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Abstract

Observable Operator Models (OOMs) are generative systems which can model sto-

chastic time-series data and sequences. Training OOMs amounts to estimating linear

operators from time-series sample data. The problem is that usually both the amount of

available training data and our computational resources are restricted. The main contri-

butions of this thesis are: (1) adaptation of tools from information theory to analyze OOM

estimation from finite data, (2) development of a new data structure, context graphs, to

effectively exploit structure inherent in the training sample for model estimation and (3)

design and implementation of a software package for the simulation, analysis and training

of OOMs.

Key words. observable operator model, hidden markov model, stochastic process, con-

text graph, suffix tree, time series, nonlinear time series analysis, stochastic modeling,

machine learning

AMS subject classifications. 37M10, 60G25, 62M09, 62M10, 62M20, 68P05

Zusammenfassung

Observable Operator Models (OOMs) sind generative Systeme die stochastische Zeit-

reihen und Sequenzen modellieren können. Das Training von OOMs besteht in der

Schätzung von linearen Operatoren aus Zeitreihenstichproben. Das Problem hierbei ist,

dass in der Regel sowohl die verfügbare Menge an Trainingsdaten als auch an Rechen-

resourcen beschränkt ist. Die wesentlichen Beiträge dieser Arbeit sind: (1) Anpassung

von Werkzeugen aus der Informationstheorie zur Analyse der Schätzung von OOMs aus

endlichen Daten, (2) Entwicklung einer neuen Datenstruktur, Context Graphs, zur effek-

tiven Verwertung der inhärenten Struktur in Trainingsdaten zur Modellschätzung und (3)

Design und Implementierung eines Softwarepaketes für die Simulation, Analyse und das

Training von OOMs.

Schlüsselwörter. Observable Operator Model, Hidden Markov Model, stochastischer

Prozess, Context Graph, Suffix Tree, Zeitreihe, nichtlineare Zeitreihenanalyse, stochastis-

che Modellierung, Machine Learning
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Introduction



Observable Operator Models (OOMs) are generative systems which can model sto-
chastic time-series data and sequences ([Jae00]). What follows is an informal introduction
to OOMs and an outline and motivation of important topics treated in this thesis.

Time-series capture time dependent, time varying aspects of reality in series of mea-
surements. At each instance of time, the aspect to be captured is sampled on some scale
yielding a number. A stochastic time-series is supposed to be either generated by a process
inherently non-deterministic, deterministic but scrambled with noise or at least to appear
non-deterministic because of our lack or will of precise measurements1. Examples are
weather data like temperature patterns, financial market data like stock quotes, speech
and voice data and distorted or very complex sensory signals.

On the other hand, one often speaks of (stochastic) sequences when the aspect of
reality captured has no obvious scale or when ordering (of measurements) is important
but cannot be interpreted as “time” in the common sense. An example of the former is a
natural language text, since the alphabet is finite and has no “scale”. An example of the
latter is a biosequence like DNA since the position of a symbol on a DNA strand has no
direct interpretation as an instance in time.

One may look at stochastic time-series and sequences in terms of the probabilities of
their occurrence. From this perspective a model is given by a collection of probabilities for
all possible realizations one could observe. Chapter 1 will give precise definitions starting
from the notion of stochastic processes.

Now, OOMs are models of stochastic time-series and sequences in the sense that they
are formalized, compressed descriptions of the probability distributions of those series and
sequences. OOMs are generators of stochastic time-series and sequences in the sense that
they also constitute a stochastic mechanism for producing those series and sequences.

OOMs build a bridge between linear algebra and the theory of stochastic processes.
They do this by describing the change of our knowledge about the future of a stochastic
system by means of linear operators selected on the basis of present observations. Our
knowledge about the future of a stochastic system is captured by a conditional distribution
which specifies the probabilities of possible future developments given a particular, already
realized past. This knowledge about the future of the system is subject to change when we
observe a new present outcome. Hence, the newly arrived information must be reflected
in our knowledge about the process future. Updating our knowledge about the process
future is done by applying a linear operator selected from a finite fixed set of operators on
the basis of the present outcome. A detailed introduction to OOMs from this prespective
is given in chapter 2.

Any stochastic process can be described using OOMs when we allow for OOMs of
infinite dimension. On the other hand, OOMs with finite dimension can still describe a
broad class of stochastic processes. Indeed, the class of processes thus describable is a
strict superset of those which can be captured by Hidden Markov Models with finitely
many hidden states ([Jae00]). OOMs with finite dimension have some nice properties (see
chapter 3). First, their defining linear operators can be written as matrices, which allows
one to apply all the standard tools known from linear algebra. Second, we can decide
when two OOMs define the same stochastic process, that is when they are equivalent and
thereby see how equivalence classes of OOMs arise.

Model training in the context of OOMs means estimating linear operators from time-
series sample data. How to estimate the matrices representing operators of finite dimen-
sional OOMs from sample data is presented in chapter 5. The procedure makes use of
so-called indicative events and characteristic events which can be thought of as rasters
through which the sample is exploited. Those events also have a fundamental meaning to
interpretable OOMs (see chaper 4) which are special OOMs within each equivalence class
of OOMs. Importantly, the basic learning algorithm described is asymptotically correct.

