1360 (2005).
.. [2] Patterson, A.
The Scherrer Formula for X-Ray Particle Size Determination
Phys. Rev. 56 (10): 978–982 (1939)
doi:10.1103/PhysRev.56.978.
.. [3] M. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).1
"""
qr = np.linalg.norm(qxyz, axis=1)
qx = np.r_[0:np.max(qr):1j * 2 * np.mean(qxyz.shape) ** 0.5]
# radial lSF
lsf = latticeStructureFactor(q=qx, lattice=lattice, domainsize=domainsize, asym=asym, lg=lg, rmsd=rmsd,
beta=beta, hklmax=hklmax, c=c, wavelength=wavelength, corrections=corrections)
# prepare result for 3D
result = dA(np.c_[qxyz, lsf.interp(qr)].T)
# copy attributes from lsf
result.setattr(lsf)
result.setColumnIndex(ix=0, iz=1, iw=2, iy=3)
result.modelname = inspect.currentframe().f_code.co_name
return result
# Bragg peak shape as Gaussian
def _Lhkl(q, center, pWsigma):
# Gaussian peak at center with width pWsigma
Lhkl = np.multiply.reduce(np.exp(-0.5 * ((q - center) / pWsigma) ** 2) / pWsigma / np.sqrt(2 * np.pi), axis=1)
return Lhkl
def _Z0q(qxyz, qpeaks, f2peaks, peakWidthSigma, rotvector, angle=0, ncpu2=0):
# calculates scattering intensity in direction qhkl as 3d q vectors
# qpeaks are 3d peak positions
# f2peaks are peak intensities
# peakWidthSigma gaussian width
# rotvector , angle: rotate q by angle around rotvector is the same as rotate crystal
# ncpu2 parallel cores only used with Fortran (the 2 prevent usage of multiprocessing in pDA)
# rotate qxyz
if rotvector is not None and angle != 0:
# As we rotate here the qhkl instead of the lattice angle gets a minus sign
R = formel.rotationMatrix(rotvector, -angle)
rqxyz = np.einsum('ij,kj->ki', R, qxyz)
else:
rqxyz = qxyz.copy()
# calc Z0q
if useFortran:
# Z0q = np.c_[[f2 * fscatter.cloud.lhkl(rqxyz, q, peakWidthSigma)
# for q, f2 in zip(qpeaks, f2peaks) if la.norm(q)>0]].sum(axis=0)
# 10% faster than above
qpnorm = la.norm(qpeaks, axis=1)
Z0q = fscatter.utils.sumlhklgauss(rqxyz, qpeaks[qpnorm > 0, :], peakWidthSigma, f2peaks[qpnorm > 0], ncpu=ncpu2)
else:
Z0q = np.c_[[f2 * _Lhkl(rqxyz, q, peakWidthSigma)
for q, f2 in zip(qpeaks, f2peaks) if la.norm(q) > 0]].sum(axis=0)
return Z0q
[docs]def orientedLatticeStructureFactor(qxyz, lattice, rotation=None, domainsize=1000, rmsd=0.02, beta=None,
hklmax=3, nGauss=13, ncpu=0, wavelength=None, corrections=[]):
r"""
2D structure factor S(q) of an oriented crystal lattice including particle asymmetry, DebyeWaller factor,
diffusive scattering, domain rotation and domain size.
To get the full scattering the formfactor needs to be included (See Notes and Examples).
1-3 dimensional lattice structures with basis containing multiple atoms (see lattice).
To orient the crystal lattice use lattice methods .rotatehkl2Vector and .rotateAroundhkl
Parameters
----------
qxyz : array 3xN
Wavevector array representing a slice/surface in q-space (3D), units 1/A or 1/nm.
This can describe a detector plane, section of the Ewald sphere or a line in reciprocal space.
lattice : lattice object
Lattice object with arbitrary atoms particles in unit cell,
or predefined lattice from rhombicLattice, bravaisLattice, scLattice,bccLattice,
fccLattice, diamondLattice, hexLattice, hcpLattice with scattering length of unit cell atoms.
See lattices for examples.
rotation : 4x float as [h,k,l,sigma], None
Average over rotation of the crystal around axis hkl
with Gaussian distribution of width sigma (units rad) around actual orientation.
domainsize : float,list, list of directions
Domainsize of the crystal, units as lattice constant of lattice.
According to Debye-Scherrer equation :math:`fwhm=2\pi/domainsize` the peak width is determined [2]_.
- float : assume same domainsize in all directions.
- list 3 float : domainsize in directions of latticeVectors.
- list 4 x 3 : 3 times domainsize in hkl direction as [[size,h,k,l] ,[..],[..] ]
[[3,1,1,1],[100,1,-1,0],[100,1,1,-2]] is thin in 111 direction and others are thick
The user should take care that the directions are nearly orthogonal.
rmsd : float, default=0.02
Root mean square displacement :math:`<u^2>^{0.5}` determining the Debye Waller factor.
Units as lattice constant.
beta : float, None, dataArray
Asymmetry factor of the formfactor or reduction due to polydispersity.
- None beta=1, No beta assumed (spherical symmetric formfactor, no polydispersity)
- dataArray beta explicitly given as dataArray with beta in .Y column.
Missing values are interpolated.
- An approximation for polydisperse beta can be found in [1]_ equ.17.
This can be realized by beta=js.dA(np.vstack(q,np.exp(-(q*sr*R)**2)))
with sr as relative standard deviation of gaussian distribution of the size R.
- See .formfactor for different formfactors which explicit calculation of beta.
hklmax : int
Maximum order of the Bragg peaks.
wavelength : float, default = None
Wavelength of the measurement in units nm.
For Xray Cu K_a it is 0.15406 nm.
corrections : list, default=[]
List of corrections to apply, which depend on the measurement type/geometry.
See :py:func:`~.structurefactor.latticeStructureFactor`
nGauss : int, default 13
Number of points in integration over Gaussian for rotation width sigma.
ncpu : int, optional
Number of cpus in the pool.
Set this to 1 if the integrated function uses multiprocessing to avoid errors.
- not given or 0 -> all cpus are used
- int>0 min (ncpu, mp.cpu_count)
- int<0 ncpu not to use
Returns
-------
dataArray
Columns [qx,qy,qz,Sq,DW,beta,Z0q]
- q wavevector
- Sq = S(q) = (1+beta(q)*(Z0(q)-1)*DW(q))*correction structure factor
- DW(q) Debye-Waller factor with (1-DW)=diffusive scattering.
- beta(q) asymmetry factor of the formfactor.