1Formally, the line of distinction can be drawn quite accurately: inherent stochastic time-series are

realizations of stochastic processes, whereas pseudo-stochastic time-series are discretized trajectories of
dynamical systems in a chaotic regime
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That is given infinite training data in the limit, the OOM estimated from the sample is
almost always right. Moreover, this holds true independent of particular choices of indica-
tive and characteristic events, which one is formally free to choose with the basic learning
algorithm.

However, the situation with finite training data is fundamentally different. This is
also the original motivation for the present thesis. With finite training data, the particular
choice of indicative and characteristic events is most important as it will determine the
quality of the estimated model. The basic learning algorithm is asymptotically correct,
but nothing is said about the speed of convergence or possible bounds of model quality
for finite training data, both of which are dependent on the particular choice of indicative
and characteristic events used in estimating an OOM.

The thesis at hand provides first steps, methods and foundations towards a systematic
treatment of optimal and efficient estimation of OOMs from finite data. “Optimal” since
the amount of available training data is finite in practice and “efficient” since computa-
tional resources available in estimating the model are usually restricted. Three important
subgoals have been identified. First, a measure of quality for estimated OOMs is needed,
otherwise a method of “optimal estimation” can not be developed. Second, a data struc-
ture is needed which efficiently exploits the structure in the training sample, allows to
represent candidate choices of indicative and characteristic events and facilitates the com-
putation of counting statistics needed for the basic learning algorithm. Third, a theory
is needed that allows to derive results for choosing optimal indicative and characteristic
events.

The first subgoal, defining a rigorous measure of model quality is developed in detail
throughout part 2 of this thesis. Fundamental notions from information theory have been
customized and applied to measure quality of estimated OOMs and experiments were
done to verify the dependency of model quality on training sample size and the particular
choice of indicative and characteristic events.

The second subgoal has been met in part 3 by developing a new data structure, context
graphs which build on suffix trees and are capable of representing and indexing all variable
length contexts within a finite sequence. Further it is shown how to represent all candiate
choices of indicative and characteristic events as special colorings of the context graph of
the training sample. This is crucial to efficiency since it allows to represent the training
sample and all candidates for indicative and characteristic events, that is rasters to exploit
the sample within one unified data structure.

Context graphs also provide means to control the complexity of the rasters used in
exploiting the training sample. This is of value, since the third subgoal likely involves find-
ing a balance between overfitting and underexploiting the sample data. In general, under
the constraint of finite sample data one must strive to fully exploit the sample achieving
good model precision while not overfitting the sample maintaining good generalization
performance. One may speculate, that an extensive treatment of this idea when applied
to OOMs could require research along lines similar to those outlined in statistical learning
theory ([Vap98], [Vap99]). Statistical learning theory explicitely and deeply addresses
the problem of optimal model estimation from finite data, but only for static patterns and
not time-series. Consequently, it might be interesting to apply and customize methods
from statistical learning theory to optimal OOM estimation. However, due to time and
space constraints this last approach could not be undertaken. Thus, regarding the third
subgoal the thesis provides only first, but nevertheless valuable insights.

Finally, part 4 contains a detailed description and discussion of the software developed
in the course of this thesis, the Observable Operator Modeling Kit. The software consists of
30k lines of C++ code and provides functionality for the simulation, analysis and training
of OOMs. Also it contains and uses an implementation of the context graph data structure
newly introduced in this thesis. The development of such a package was a major goal of
this thesis besides providing theoretical results and a significant part of the work done in
this thesis.
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CHAPTER 1

Stochastic Processes

Stochastic modeling of sequence data and time-series relies on the notion of stochastic
processes. This notion connects two fundamental concepts: time and random entities.
Hence, due to their fundamental nature it should come as no surprise that stochastic
processes reappear in the theory of information and communication under a different
interpretation as information sources.

1.1. Random Variables

Random variables formalize the idea of entities dependent on random events. The
term “random variable” is sometimes recepted as misleading, since its semantics is nowhere
near those encountered in other fields for the term “variable”. This trap for intuition may
be avoided by thinking of random variables as what they are: measurable functions on
probability spaces.

Definition 1.1.random variable
Let (Ω,F ,P) be a probability space and (E, E) be a measurable space. A random

variable X is a function

X : Ω −→ E

which is measurable with respect to F and E , e.g.

∀M ∈ E : {ω ∈ Ω : X(w) ∈M} ∈ F

Random variables canonically transport the probability measure P on the measurable
space (Ω,F) to a probability measure P′ on the measurable space (E, E) by

(1.1) ∀M ∈ E : P′(M) := P({ω ∈ Ω : X(w) ∈M})

Because of 1.1 sometimes (E, E ,P′) is treated as a probability space itself without men-
tioning the primal probability space (Ω,F ,P).

1.2. Stochastic Processes

As previously stated, there are two components to stochastic processes: time and
random entities. The latter is formalized by means of random variables. The former, the
concept of time, as intricate it may seem philosophically and certainly is in everyday life,
as simple it is formalized in mathematics. Time is an infinite and totally ordered set.

Definition 1.2. A stochastic process is a family of random variables (Xt)t∈T all ofstochastic
process which are defined on a common probability space (Ω,F ,P) and all are mapping into a

common measurable space (E, E) where T is a totally ordered set - the time set.