- Z0q lattice factor Z0(q)
optional
- correction [optional] factor polarisation from Thompson scattering
- theta scattering angle
Attributes (+ input parameters)
- .q_hkl peak positions
- .hkl Miller indices
- .peakFWHM full width half maximum
Notes
-----
- The scattering intensity of a crystal domain is
.. math:: I(q)={\Delta\rho}^2 n P(q) S(q)
with
- :math:`\Delta\rho` scattering length difference between matrix and particles
- :math:`n` number density (of elementary cells)
- :math:`P(q)` form factor
- :math:`S(q)` structure factor :math:`S(q)`
For inhomogeneous particles we can incorporate :math:`\Delta\rho(r)` in the formfactor :math:`P(q)`
if this includes the integrated scattering length differences.
- The structure factor is [1]_ :
.. math:: S(q)=1+ \beta(q)(Z_0(q)-1)*DW(Q)
with
- :math:`\beta(q)=<F(q)>^2/<F(q)^2>` as asymmetry factor [3]_ dependent on the
scattering amplitude :math:`F(q)` and particle polydispersity
- :math:`DW(q)` Debye Waller factor
- The lattice factor is [1]_ :
.. math :: Z_0(q) = \frac{(2\pi)^3}{mv} \sum\limits_{hkl}f_{hkl}^2L_{hkl}(q,g_{hkl})
with
- :math:`g_{hkl}` peak positions
- :math:`m` number of particles per unit cell
- :math:`f_{hkl}` unit cell structure factor that takes into account symmetry-related extinction rules
- :math:`v` volume of the unit cell
- :math:`hkl` reflections
- Unit cell structure factors :math:`f_{hkl}` are normalised that the lattice factor is normalised for
infinite q to 1. With i as unit cell atoms at fractional position in the unit cell :math:`[x_i,y_i,z_i]`
and scattering amplitude :math:`b_i` we get :
.. math:: f_{hkl}^2 = \big(\sum_i b_i e^{-2\pi (hx_i+ky_i+lz_i)}\big)^2 / \sum_i b_i^2
- The peak shape function is
.. math :: L_{hkl}(q,g_{hkl}) = \frac{1}{ \sqrt{2\pi} \sigma} e^{-\frac{(q-g_{hkl})^2}{2\sigma^2}}
with :math:`\sigma=fwhm/2\sqrt{2log(2)}` related to the domainsize.
Correspondingly :math:`\sigma` is a vector describing the peak shapes in all directions.
- Distributions of domain orientation are included by the parameter rotation that describes
gaussian distributions with mean and sigma around an axis defined by the corresponding hkl indices.
- DW is a Debye Waller like factor as :math:`DW(q)=e^{-q^2<u^2>}` leading to a reduction
of scattered intensity and diffusive scattering.
It has contributions from thermal lattice disorder
( DW factor with 1/3 factor in 3D).
- To get the scattering of a specific particle shape the formfactor has to be included.
The above is valid for isotropic scatterers (symmetric or uncorrelated to the crystal orientation)
as only in this case we can separate structure factor and form factor.
Examples
--------
Comparison fcc and sc to demonstrate selection rules ::
import jscatter as js
import numpy as np
R=8
N=50
ds=10
fcclattice= js.lattice.fccLattice(3.1, 5)
qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T
qxyz=np.c_[qxy,np.zeros(qxy.shape[0])].T
fcclattice.rotatehkl2Vector([1,1,1],[0,0,1])
ffe=js.sf.orientedLatticeStructureFactor(qxyz,fcclattice,domainsize=ds,rmsd=0.1,hklmax=4)
fig=js.mpl.surface(ffe.X,ffe.Z,ffe.Y)
sclattice= js.lattice.scLattice(3.1, 5)
sclattice.rotatehkl2Vector([1,1,1],[0,0,1])
ffs=js.sf.orientedLatticeStructureFactor(qxyz,sclattice,domainsize=ds,rmsd=0.1,hklmax=4)
fig=js.mpl.surface(ffs.X,ffs.Z,ffs.Y)
Comparison of different domainsizes dependent on direction of scattering ::
import jscatter as js
import numpy as np
R=8
N=50
qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T
qxyz=np.c_[qxy,np.zeros(qxy.shape[0])].T
sclattice= js.lattice.scLattice(2.1, 5)
sclattice.rotatehkl2Vector([1,0,0],[0,0,1])
ds=[[20,1,0,0],[5,0,1,0],[5,0,0,1]]
ffs=js.sf.orientedLatticeStructureFactor(qxyz,sclattice,domainsize=ds,rmsd=0.1,hklmax=2)
fig=js.mpl.surface(ffs.X,ffs.Z,ffs.Y)
fig.axes[0].set_title('symmetric peaks: thinner direction perpendicular to scattering plane')
fig.show()
sclattice= js.lattice.scLattice(2.1, 5)
sclattice.rotatehkl2Vector([0,1,0],[0,0,1])
ffs=js.sf.orientedLatticeStructureFactor(qxyz,sclattice,domainsize=ds,rmsd=0.1,hklmax=2)
fig2=js.mpl.surface(ffs.X,ffs.Z,ffs.Y)
fig2.axes[0].set_title('asymmetric peaks: thin direction is parallel to scattering plane')
fig2.show()
Rotation along [1,1,1] axis. It looks spiky because of low number of points in xy plane.
To improve this the user can use more points, which needs longer computing time ::
import jscatter as js
import numpy as np
# make xy grid in q space
R=8 # maximum
N=800 # number of points
ds=15;
qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T
# add z=0 component
qxyz=np.c_[qxy,np.zeros(qxy.shape[0])].T # as position vectors
# create sc lattice which includes reciprocal lattice vectors and methods to get peak positions
sclattice= js.lattice.scLattice(2.1, 5)
# Orient 111 direction perpendicular to qxy plane
sclattice.rotatehkl2Vector([1,1,1],[0,0,1])
# rotation by 15 degrees to be aligned to xy plane
sclattice.rotateAroundhkl([1,1,1],np.deg2rad(15))
ffs=js.sf.orientedLatticeStructureFactor(qxyz,sclattice, rotation=[1,1,1,np.deg2rad(10)],
domainsize=ds,rmsd=0.1,hklmax=2,nGauss=23)
fig=js.mpl.surface(ffs.X,ffs.Z,ffs.Y)
#fig.savefig(js.examples.imagepath+'/orientedlatticeStructureFactor.jpg')
.. image:: ../../examples/images/orientedlatticeStructureFactor.jpg
:align: center
:height: 300px
:alt: orientedlatticeStructureFactor
References
----------
.. [1] Order causes secondary Bragg peaks in soft materials
Förster et al Nature Materials doi: 10.1038/nmat1995
.. [2] Patterson, A.