18



1.4. CHARACTERIZING STOCHASTIC PROCESSES 19

This notion leaves great freedom in choosing the individual random variables con-
stituting the random process. Of course the more interesting cases are those where the
random variables are somehow systematically related to one another.

Usually, a stochastic process is called discrete time if T = N or T = Z. In the case of
T = R

+ or T = R the process is called continuous time.
realization
trajectoryEvery function T � t 7→ Xt(ω) for a fixed ω is called realization or trajectory of the

stochastic process.

A stochastic process is called finite valued if E is finite, discrete valued if E is countable
and continuous valued if E is not countable, e.g. E = R.

In this thesis we will exclusively be concerned with discrete time stochastic processes
that take values in a finite set called the alphabet, that is discrete time, finite valued
stochastic processes.

1.3. Events in Stochastic Processes

For ease of reference to events happening in a stochastic process within certain time
ranges let

(1.2) F[r,s] = σ({Xt : r ≤ t ≤ s}) ⊂ F , r, s ∈ T

denote the σ-(sub-)algebra that is generated by events of the form

(1.3) {Xt ∈Mt : r ≤ t ≤ s, Mt ∈ E} ∈
⊗

r≤t≤s

Et where Et = E

Here,
⊗

Et denotes the product σ-algebra over E and the range [r, s]. We also use F(−∞,s]

and F[r,∞) in a similar interpretation. The former will allow us to refer to arbitrary
events in the past of the stochastic process with respect to time s and the latter to refer
to arbitrary events in the future of the stochastic process with respect to time r.

1.4. Characterizing Stochastic Processes

A stochastic process is defined by specifying the primary probability space (Ω,F ,P)
plus the family of random variables (Xt)t∈T mapping into (E, E).

Of course one may insist that choosing a specific set Ω is arbitrary up to the cardinality
of Ω at least from an extensional perspective. Also, often we want to choose the σ-algebra
of events F as big as possible, e.g. as the powerset of Ω or if this is not possible as some
Borel σ-algebra over Ω.

Obviously, choosing P is much more important. In practice, one often simplifies
things even further by forgetting about the primal probability space (Ω,F ,P) altogether
and instead defines a probability measure P′ on the product space

(1.4) (
⊗

t∈T

Et,
⊗

t∈T

Et) where Et = E, Et = E

As it turns out, defining a stochastic process as “a sequence of random variables on
a perhaps very complicated underyling probability space” or “as a probability measure
directly on the measurable space of possible output sequences” is equivalent at least
in the case of discrete valued and discrete time stochastic processes [Gra90]. Let me
note, that there is an interesting third formulation of stochastic processes in terms of
dynamical systems and measurable transformations which is strictly more expressive and
standard within the context of ergodic theory [Gra90]. And, as we will see, Observable
Operator Models give us yet another representation of stochastic processes by means of
linear algebra.



20 1. STOCHASTIC PROCESSES

For the moment we note, that for discrete time and finite valued stochastic processes,
which is the only species we deal within this thesis, the approach of defining the process
by giving a measure on the output sequence space is especially convenient.

As E is finite, there is no problem in choosing the powerset σ-algebra E = P(E).
Without loss of generality, suppose T = N. Then, for defining a probability measure P′

on
⊗

E it suffices to define P′ on every cylinder Cā where ā ∈ En

(1.5) Cā = {ω = (x1, . . . , xn, xn+1, . . .) ∈ E∞ : x1 = a1, . . . , xn = an}

Literally, P′(Cā) is the probability for observing the inital sequence ā ∈ En. In the rest
of the text, we will use the following cleaner notation

(1.6) P′(ā) = P′({X1 = a1, . . . , Xn = an}) = P′(Cā)

In other words, the process is already defined by its distribution on finite inital sequences,
that is the finite dimensional marginal distributions on inital sequences.

One remark on notation - starting from now we will write Σ instead of E for the finite
set the finite valued processes take values in, Σn to denote all strings of length n and Σ∗

or Σ+ to denote the set of all finite strings including or excluding the empty string.



CHAPTER 2

Predictor Space OOMs

This section presents the category of OOMs as one specific way of defining general
discrete time finite valued stochastic processes. Then, concrete OOMs are defined as one
possible model of the OOM category.

This is probably neither the simplest nor the fastest route to an understanding of
concrete OOMs but arguably the one which allows the deepest understanding.

The section closely follows the exposition presented in the original works [Jae00],
[Jae99] of the OOM inventor and does not introduce anything new.

Note, that the restriction to discrete time finite valued stochastic processes is specific
to this thesis. OOMs can likewise and similarily be defined for continuous time arbitrary
valued stochastic processes [Jae01], [Jae99].

2.1. Representing Stochastic Processes by Conditional Distributions

The last section closed by stating that a discrete time, finite valued stochastic process
(Xt)t∈N can be fully specified by the probabilities of all finite initial sequences

(2.1) P(ā), ā ∈ Σ+

We complete our notation by

(2.2) P(ā | b̄) = P({Xl+1 = a1, . . . , Xl+k+1 = ak} | {X1 = b1, . . . , Xl = bl})

where ā ∈ Σk and b̄ ∈ Σl.
Then of course (Xt) may likewise be characterized by all conditional (continuation) conditional

(continuation)
probabilities

probabilities

(2.3) P(ā | b̄), ā ∈ Σ+, b̄ ∈ Σ∗

since the instances P(ā) = P(ā | ε) are trivially covered. While this may seem overly
tedious compared to just giving probabilities for unconditioned initial sequences, it opens
the door for introducing the key players in OOMs: linear operators.

Also note that Pb̄(·) = P(· | b̄) is a probability distribution on Ω = Σ∞ for every fixed
b̄ ∈ Σ∗. Similar to equation 1.5 we take

Pb̄(ā) = P(w = (x1, . . . , xl, xl+1, . . . , xl+k+1, xl+k+2, . . .) ∈ Σ∞ :

x1 = b1, . . . , xl = bl, xl+1 = a1, . . . , xl+k+1 = ak)

The distributions P(· | b̄) are conditioned over b̄. Hence, we may think of the conditional
distribution P(· | b̄) as describing the future of the process after an initial realization or
specific past b̄ of the process.

2.2. Conditional Distributions as Numerical Functions

For a deeper study of the conditional distributions that characterize a stochastic
process introduced in the last section we will take things two steps further.

First, we will reformulate the conditional distributions as numerical functions which
allows us to study those in an appropriate vector space of functions. Secondly, we will
introduce linear operators on this vector space.

21



22 2. PREDICTOR SPACE OOMS

Intuitively, when retrofitted into the conditional distribution interpretation the linear
operators will, given a specific past, model the change of knowledge about the future of
the process when we observe a new present process output.

Given P(·| b̄), let
numerical
predictor
functions gb̄ : Σ+ → [0, 1] ⊂ R

gb̄(ā) 7→

{

P(ā | b̄), if P(b̄) > 0

0 else

(2.4)

Obviously, the set of numerical predictor functions {gb̄ : b̄ ∈ Σ∗} is yet another complete
specification of the stochastic process.

We next study these functions within an appropriate real vector space. Let

(2.5) D = {d : Σ+ → R}

denote the set of real valued functions on finite, non-empty sequences. Then D can be
made into a real vector space by

(2.6) (αd1 + βd2)(ā) := α(d1(ā)) + β(d2(ā)) ∀α, β ∈ R

Within this vector space we can identify the linear subspace spanned by the numerical
predictor functions representing conditional continuation distributions

(2.7) G = 〈{gb̄ : b̄ ∈ Σ∗}〉D

2.3. Linear Operators on Conditional Distributions

The last piece missing from our initial outset are linear operators on the vector space
G we already have. For defining linear operators it suffices to specify the values they take
on a basis of the involved vector space. Let Σ∗

0 ⊂ Σ∗ such that {gē : ē ∈ Σ∗
0} is a basis of

G, not necessarily finite. Then define for every a ∈ Σ a linear operator

ta : G→ G

ta(gē) := P(a | ē) gēa

(2.8)

We have just built a bridge between the theory of stochastic processes and linear algebra.
This will become clear from the propositions we now can prove.

Proposition 2.1 (from [Jae00], [Jae99]). The constituting relation 2.8 for elements
of the basis {gb̄ : b̄ ∈ Σ∗

0} carries over to the full vector space. For all b̄ ∈ Σ∗, a ∈ Σ it
holds that

ta(gb̄) = P(a | b̄) gb̄a

Proof. Let b̄ ∈ Σ∗ and gb̄ =
∑n

i=1 αigēi
be the linear combination of gb̄ from basis

elements. Note that though the basis may be infinite, b̄ always can be written as a linear
combination of a finite number of basis elements. This is a characteristic of every vector
space basis and a vector space has always a basis, at least if one accepts the axiom of
choice. Let c̄ ∈ Σ+. Then



2.4. COMPUTING PROBABILITIES FROM LINEAR OPERATORS 23

ta(gb̄)(c̄) = (ta(

n
∑

i=1

αigēi
))(c̄)

ta is linear
= (

n
∑

i=1

αita(gēi
))(c̄)

Def. of ta= (

n
∑

i=1

αiP(a|ēi)gēia))(c̄)
vector space linearity

=

n
∑

i=1

αiP(a|ēi)P(c̄|ēia)

=

n
∑

i=1

αiP(a|ēi)
P(ēiac̄)

P(a|ēi)P(ēi)
=

n
∑

i=1

αi

P(ēi)P(ac̄|ēi)

P(ēi)

lin. comb. gb̄= gb̄(ac̄) = P(ac̄|b̄) = P(a|b̄)P(c̄|b̄a)

= P(a|b̄)gb̄a(c̄)

�

What does this all mean? Well, the available knowledge about the future distribution
of the process given the realization b̄ is fully captured in the numerical predictor function
gb̄ as it simply encodes the conditional continuation distribution P(·|b̄). On the other hand
gb̄a captures the future distribution P(·|b̄a) of the process given realization b̄a. The relation
between these two predictors literally is the change of knowledge due to an observation of
a after b̄ was observed. Up to a scaling factor, this is precisely what the linear operator
ta does, not only on the elements of the basis but on all elements of the vector space, as
the last proposition showed.