The Scherrer Formula for X-Ray Particle Size Determination
Phys. Rev. 56 (10): 978–982 (1939)
doi:10.1103/PhysRev.56.978.
.. [3] M. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).1
"""
if corrections == 'all' or 'all' in corrections:
corrections = ['TP', 'lh', 'LC', 'area']
# check that qxyz is in 3xN shape
if qxyz.shape[1] == 3 and qxyz.shape[0] != 3:
# transpose
qxyz = qxyz.T
vd = lattice.unitCellVolume
n = len(lattice.unitCellAtoms)
dim = 3 # dimensionality
# peakWidthSigma describes Bragg peak width as 3D vector relative to lattice
if isinstance(domainsize, numbers.Number):
domainsize = np.array([domainsize] * 3)
fwhm = 2 * np.pi / np.abs(domainsize)
peakWidthSigma = fwhm / (2 * np.sqrt(2 * np.log(2)))
elif isinstance(domainsize, list):
if np.ndim(domainsize) == 1:
# use latticevector direction
domainsize = np.atleast_1d(domainsize)
# broadening due to domainsize in direction of latticeVectors
fwhm = 2 * np.pi / np.abs(domainsize)
sigma = fwhm / (2 * np.sqrt(2 * np.log(2)))
peakWidthSigma = np.abs(
np.sum([s * lV / la.norm(lV) for lV, s in zip(lattice.latticeVectors, sigma)], axis=1))
else:
# we assume that width with Miller indices is given
ds = np.array(domainsize)
sigma = 2 * np.pi / np.abs(ds[:, 0]) / (2 * np.sqrt(2 * np.log(2))) # width as sigma
# transform hkl to real directions by using the latticeVectors
hkldirection = np.einsum('ij,lj', lattice.latticeVectors, ds[:, 1:4])
peakWidthSigma = np.abs(np.sum([s * lV / la.norm(lV) for lV, s in zip(hkldirection, sigma)], axis=1))
else:
raise TypeError('domainsize cannot be interpreted.')
if rotation is not None:
# rotation direction
rotvector = lattice.vectorhkl(rotation[:3])
else:
rotvector = None
# Debye Waller factor
qr = la.norm(qxyz, axis=0)
DW = np.exp(-qr ** 2 * rmsd ** 2)
# reciprocal lattice
peaks = lattice.getReciprocalLattice(hklmax)
qpeaks = peaks[:, :3] # positions
f2peaks = peaks[:, 3] # scattering intensity
hkl = peaks[:, 4:] # hkl indices
if rotation is not None and abs(rotation[3]) > 0:
# gauss distribution of rotation angle
Z0q = formel.parDistributedAverage(_Z0q, abs(rotation[3]), parname='angle', nGauss=nGauss,
qxyz=qxyz.T, qpeaks=qpeaks, f2peaks=f2peaks,
peakWidthSigma=peakWidthSigma, rotvector=rotvector, angle=0, ncpu2=ncpu)
else:
# single orientation
Z0q = _Z0q(qxyz=qxyz.T, qpeaks=qpeaks, f2peaks=f2peaks,
peakWidthSigma=peakWidthSigma, rotvector=rotvector, angle=0, ncpu2=ncpu)
Z0q *= (2 * np.pi) ** dim / n / vd
# normalisation
Z0q = Z0q / np.sum(np.r_[lattice.unitCellAtoms_b]**2)
if beta is None:
beta = np.ones_like(qr)
elif hasattr(beta, '_isdataArray'):
beta = beta.interp(qr)
# structure factor
Sq = 1 + beta * (Z0q - 1) * DW
if wavelength is None:
# prepare result
result = dA(np.vstack([qxyz, Sq, DW, beta, Z0q]))
result.columnname = 'qx; qy; qz; Sq; DW; beta; Z0q'
else:
theta = 2 * np.arcsin(qr * wavelength / 4. / np.pi)
# Thompson polarisation for electromagnetic scattering
# https://en.wikipedia.org/wiki/Thomson_scattering
correction = np.ones_like(Sq)
if 'TP' in corrections:
correction = correction * (1 + np.cos(theta) ** 2) / 2
if 'LC' in corrections:
correction = correction / np.sin(theta)
if 'area' in corrections:
correction = correction / np.sin(theta)
if 'lh' in corrections:
correction = correction / np.cos(theta / 2)
# prepare result
result = dA(np.vstack([qxyz, Sq * correction, DW, beta, Z0q, correction, theta]))
result.columnname = 'qx; qy; qz; Sq; DW; beta; Z0q; correction; theta'
# prepare result
result.setColumnIndex(iey=None, ix=0, iz=1, iw=2, iy=3)
result.q_hkl = qpeaks
result.hkl = hkl
result.sumfi2 = np.sum(np.r_[lattice.unitCellAtoms_b] ** 2)
result.peaksigma = peakWidthSigma
result.domainsize = domainsize
result.rmsd = rmsd
result.rotation = rotation
result.modelname = inspect.currentframe().f_code.co_name
return result
# noinspection PyIncorrectDocstring
[docs]def radialorientedLSF(*args, **kwargs):
"""
Radial averaged structure factor S(q) of an oriented crystal lattice calculated as orientedLatticeStructureFactor.
For a detailed description and parameters see orientedLatticeStructureFactor.
Additionally the qxyz plane according to orientedLatticeStructureFactor is radial averaged over qxyz.
Parameters
----------
q : int, array
Explicit list of q values or number of points between min and max wavevector values
To large number results in noisy data as the average gets artificial.
Each q points will be averaged in intervals around q neighbors from values in qxyz plane.
Returns
-------
dataArray
Columns [q,Sq,DW,beta,Z0q]
- q wavevector as norm(qx,qy,qz)
- Sq = S(q) = 1+beta(q)*(Z0(q)-1)*DW(q) structure factor
- DW(q) Debye-Waller factor with (1-DW)=diffusive scattering.
- beta(q) asymmetry factor of the formfactor.
- Z0q lattice factor Z0(q)
Attributes (+ input parameters)
- .q_hkl peak positions
- .hkl Miller indices
- .peakFWHM full width half maximum
Notes
-----
qxyz might be any number and geometrical distribution as plane or 3D cube.
3D qxyz points will be converted to qr=norm(qxyz) and averaged.
Examples
--------
::
import jscatter as js
import numpy as np
R=12
N=200
ds=10
fcclattice= js.lattice.fccLattice(3.1, 5)
qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T
qxyz=np.c_[qxy,np.zeros(N**2)].T
q=np.r_[0.1:16:100j]
p=js.grace()
for rmsd in [0.07,0.03,0.01]:
ffe=js.sf.radialorientedLSF(q=q,qxyz=qxyz,lattice=fcclattice,rotation=[1,1,1,np.deg2rad(10)],domainsize=ds,rmsd=rmsd,hklmax=6)
p.plot(ffe,li=1,le=f'rmsd {rmsd}')
p.legend(x=8,y=1.8)
p.yaxis(label='S(Q)',min=0,max=2.2)
p.xaxis(label='Q / nm\S-1')
#p.save(js.examples.imagepath+'/radialorientedLSF.jpg')
.. image:: ../../examples/images/radialorientedLSF.jpg
:width: 50 %
:align: center
:alt: radialorientedLSF
"""
# get q values or number of values
q = kwargs.pop('q', kwargs['qxyz'].shape[0] ** 0.5 / 2)
olsf = orientedLatticeStructureFactor(*args, **kwargs)
# set X to the value of radial wavevectors
olsf[0] = np.linalg.norm(olsf[[olsf._ix, olsf._iz, olsf._iw]], axis=0)
# cut z and w columns
radial = olsf[[0, 3, 4, 5, 6]]
radial.setColumnIndex(ix=0, iy=1, iey=None, iz=None, iw=None)
radial.isort() # sorts along X by default
if isinstance(q, numbers.Number):
# return lower number of points from prune
result = radial.prune(number=int(q), type='mean')
else:
# explicit given list of q values
result = radial.prune(kind=q, type='mean', fillvalue = 0.)
# force exact same Q values ignoring statistical mean
result.X = q
result.modelname = inspect.currentframe().f_code.co_name
return result
# ------------------------------------------------------------------
# hydrodynamic function
# see Beenakker ref 2 Table 1, given is phi*gamma0^m/n
_tablegamma0 = '0.0 0.0 0.0 0.0 0.0 \
0.05 0.0553 0.0542 0.0533 0.0525 0.10 0.1228 0.1177 0.1135 0.1104 0.15 0.2048 0.1918 0.1813 0.1738 \
0.20 0.3038 0.2777 0.2574 0.2432 0.25 0.4224 0.3766 0.3423 0.3186 0.30 0.5627 0.4895 0.4364 0.4005 \
0.35 0.7267 0.6172 0.5402 0.4888 0.40 0.9157 0.7601 0.6538 0.5839 0.45 1.1310 0.9183 0.7776 0.6856'
_gamma0 = np.fromstring(_tablegamma0, sep=' ').reshape(-1, 5).T
# interpolate polynom order 3
_gamma0poly = np.polyfit(_gamma0[0], _gamma0[1:].T, 4) # about 200µs
# calc values as np.polyval(_gamma0poly,xx)
def _Sg(xx, mm1):
"""
from Genz [1] equ 6 with gamma0 from [2]_ Table 1
Sg=C(x) + .......
this is for all ak (see Beenakker ref 2 ) and accurate in (volume fraction)**2
returns array
"""
x = np.where(xx == 0, np.ones_like(xx) * 1e-5, xx) # avoid zero
x2 = 2 * x
x3 = x * x * x
x4 = x3 * x
cxx = 9 / 2. * (special.sici(x2)[0] / x + 0.5 * np.cos(x2) / x / x + 0.25 * np.sin(x2) / x3 -
np.sin(x) ** 2 / x4 - 4 / x3 / x3 * (np.sin(x) - x * np.cos(x)) ** 2)
Cx = np.where(xx == 0, np.ones_like(xx) * 2.5, cxx) # zero is equal 2.5
func = (Cx + 9. / 4 * np.pi * 5 / 9. * mm1[0] * 9. / x3 * special.jn(1.5, x) ** 2 +
9. / 4 * np.pi * 1. * mm1[1] * 25. / x3 * special.jn(2.5, x) ** 2 +
9. / 4 * np.pi * 1. * mm1[2] * 49. / x3 * special.jn(3.5, x) ** 2 +
9. / 4 * np.pi * 1. * mm1[3] * 81. / x3 * special.jn(4.5, x) ** 2)
return func
def _HINTEGRAL(Q, Rh, molarity, sffunc, sfargs=None, numberOfPoints=50):
"""
calculation of hydrodynamic function for one Q
see hydrodynamicFunct
"""
# set to zero to get debug messages; debuglevel>10 no messages
if sfargs is None:
sfargs = {}
phi = 4 / 3 * np.pi * Rh ** 3 * constants.N_A * molarity * 1e-24
if phi > 0.5:
print('to large volume fraction %.3g in H' % phi)
return -1
# coefficients for the gamma0^m/n
mm1 = np.polyval(_gamma0poly, phi) / phi - 1
def Sq(q):
"""structure factor; infinite S(Q=inf)=1 """
# ravel q
sf = sffunc(q.ravel(), **sfargs)
# reshape sf to q shape
if sf._isdataArray: return sf.Y.reshape(q.shape)
return sf.reshape(q.shape)
ak = np.r_[0:np.pi * 3:numberOfPoints * 3j, np.pi * 2:np.pi * 53:numberOfPoints * 4j]
k = ak / Rh
x = np.cos(np.r_[np.pi:0:-numberOfPoints * 2j]) # x is cos(angle(k,k`))
Qmk = np.sqrt(Q ** 2 + k ** 2 - 2 * Q * k * x[:, None])
# (Sq(Qmk)-1) is correct as compared with [2]_ equ 5.7 and 5.9
integrand = np.sinc(ak / np.pi) ** 2 / (1 + phi * _Sg(ak, mm1)) * (1 - x[:, None] ** 2) * (Sq(Qmk) - 1)
integrandak = np.trapz(integrand, x=x, axis=0)
integral = np.trapz(integrandak, x=ak, axis=0)
return np.r_[Q, 3. / 2. / np.pi * integral]
def _HINTEGRALDs(Rh, molarity, numberOfPoints=50):
"""
calculation of hydrodynamic function for the self diffusion Ds
see hydrodynamicFunct
number of points is number of points in integration in a pi interval
"""
# set to zero to get debug messages; debuglevel>10 no messages
phi = 4. / 3 * np.pi * Rh ** 3 * constants.N_A * molarity * 1e-24
if phi > 0.5:
print('to large volume fraction %.3g in Ds' % phi)
return -1
# coefficients for the gamma0^m/n
mm1 = np.polyval(_gamma0poly, phi) / phi - 1
ak = np.r_[0:np.pi * 3:numberOfPoints * 3j, np.pi * 3:np.pi * 153:numberOfPoints * 50j]
integrandDs = np.sinc(ak / np.pi) ** 2 / (1 + phi * _Sg(ak, mm1))
integralDs = np.trapz(integrandDs, x=ak)
return 2 / np.pi * integralDs
[docs]def hydrodynamicFunct(wavevector, Rh, molarity, intrinsicVisc=None, DsoverD0=None,
structureFactor=None, structureFactorArgs=None,
numberOfPoints=50, ncpu=-1):
r"""
Hydrodynamic function H(q) from hydrodynamic pair interaction of spheres in suspension.