2.4. Computing Probabilities from Linear Operators

To fully prove the claim that the linear operators defined via 2.8 on the mentioned
vector space completely describe the stochastic process we now show how to compute the
correct probabilities of arbitrary finite initial sequences.

Proposition 2.2 (from [Jae00], [Jae99]). Let {gē : ē ∈ Σ∗
0} be a basis of G and

ā = a1 . . . ak ∈ Σk an initial realization of the process. Then looking at tak
. . . ta1

gε it
holds that

(2.9) tak
. . . ta1

gε =
n

∑

i=1

αigēi
⇒ P(ā) =

n
∑

i=1

αi

In other words, the probability of an initial realization ā can be computed as the sum of
linear coefficients in the linear combination of tak

. . . ta1
gε from basis elements.

Proof. Iteratively applying 2.8 shows that tak
. . . ta1

gε = P(a1 . . . ak)ga1...ak
. Hence

ga1...ak
=

n
∑

i=1

αi

P(a1 . . . ak)
gēi

Further, because the numerical predictor functions ga1...ak
and gēi

describe probability
distributions, the linear coefficients in the equation above must sum up to 1

n
∑

i=1

αi

P(a1 . . . ak)
= 1,

which immediately yields

n
∑

i=1

αi = P(a1 . . . ak),

which had to be shown. �
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2.5. From Linear Operators to Conditional Distributions

The last section constructed a “linear operators on vector space”- representation of
stochastic processes by starting from a given process probability distribution. The con-
verse will be described in this section. That is, necessary and sufficient conditions will be
given such that a set of linear operators on a real vector space defines a stochastic process.

Given a real vector space V with a basis (ej)j∈J . Let σ(ej)j∈J
: V → R be the

numerical function such that

(2.10) V � w =

k
∑

i=1

αieji
⇒ σ(ej)j∈J

(w) =

k
∑

i=1

αi

Thus, σ assigns to every vector w ∈ V the sum of coefficients from the linear combination
of w from basis vectors. Also note that σ itself is linear. In the following, we use the
shorthand τā = τak

· · · τa1
where ā ∈ Σk.

Proposition 2.3 (from [Jae00], [Jae99]). Let V be a real vector space with a basis
(ej)j∈J , Σ a finite set, (τa)a∈Σ a family of linear operators on V and v0 ∈ V . Define

P : Σ∗ → R by P(ā) := σ(τāv0), P(ε) := 1

and µ :=
∑

a∈Σ τa.
Then P can be extended to the distribution of a discrete time finite valued stochastic

process iff the following three conditions are met

(1) σ(v0) = 1

(2) σ(µej) = σ(ej) for all basis vectors ej

(3) σ(τāv0) ≥ 0 for all ā ∈ Σ∗

Proof. ⇐: A numerical function P : Σ∗ → R can be uniquely extended to the
distribution of a discrete time finite valued stochastic process iff for all n ≥ 1 the following
three conditions are met

(a) P(a1 . . . an) ≥ 0

(b)
∑

a1...an∈Σn

P(a1 . . . an) = 1

(c) P(a1 . . . an) =
∑

b∈Σ

P(a1 . . . anb)

(a) follows from condition (3) of the above proposition. Condition (1) and (2) in the above
proposition imply that σ(µw) = σ(w) for all w ∈ V and that

Σa1...an∈Σnσ(τan
· · · τa1

v0) = σ(µ · · ·µv0)

from which we can see (b) and (c)
⇒: If P can be extended to a distribution, then conditions (1) and (3) are obviously
fullfilled. Further, observe that σ(µτāv0) = σ(

∑

b∈Σ τbτāv0) = σ(τāv0). Since V is spanned
by the vectors {τāv0|ā ∈ Σ∗}, this implies that for all w ∈ V it holds that σ(µw) = σ(w),
which subsumes condition (2) as a special case. �

2.6. The Dual Representations of Processes

The dual representation of stochastic processes as conditional (continuation) distri-
butions and as linear operators on a real vector space of numerical predictor functions is
at the core of observable operator theory. We summarize this in the following

Definition 2.1 (Predictor-Space OOM). Let (Xt)t∈N be a stochastic process with
values in a finite set Σ. The structure (G, (ta)a∈Σ, gε) is called the predictor space ob-
servable operator model of the process. The vector space dimension of G is called the
dimension of the process and is denoted dim((Xt)).
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It is quite remarkable that besides the restriction to discrete time finite valued pro-
cesses, which is merely a restriction of the scope of this thesis, we imposed no restriction
on generality. We have arrived at a completely general characterization of discrete time,
finite valued stochastic processes in terms of linear operators on real vector spaces of
numerical predictor functions.

The reader may wonder how it can be that stochastic processes can always be char-
acterized by linear operators. Of course this is the case only because we allowed vector
spaces of infinite dimension. In the very moment we restrict ourselves to finite dimensional
vector spaces, we cannot generally expect to be able to represent every stochastic process
using linear operators on this vector space.

The good news is that a broad class of practically relevant situations may well be
served by finite dimensional linear stochastic processes. Also it is important to recognize
that the class of observable operator models is a strict superset of the popular hidden
markov models. There are finite dimensional OOMs that can only be implemented by
hidden markov models with infinitely many states. An example is the “probability clock”
which is discussed in [Jae00].