This allows the correction :math:`D_T(q)=D_{T0}H(q)/S(q)` for the
translational diffusion :math:`D_T(q)` coefficient at finite concentration.
We use the theory from Beenakker and Mazur [2]_ as given by Genz [1]_.
The :math:`\delta\gamma`-expansion of Beenakker expresses many body hydrodynamic
interaction within the renormalization approach dependent on the structure factor S(q).
Parameters
----------
wavevector : array
scattering vector q in units 1/nm
Rh : float
effective hydrodynamic radius of particles in nm.
molarity : float
| molarity in mol/l
| This overrides a parameter 'molarity' in the structureFactorArgs.
| Rh and molarity define the hydrodynamic interaction, the volume fraction and Ds/D0 for H(Q).
| The structure factor may have a radius different from Rh e.g. for attenuated hydrodynamic interactions.
DsoverD0 : float
| The high Q limit of the hydrodynamic function is for low volume fractions
| Ds/D0= 1/(1+intrinsicVisc * volumeFraction ) with self diffusion Ds.
| Ds is calculated from molarity and Rh.
| This explicit value overrides intrinsic viscosity and calculated Ds/D0.
structureFactor : function, None
| Structure factor S(q) with S(q=inf)=1.0 recommended.
| 1: If structurefactor is None a Percus-Yevick is assumed with molarity and R=Rh.
| 2: A function S(q,...) is given as structure factor, which might be an
| empirical function (e.g. polynominal fit of a measurement)
| First parameter needs to be wavevector q .
| If "molarity" parameter is present it is overwritten by molarity above.
structureFactorArgs : dictionary
Any extra arguments to structureFactor e.g. structFactorArgs={'x':0.123,R=3,....}
intrinsicVisc : float
| Defines the high q limit for the hydrodynamic function.
| effective_viscosity= eta_solvent * (1-intrinsicVisc*Volumefraction )
| intrinsicVisc = 2.5 Einstein hard sphere density 1 g/cm**3
| For proteins instead of volume fraction the protein concentration in g/ml with typical
| protein density 1.37 g/cm^3 is often used.
| Intrinsic Viscosity depends on protein shape (see HYDROPRO).
| Typical real values for intrinsicVisc in practical units cm^3/g
| sphere 1.76 cm^3/g= 2.5 sphere with protein density
| ADH 3.9 = 5.5 a tetrameric protein
| PGK 4.0 = 5.68 two domains with hinge-> elongated
| Rnase 3.2 = 4.54 one domain
| eta_solvent/effective_viscosity = (1-intrinsicVisc * Volumefraction )=Dself/D0
numberOfPoints : integer, default 50
Determines number of integration points in equ 5 of ref [1]_ and therefore accuracy of integration.
The typical accuracy of this function is <1e-4 for (H(q) -highQLimit) and <1e-3 for Ds/D0.
ncpu : int, optional
Number of cpus in the pool.
- not given or 0 -> all cpus are used
- int>0 min (ncpu, mp.cpu_count)
- int<0 ncpu not to use
Returns
-------
dataArray
Columns [q, HydDynFun, DsoverD0, structureFactor]
- q values
- hydrodynamic function
- hydrodynamic function only Q dependent part = H(q) -highQLimit
- structure factor for H(q) calculation
- .selfdiffusion Ds
Notes
-----
Ds is calculated according to equ 11 in [1]_ which is valid for volume fractions up to 0.5.
With this assumption the deviation of self diffusion Ds from
Ds=Do*[1-1.73*phi+0.88*phi**2+ O(phi**3)] is smaller 5% for phi<0.2 (10% for phi<0.3)
References
----------
.. [1] U. Genz and R. Klein, Phys. A Stat. Mech. Its Appl. 171, 26 (1991).
.. [2] C. W. J. Beenakker and P. Mazur, Phys. A Stat. Mech. Its Appl. 126, 349 (1984).
.. [3] C. W. J. Beenakker and P. Mazur, Phys. A Stat. Mech. Its Appl. 120, 388 (1983).
"""
# set to zero to get debug messages; debuglevel>10 no messages
if structureFactorArgs is None:
structureFactorArgs = {}
debuglevel = 0
if structureFactor is None:
# we use Percus-Yevick Structure factor --> hard spheres
structureFactor = PercusYevick
if 'R' not in structureFactorArgs:
structureFactorArgs = {'R': Rh}
sfcode = formel._getFuncCode(structureFactor)
if 'molarity' in structureFactorArgs or \
'molarity' in sfcode.co_varnames[:sfcode.co_argcount]:
# the last examines the function
# overwrite or append 'molarity'
structureFactorArgs = dict(structureFactorArgs, **{'molarity': molarity})
if debug > debuglevel:
p = grace()
XX = np.r_[min(wavevector) / 10.:max(wavevector) * 2:100j]
p.plot(structureFactor(XX, **structureFactorArgs), line=1, symbol=0)
p.plot(structureFactor(wavevector, **structureFactorArgs))
# Volume fraction
phi = lambda mol, R: 4 / 3. * np.pi * R ** 3 * constants.N_A * mol / 10e7 ** 3
if phi(molarity, Rh) > 0.5:
raise ValueError(
'Volume fraction %.3g to high; Chose appropriate Rh or molarity for Volume fraction <0.5' % phi(molarity,
Rh))
qqq = np.atleast_1d(wavevector)
columnname = ['q', 'HydDynFun', 'DsoverD0', 'structureFactor']
if debug > debuglevel:
print(columnname[:-1])
def cb(res): # for intermediate results
print(res[0], 1 + res[1], (0 + res[1]))
else:
cb = None
Ds = _HINTEGRALDs(Rh=Rh, molarity=molarity, numberOfPoints=numberOfPoints)
if DsoverD0 is not None:
Hinf = DsoverD0
elif intrinsicVisc is not None:
DsintrVisc = 1 / (1 + intrinsicVisc * phi(molarity, Rh))
Hinf = DsintrVisc
DsoverD0 = DsintrVisc
else:
Hinf = Ds
DsoverD0 = Ds
# in parallel for production run
# if debug!= None it will be single thread
res = parallel.doForQlist(_HINTEGRAL,
qqq,
Rh=Rh,
molarity=molarity,
sffunc=structureFactor,
sfargs=structureFactorArgs,
numberOfPoints=numberOfPoints,
ncpu=ncpu,
cb=cb, )
# and calc final result from this
result = dA(np.c_[qqq,
Hinf + np.array(res)[:, 1],
np.array(res)[:, 1],
structureFactor(wavevector, **structureFactorArgs).Y].T)
if debug > debuglevel:
p.plot(result)
result.Sq = structureFactor
result.SqArgs = str(structureFactorArgs)
result.Rh = Rh
result.molarity = molarity
result.intrinsicVisc = intrinsicVisc
result.phi_Rh = phi(molarity, Rh)
result.DsoverD0 = DsoverD0
result.numberOfPoints = numberOfPoints
result.columnname = columnname
result.setColumnIndex(iey=None)
return result
[docs]def weakPolyelectrolyte(q, cp, l, f, cs, ioc=None, eps=None, Temp=273.15 + 20, contrast=None, molarVolume=None):
r"""
Monomer-monomer structure factor S(q) of a weak polyelectrolyte according to Borue and Erukhimovich [3]_.