CHAPTER 3

Concrete OOMs

The last section introduced observable operator models on a very abstract level. As it
turns out, vector spaces of numerical predictor functions are not very handy in practice.
Fortunately, we can use appropriate vector space isomorphisms to transfer our doing to
the mundane world of some R

m.
As with the last section, also in this section I reproduce the original work [Jae00],

[Jae99] for the sake of a coherent and closed presentation.

3.1. Definition of Concrete OOMs

We now give the definition of concrete OOMs, which are algebraic structures di-concrete OOMs
rectly corresponding and equivalent to the abstract OOMs introduced in the last section.
The big advantage is that concrete OOMs are defined over the vector spaces R

m, which
immediately opens up the toolbox of linear algebra for working with concrete OOMs.

In the following we use 1 = (1, . . . , 1) ∈ R
m to denote the row vector consisting of all

1’s.

Definition 3.1. A m-dimensional OOM is a triple A = (Rm, (τa)a∈Σ, w0), where
w0 ∈ R

m and τa : R
m → R

m are linear operators, satisfying

(1) 1w0 = 1,
(2) 1µ = 1, where µ =

∑

a∈Σ τa,

(3) ∀a1, . . . , ak ∈ Σk : 1τak
· · · τa1

w0 ≥ 0.

Note, that the vector space dimension m of R
m directly corresponds to the dimensions

in the abstract vector spaces of numerical predictor functions introduced in the previous
section if the OOMs have minimal dimension and the three constituting conditions directly
correspond to the three conditions given in proposition 2.3. As with abstract OOMs, the
family of operators defining the OOM is indexed over the output alphabet of the stochastic
process defined. By the way, this last correspondence is also the background that gave
rise to the name “observable operator” models.

At this point it is worth noting, that the above definition is non-constructive because of
(3). This has a couple of major implications and further analysis gives rise to a important
strand in OOM research working with tools from the theory of convex cones. For the
practical setting of estimating concrete OOMs from sample data, the problem is much
less pressing and generally is manageable.

Now, without proof

Proposition 3.1 (from [Jae00], [Jae99]). Let A = (Rm, (τa)a∈Σ, w0) be a concrete
OOM, Ω = Σ∞ and A be the σ-algebra generated by all finite-length inital events on Ω.
Then a numerical function

P′(ā) := 1τāw0

can be uniquely extended to a probability measure P on (Ω,A) defining a discrete time,
finite valued stochastic process (Ω,A,P, (Xt)).

Again, this directly mirrors proposition 2.3.

26
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concrete OOMs isomorph
to abstract OOM Z

minimal dimensional concrete OOMs isomorph
to abstract OOM Z

interpretable concrete OOMs isomorph
to abstract OOM Z

Figure 3.1. Class hierarchy of isomorphic concrete OOMs.

3.2. Equivalence of Concrete OOMs

The vector space isomorphisms between the vector spaces of numerical predictor func-
tions and the vector spaces R

m are established via the following vector space
isomorphisms

Proposition 3.2 (from [Jae00], [Jae99]). (1) If (Xt) is a discrete time, finite
valued stochastic process describable by an m-dimensional abstract OOM, then
there exists a m-dimensional concrete OOM describing the same process.

(2) If A = (Rk, (τa)a∈Σ, w0) is a k-dimensional concrete OOM, then there is exactly
one abstract OOM of dimension m ≤ k describing the same process.

The proposition is significant, since it allows us to work with concrete OOMs instead of
abstract OOMs.

An important point is that though abstract OOMs always have a one-to-one relation
to the stochastic processes they define, for concrete OOMs this is not true as may be
seen from (2) in above proposition. A concrete OOM may be given in a vector space
of greater dimension that would be necessary, in which case the corresponding abstract
OOM has a smaller dimension. But even if a concrete OOM has minimal dimension among
those corresponding to the same abstract OOM, there still generally are uncountable many
equivalent concrete OOMs in the equivalence class corresponding to a given abstract OOM.
A sketch of the relations is given in figure 3.1. Given an abstract OOM there correspond
classes of isomorphic concrete OOMs and minimal dimensional concrete OOMs, both of
which generally are of uncountable infinite cardinality. Further a third class, interpretable
OOMs, which we introduce in section 4 are distinguished. This class is of countable
cardinality.

Given an OOM A it is possible to construct an equivalent minimal dimensional OOM
A′ [[Jae00]]. Based on this, the following proposition clarifies the necessary and sufficient
conditions for two concrete OOMs to be equivalent in the sense of being isomorphic to
the same abstract OOM.

Proposition 3.3. Given two OOMsA = (Rk, (τa)a∈Σ, w0) and B = (Rl, (τ ′
a)a∈Σ, w′

0).
Then A and B are equivalent (describe the same stochastic process) iff

(1) A and B have minimal dimensional OOMs of the same dimension m
(2) ∃ρ : R

m → R
m where ρ is linear such that

(a) ρ(w0) = w′
0,

(b) τ ′
a = ρτaρ−1 for all a ∈ Σ,

(c) 1v = 1ρv for all (column) vectors v ∈ R
m
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Starting from now, when not otherwise noted, we will exclusively work with concrete
OOMs and omit the word “concrete”.