Polyelectrolyte models based on [3]_ are valid above "the critical concentration when electrostatic
blobs begin to overlap", see equ. 2 in [3]_ and above where we dont see isolated chains.
The used RPA is valid only at high polymer concentrations where concentration fluctuations are weak [4]_.
Parameters
----------
q : array
Scattering vector in units 1/nm.
cp : float
Monomer concentration :math:`c_p` in units mol/l.
The monomer concentration is :math:`N c_{p}.
l : float
Monomer length in units nm.
f : float
Fraction of charged monomers :math:`f`. The abs(f) values is used.
cs : float
Monovalent salt concentration :math:`c_s` in the solvent in units mol/l.
This may include ions from water dissociation.
ioc : float, default 0
Additional contribution to the inverse osmotic compressibility Dm of neutral polymer
solution in units :math:`nm^3`.
Inverse osmotic compressibility is :math:`Dm=1/(Nc)+v+w^2c` (see [2]_)
The additional contribution is :math:`ioc=v+w^2c` as used in [1]_ and can be positive or negative.
:math:`v` and :math:`w` are the second and third virial coefficients [1]_.
eps : float
Dielectric constant of the solvent to determine the Bjerum length. Default is H2O at given temperature.
Use formel.dielectricConstant to determine the constant for your water based solvent including salt.
For H2O at 293.15 K = 80.08 . Added 1M NaCl = 91.08
Temp : float, default 273.15+20
Temperature in units Kelvin.
contrast : float, default None
Contrast of the polymer :math:`\rho_{monomer}` relative to the solvent as difference of
scattering length densities in units :math:`nm^{-2}`.
See Notes for determination of absolute scattering.
contrast and molarVolume need to be given.
molarVolume : float, default None
Molar volume :math:`V_{monomer}` of the polymer in :math:`nm^{3}`.
See Notes for determination of absolute scattering.
contrast and molarVolume need to be given.
Returns
-------
dataArray : 2 x N
Columns [q, Sq]
- .epsilon
- .kappa in 1/nm
- .screeninglength in nm
- .r0 characteristic screening length without salt in units nm.
- .c_monomer Monomer concentration in mol/l
- .c_salt Salt concentration in mol/l
- .c_ions Ion concentration as :math:`2c_s + fc_p` in mol/l
- .monomerscatteringlength :math:`c = V_{monomer}\rho_{monomer}`.
If contrast or molarVolume are None then c=1.
Sq units is 1/nm = 1/(1e-7 cm) = 1e7 1/cm. (multiply by 1e7 to get units 1/cm)
Notes
-----
Borue and Erukhimovich [3]_ describe the polyelectrolyte scattering in reduced variables (see [3]_ equ 39).
Rewriting this equation expressing the reduced variables s and t in terms of :math:`r_0` yields :
.. math:: S(q) = c^2 \frac{1}{4\pi l_b f^2} \frac{q^2+\kappa^2}{1+r_0^4(q^2+\kappa^2)(q^2-12hc_p/l^2)}
with
- :math:`r_0^2 = \frac{l}{f\sqrt{48c_p\pi l_b} }` characteristic scale of screening without salt
- :math:`c=V_{monomer}\rho_{monomer}` scattering length monomer.
- :math:`l_b = e^2/4\pi\epsilon kT \approx 0.7 nm` Bjerum length.
- :math:`\kappa^2=4\pi l_b (\sum_s{2c_s} + fc_p)` Debye-Hückel **inverse** screening length
from salt ions and polymer.
- :math:`h=ioc` Additional contribution to inverse compressibility.
- :math:`v` and :math:`w` are the second and third virial coefficients between monomers
:math:`\rightarrow ioc=v+w^2c` [1]_.
For low salt concentration (:math:`\kappa < r_0`) the peak is expected at :math:`(q^{*2}+\kappa^2)^2 = r_0^{-4}`
(see [1]_ and [2]_ after euq. 14) and vanishes for :math:`\kappa > r_0` (see [2]_).
Examples
--------
Poly(sodium 4-styrenesulfonate)(PSS-Na) with a bulk density of 0.801 g/mL. Monomer MW = 184 g/mol,
monomer length 2 C-C bonds = 2 * 0.15 nm
::
import jscatter as js
import numpy as np
q=js.loglist(0.01,4,100)
Vm=184/0.801/6.022140857e+23/1e-21 # partial molar volume of the polymer in nm**3
c=0.000698-0.000942 # PSS in H2O for X-ray scattering has negative contrast
p=js.grace(1.2,1)
for i,cp in enumerate([5, 10, 20, 30, 60],1): # conc in g/l
c17=cp/184 # conc in mol/l
Sq=js.sf.weakPolyelectrolyte(q=q, l=0.3, cp=c17, f=0.05, cs=0.005,ioc=0,contrast=c,molarVolume=Vm)
Sq.Y*=1e7 # conversion to 1/cm
p.plot(Sq,sy=[i,0.4,i],li=0,le='c={0:.3} mg/ml'.format(c17))
Sqi=js.sf.weakPolyelectrolyte(q=q, l=0.3, cp=c17, f=0.05, cs=0.005,ioc=-0.02,contrast=c,molarVolume=Vm)
Sqi.Y*=1e7
p.plot(Sqi,li=[1,1,i],sy=0,le='ioc=-0.02 c={0:.3} mg/ml'.format(c17))
p.yaxis(scale='log',min=Sq.Y.min()/15,max=Sq.Y.max(),label='I(q) / 1/cm')
p.xaxis(scale='log',min=0.01,max=4,label=r'q / nm\S-1')
p.title('A polyelectrolyte at low salt')
p.legend(x=0.02,y=1.5e-1)
#p.save(js.examples.imagepath+'/weakPolyelectrolyte.png')
.. image:: ../../examples/images/weakPolyelectrolyte.png
:align: center
:height: 300px
:alt: weakPolyelectrolyte
References
----------
.. [1] Annealed and quenched polyelectrolytes.
Raphael, E., & Joanny, J. F. (1990).
EPL, 13(7), 623–628. https://doi.org/10.1209/0295-5075/13/7/009
.. [2] Weakly charged polyelectrolytes in a poor solvent
J.F. Joanny, L. Leibler
J. Phys. France 51, 545-557 (1990) DOI: 10.1051/jphys:01990005106054500
.. [3] A statistical theory of weakly charged polyelectrolytes: fluctuations,
equation of state and microphase separation
V. Yu. Borue, I. Ya. Erukhimovich, Macromolecules (1988) 21, 11, 3240-3249
.. [4] 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions
M. Muthukumar
Macromolecules201750249528-9560
See p 9537 Pitfall of RPA for Polyelectrolyte solution
"""
result = dA(np.c_[q, q].T)
# add attributes in units mol/l
result.c_salt = cs
result.c_monomer = cp
result.c_ions = 2 * cs + cp * abs(f)
# unit conversion to nm
# ion concentration for monovalent salt concentration in 1/nm**3 accounting for ion and counter ion
cs = cs * constants.N_A / 1e24
# monomer concentration in 1/nm**3
cp = cp * constants.N_A / 1e24
if eps is None:
eps = formel.dielectricConstant('h2o', T=Temp)
if ioc is None:
ioc = 0 # -l**3*(-0.1)
# Bjerrum length in units nm as about 0.7 nm.
lb = constants.e ** 2 / (4 * np.pi * eps * constants.epsilon_0 * Temp * constants.Boltzmann) * 1e9
# squared inverse screening length kappa from Debye-Hückel
k2 = 4 * np.pi * lb * (2 * cs + cp * f)
q2 = q ** 2
# characteristic scale of screening squared
r02 = l / f / (cp * 48 * np.pi * lb) ** 0.5
# monomer monomer structure factor S(q)
result.Y = (q2 + k2) / (4 * np.pi * lb * abs(f) ** 2) / (1 + r02 * r02 * (q2 + k2) * (q2 - 12 * ioc * cp / l ** 2))
if contrast is not None and molarVolume is not None:
# scale to get absolute scattering
c = molarVolume * contrast
result.Y = c ** 2 * result.Y
result.monomerscatteringlength = c
result.setColumnIndex(iey=None)
result.columnname = 'q; Sq'
result.epsilon = eps
result.kappa = k2 ** 0.5
result.screeninglength = 1 / result.kappa
result.r0 = r02 ** 0.5
result.modelname = inspect.currentframe().f_code.co_name
return result
[docs]def fractal(q, clustersize, particlesize, df=2):
r"""
Structure factor of a fractal cluster of particles following Teixeira (mass fractal).
To include the shape/structure of a particle with formfactor F(q) use S(q)*F(q) with
particlesize related to the specific formfactor.
Parameters
----------
q : array
Wavevectors in units 1/nm.
clustersize : float
Clustersize :math:`\xi` in units nm. May be correlated to Rg (see Notes).
From [1]_:
The meaning of :math:`\xi` is only qualitative and has to be made precise in any particular
situation. Generally speaking, it represents the characteristic distance above which the mass distribution
in the sample is no longer described by the fractal law.
*In practice, it can represent the size of an aggregate or a correlation length in a disordered material.*
particlesize : float
Particle size in units nm. In [1]_ it is described as characteristic dimension of individual scatterers.
See Notes.
df : float, default=2
Hausdorff dimension, :math:`d_f` defined as the exponent of the linear dimension R in the
relation :math:`M(R) \propto (R/r_0)^{d_f}` where M represents the mass and :math:`r_0`
is the gauge of measurement. See [1]_.
Returns
--------
dataArray : [q, Sq]
input parameters as attributes
- .Rg :math:`Rg = d_f(d_f+1) \xi^2/2` See [1]_ after equ. 17
- .Sq0 :math:`S(q=0) = 1 + (\xi/r_0)^{d_f} \Gamma(d_f+1)` see [1]_ equ. 17
Notes
-----
- The structure factor [1]_ equ 16 is
.. math :: S(q) = 1 + \frac{d_f\ \Gamma\!(d_f-1)}{[1+1/(q \xi)^2\ ]^{(d_f -1)/2}}
\frac{\sin[(d_f-1) \tan^{-1}(q \xi) ]}{(q R_0)^{d_f}}
- At large q the unity term becomes dominant and we get :math:`S(q)=1`.
Accordingly the formfactor of the particles becomes visible.
- At intermediate q :math:`\xi^{-1} < q < r_0^{-1}` the structure factor reduces to :math:`S(q)=q^{-d_f}`
- The radius of gyration is related to the cluster size :math:`\xi` as
:math:`Rg = d_f(d_f+1) \xi^2/2` See [1]_ after equ. 17.
- According to [1]_ the particlesize relates to a characteristic dimension of the particles.
The particlesize determines the intersection of the extrapolated power law region with 1 thus
the region where the particle structure gets important.
The particlesize can be something like the radius of gyration of a Gaussian or collapsed chain,
a sphere radius or the mean radius of a protein.
It might also be the clustersize of a fractal particle.
- In SASview the particlesize is related to the radius of aggregating spheres (or core shell sphere)
including a respective formfactor.
Examples
--------
Here a fractal structure of a cluster of spheres is shown.
The size of the spheres is the particlesize on the cluster.
The typical scheme :math:`I(q)=P(q)S(Q)` with particle formfactor :math:`P(q)` and structure factor :math:`S(Q)`
is used. The volume and contrast is included in :math:`P(q)`.
Add a background if needed or use a different particle as core-shell sphere.