Also, whenever we want to refer to a complete equivalence class of OOMs, we will use
the following notion

Definition 3.2. A linear dependent process (LDP) of dimension m ∈ N is a stochasticlinear dependent
process process which can be described by a minimal m-dimensional concrete OOM.

Again, a LDP usually has (uncountable) many OOM representations and we can think of
a LDP as a label of the particular equivalence class.



CHAPTER 4

Interpretable OOMs

In subsection 3.2 we saw that a given OOM is contained in a whole equivalence class
of OOMs that induce the same stochastic process. Within such an equivalence class there
is a proper subset of minimal dimensional OOMs which have a state space dimension
equal to the dimension of the stochastic process defined by any OOM in the equivalence
class (see figure 3.1). Also, we already distinguished a countable, proper subset within the
minimal dimensional OOMs, the interpretable OOMs, but omitted a detailed exposition.
This will be made up in the present section in which I paraphrase the results in [Jae00].

Interpretable OOMs are minimal dimensional OOMs with very special properties:

(1) their state vectors are probability vectors
(2) the components of their state vectors give probabilities of certain well-defined

future events
(3) they can be constructively obtained through a “learning algorithm”

This section will discuss the properties (1) and (2), whereas property (3) will be
discussed in the context of the learning algorithm presented in the next section.

4.1. State Vectors

Let A = (Rm, (τa)a∈Σ, w0) be a finite dimensional concrete OOM. Then the probabil-
ity of observing an initial realization b̄ = (b1, . . . , bt) ∈ Σt starting from the state vector
w0 can be computed by

(4.1) 0 ≤ P(b̄) = 1τb̄w0 ≤ 1

Now, what about the probablity of observing a ∈ Σ after having already observed b̄? Of
course, from above we could readily compute 1τab̄w0. However, suppose we know P(b̄),
then we can also compute P(ab̄) incrementally since

(4.2) P(a|b̄) =
P(ab̄)

P(b̄)
=

1τab̄w0

1τb̄w0
= 1τa

τb̄w0

1τb̄w0
=: 1τawt

and

(4.3) wt =
τbt

wt−1

1τbt
wt−1

The vectors wt ∈ R
m the OOM passes through in the course of a certain trajectory state vectors

are called state vectors. Note, that in general wt will neither have column sum 1 nor non-
negative components. The state vectors allow us to incrementally compute probabilities
of observing sequences of but do not have a valid interpretation beyond this “helper role”.
However, for interpretable OOMs the state vectors will attain an additional important
interpretation, namely as probability vectors which components give the probabilities of
certain future events.

29
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4.2. Indicative and Characteristic Events

Events in stochastic processes were introduced in subsection 1.3, in particular equation
1.2 presented a notation for the σ-algebra subsuming events happening in a limited time
window

(4.4) F[t,t+k]

For discrete time (T = N) stochastic processes (Xt) taking values in a finite alphabet Σ
we may specify such events Ai by

(4.5) (Xt, . . . , Xt+k) ∈ Ai ⊂ Σk

Consequently, P((Xt, . . . , Xt+k) ∈ Ai) denotes the probability of observing the process
trajectory passing through Ai in the time window [t, t + k]. For convenience, we will use
the shorthand P(Ai) := P((X1, . . . , Xk) ∈ Ai).

Indicative and characteristic events now introduced are of the form we just encoun-
tered: events in a finite time window. Again, they are important for both theoretical and
practical reasons

(1) for interpretable OOMs, the probabilities of characteristic events are given by
the components of the OOM’s state vectors

(2) indicative and characteristic events, once defined, can be used to estimate an
interpretable OOM from sample data

Formally, indicative and characteristic events are defined

Definition 4.1. Let L be a linear dependent process of dimension m on the finiteindicative
events

characteristic
events

alphabet Σ with probability distribution P. Let l, k ∈ N, B1∪̇ . . . ∪̇Bm = Σl with Bj 6= ∅
and A1∪̇ . . . ∪̇Am = Σk with Ai 6= ∅ two partitionings of Σl and Σk into mutual disjoint,
non-empty sets such that the matrix

V = (vij)i,j∈{1,...,m} where vij = P(Ai|Bj)

is nonsingular. Then the sets Ai are called characteristic events and the sets Bj are called
indicative events of the process L.

Note that here P(Ai|Bj) =
∑

ā∈Ai, b̄∈Bj
P(ā|b̄). The requirement of V being nonsingular

looks more restrictive than it really is. In fact, in general it is more difficult to come up
with indicative and characteristic events (where l and k are sufficiently large) that result
in V being singular. In fact

Proposition 4.1. Every finite dimensional LDP has characteristic and indicative
events.

A proof may be found in [Jae00] (proposition 7).

Let me note that, despite the fact that the matrix V is either singular or not depending
on what partitionings were chosen, from a numerical stand we may ask about the extent
of nonsingularity, that is the numerical rank or condition number of V . In subsection
5.5 we will see, that for the practical problem of OOM estimation from finite data, the
numerical rank of V is indeed of high importance. In other words, we are not only
interested in partitionings such that V is formally nonsingular and thus the partitionings
can be considered indicative and characteristic events, but rather in partitionings such
that V has a condition number near 1 or a numerical rank near m.
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4.3. Interpretable OOMs

We are now in a position to clearify our introductory comment, that interpretable
OOMs will have the special property of giving the probabilities of certain future events
directly as the component values of their state vectors. We will do this by first giving
an abstract definition of interpretable OOMs and then show how to transform any OOM
into an equivalent and interpretable OOM.