::
import jscatter as js
import numpy as np
q=js.loglist(0.01,5,300)
p=js.grace(1.5,1)
p.multi(1,2)
clustersize = 20
particlesize = 2
fq=js.ff.sphere(q,particlesize)
for df in np.r_[0:3:7j]:
Sq=js.sf.fractal(q, clustersize, particlesize, df=df)
p[0].plot(Sq,le=f'df={df:.2f}')
p[1].plot(Sq.X,Sq.Y*fq.Y,li=-1,le=f'df={df:.2f}')
p[0].yaxis(scale='log',label='I(q) ',min=0.1,max=1e4)
p[0].xaxis(scale='log',min=0.01,max=4,label='q / nm\S-1')
p[0].title(r'Fractal structure factor')
p[0].subtitle('df is fractal dimension')
p[0].legend(x=0.5,y=1000)
p[1].yaxis(scale='log',min=0.1,max=1e8,label=['I(q)',1.0,'opposite'],ticklabel=['power',0,1,'opposite'])
p[1].xaxis(scale='log',min=0.01,max=4,label='q / nm\S-1')
p[1].title(r'Fractal structure factor of spheres')
p[1].subtitle('sphere formfactor is added')
p[1].legend(x=0.5,y=1e7)
#p.save(js.examples.imagepath+'/fractalspherecluster.png')
.. image:: ../../examples/images/fractalspherecluster.png
:align: center
:height: 300px
:alt: fractalspherecluster
References
----------
.. [1] Small-Angle Scattering by Fractal Systems
J. Teixeira, J. Appl. Cryst. (1988). 21,781-785
"""
q = np.array(q)
gamma = special.gamma
xi = clustersize
r0 = particlesize
qxi = q * xi
Sq = np.zeros_like(q)
# catch gamma divergence at 0 and 1
if df == 0:
Sq = np.ones_like(q)
else:
if df == 1:
Sq[q > 0] = 1 + np.arctan(qxi[q > 0]) / (q[q > 0] * r0)
else:
Sq[q > 0] = 1 + df * gamma(df - 1) / (1 + 1 / qxi[q > 0] ** 2) ** ((df - 1) / 2.) * \
np.sin((df - 1) * np.arctan(qxi[q > 0])) / (q[q > 0] * r0) ** df
Sq[q == 0] = 1 + (xi / r0) ** df * gamma(df + 1)
result = dA(np.c_[q, Sq].T)
result.setColumnIndex(iey=None)
result.columnname = 'q; Sq'
result.modelname = inspect.currentframe().f_code.co_name
result.clustersize = clustersize
result.particlesize = particlesize
result.fractaldimension = df
result.Rg = df * (df + 1) * xi ** 2 / 2
result.Sq0 = 1 + (xi / r0) ** df * gamma(df + 1)
return result
[docs]def twoYukawa(q, R, K1, K2, scl1, scl2, molarity=None, phi=None):
r"""
Structure factor for a two Yukawa potential in mean spherical approximation.
A two Yukawa potential in the mean spherical approximation describing cluster formation
in the two-Yukawa fluid when the interparticle potential is composed of a short-range attraction
and a long-range repulsion according to Liu et al [1]_.
Parameters
----------
q : array
Wavevectors in units 1/nm.
K1,K2 : float
Potential strength in units kT.
- K>1 attraction
- K<1 repulsion
scl1,scl2 : float
Screening length in units nm. The inverse screening length is :math:`Z_i=1/scl_i`.
R : float
Radius of the particle in nm.
phi : float
Volume fraction of particles in the solution.
molarity : float
concentration in units mol/l. Overrides phi if both given.
Returns
-------
dataArray : [q,Sq]
- additional input attributes
- On errors in calculation Sq=0 is returned to prevent errors during fitting.
These are no physical solution.
Notes
-----
The potential is (with :math:`Z_i=1/scl_i`):
.. math:: \frac{V(r)}{kT} &= \infty \; &for \; 0<r<1
&= -K_1 \frac{e^{-Z_1 (r-1)}}{r} -K_2 \frac{e^{-Z_2 (r-1)}}{r} \; &for \; r>1
within the MSA closure
.. math:: h(r) &=-1 \; &for \; 0<r<1
c(r) &= -\frac{V(r)}{kT} \; &for \; r>1
- Internally, Z1>Z2 is forced, which is accompanied in the Python code by a swap of K1<>K2 that fitting is smoother.
- For unphysical or no solution zero is returned.
- The solution is **unstable close to Z1=Z2**.
In these cass the (R)MSA structure factor (single Yukawa) is more appropriate.
The function tries to approximate a solution using K2=>(K1+K2), K1=>0.001K2,Z1=2 Z2
About the code:
This Python version of TwoYukawa is based on the code from the IGOR version taken from
NCNR_SANS_package by Steve Kline (https://github.com/sansigormacros/ncnrsansigormacros)
The Igor version of this function is based in part on Matlab code supplied by Yun Liu.
The XOP version of this function is based in part on c-code supplied by Marcus Henning.
Please cite the paper [1]_, if you use the results produced by this code.
Examples
--------
This reproduces figure 1 in [1]_.
This figure illustrates the existence of a cluster peak in the structure factor
for increasing strength K1 of the long-range attraction. ::
import numpy as np
import jscatter as js
q = np.r_[0.01:20:300j]
R = 0.5
K2 = -1
scl1 = 1/10
scl2 = 1/0.5
phi =0.2
#
p=js.grace(1,0.7)
for K1 in np.r_[0,3,6,10]:
Sq = js.sf.twoYukawa(q, R, K1, K2, scl1, scl2, phi=phi)
p.plot(Sq,li=[1,4,-1],sy=0,le=f'K1={K1:.0f}')
p.xaxis(label='QD',charsize=2)
p.yaxis(label='S(Q)',charsize=2)
p.legend(y=1.95,x=16,charsize=2)
p.subtitle('S(q) of Two-Yukawa Potential',size=2)
p.text(r'cluster \npeak',x=2,y=1.9,charsize=2)
#p.save(js.examples.imagepath+'/twoYukawa.jpg')
.. image:: ../../examples/images/twoYukawa.jpg
:width: 50 %
:align: center
:alt: ellipsoid
References
----------
.. [1] Cluster formation in two-Yukawa fluids
Yun Liu, Wei-Ren Chen, and Sow-Hsin Chen
THE JOURNAL OF CHEMICAL PHYSICS 122, 044507 (2005) http://dx.doi.org/10.1063/1.1830433
"""
# get volume fraction phi from number density and radius R
if isinstance(molarity, numbers.Number):
molarity = abs(molarity)
numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3
phi = 4 / 3. * np.pi * R ** 3 * numdens
elif isinstance(phi, numbers.Number):
phi = abs(phi)
numdens = phi / (4 / 3. * np.pi * R ** 3)
molarity = numdens / (constants.N_A * 1e-24)
else:
raise Exception('one of molarity/eta needs to be given.')
# all details are handled in the Two_Yukawa lib
Sq = Two_Yukawa.twoYukawa(q, R, K1, K2, 1/scl1, 1/scl2, phi)
if isinstance(Sq, numbers.Number):
# On error we return the error code
return dA(np.c_[q, np.zeros_like(q)].T)
result = dA(np.c_[q, Sq].T)
result.setColumnIndex(iey=None)
result.columnname = 'q; Sq'
result.R = R
result.K1 = K1
result.K2 = K2
result.scl1 = scl1
result.scl2 = scl2
result.phi = phi
result.molarity = molarity
result.modelname = inspect.currentframe().f_code.co_name
return result