The “future events” we talked about are the characteristic events Ai and their prob-
ability of occurrence is given by the component values (wt)i of the state vectors wt.
Formally,

Definition 4.2. Let A = (Rm, (τa)a∈Σ, w0) be a finite dimensional concrete OOM interpretable
OOMand let (Ai)i and (Bj)j be characteristic and indicative events of A. Then A is called

interpretable with respect to the characteristic events (Ai)i if

P(Ai | wt) = (wt)i ∀t ∈ N, ∀i ∈ {1, . . . ,m}

Here, P(Ai | wt) denotes the probability of observing (Xt+1, . . . , Xt+k) ∈ Ai given that
the OOM was in state wt at time t. Further, (wt)i denotes the i-th component of the state
vector wt. Note, that since A1∪̇ . . . ∪̇Am is an exhaustive and disjoint partitioning of Σk

it follows that
∑

i P(Ai | wt) = 1 and hence 1wt = 1. In other words, wt is a probability
vector.

At this point, it is unclear why such OOMs should exist and also why every OOM
should be equivalent to countable many interpretable OOMs. But this exactly is shown
by the following

Lemma 4.1. Let A = (Rm, (τa)a∈Σ, w0) be a minimal dimensional OOM and let
(Ai)i and (Bj)j be characteristic and indicative events of A. Define a linear mapping
σ : R

m → R
m by

σ(w) := (1τA1
w, . . . ,1τAm

w)

Then A′ = (Rm, (στaσ−1)a∈Σ, σw0) is an interpretable OOM equivalent to A.

A proof may be found in [Jae00] (discussion in section 7). In the introduction to this
section it was said that interpretable OOMs would be important both for theoretical and
practical reasons. What we have just seen is probably mostly of theoretical interest. Yet
from a practical perspective, the following proposition will lay the foundation for the
learning algorithm introduced in the next section.

Proposition 4.2. In an interpretable OOM (interpretable with respect to character-
istic and indicative events Ai and Bj) it holds that

(1) w0 = (P(A1), . . . ,P(Am))

(2) τBj
w0 = (P(BjA1), . . . ,P(BjAm))

Here, τBj
=

∑

b̄∈Bj
τb̄. A proof may be found in [Jae00] (proposition 8).



CHAPTER 5

Learning OOMs

In this section we will see how to estimate an OOM from a given sample of a stochastic
process or from stochastic time-series data. Basically, I follow and reproduce the results
in the original works ([Jae98], [Jae00]) and only add to the discussion.

First, I outline the basic OOM learning algorithm, a purely mechanical and construc-
tive procedure to compute an OOM when given a finite sample and when one has chosen
a suitable target OOM dimension and suitable indicative and characteristic events.

The second subsection will present a result showing that the basic learning algorithm
is an asymptotically correct method. The result holds true (largely) independent of the
particular choice of indicative and characteristic events, but only in the limit case of
infinite sample data.

The situation of finite sample data is fundamentally different and in fact the original
motivation for this thesis. The rest of this thesis will then be devoted to applying and
customizing different tools and developing first insights into the non-asymptotic learning
situation.

5.1. The Sample

A sample is a finite string s ∈ Σn that we are given and that is supposed to be
produced by a process hidden from us.

Learning in the context of the present thesis means estimating or computing a model,
specifically an concrecte OOM from the sample. However, for reasons of sanity we must
make some assumptions about the unknown process behind the curtain that produced
the sample. In particular we assume the sample to be generated by a

(1) linear dependent process with
(2) finite dimension, which is
(3) stationary and
(4) ergodic

(1),(2): A concrete OOM cannot represent anything “more” than a finite dimensional
LDP. Hence it makes no sense to learn an OOM from a sample produced by a process that
cannot be represented by an OOM. (3) This is a restriction of scope made in this thesis.
(4) Is necessary since otherwise one cannot approximate probabilities via frequencies from
a sample of a single realization in the limit (see section 8).

I should note that restriction (4) is not mentioned in the original work but introduced
in this thesis and I will therefore shortly discuss the arguments that motivated me. I
presume a situation in which it is either impossible to acquire or to make use of samples
of more than a single process realization. For example, assume the sample is generated by
a stationary real-world process. Then the finite sample we take will be a finite section of
a single realization of the process. This is the case because the process both runs in real-
time and is sampled in real-time. We cannot acquire sections from a second realization of
the process since do not have access to the appropriate parallel universe. In other words,
we are principally restricted to finite sections of a single realization of the process. Now on
the other hand, assume we would be capable of acquiring a sample containing information
of more than one realization of the stationary process. If the process is non-ergodic, in the
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Figure 5.1. Sorting out a process realization into indicative and char-
acteristic events.

worst case we needed a sample containing data from infinite many process realizations.
However such a sample is no longer finite.

Beginning from now, whenever we speak of a sample, we refer to a sample assumed
to be produced by a process a described above.

5.2. The Rasters of Indicative and Characteristic Events

When learning statistical models from data, one usually employs a certain stand:
first, not every detail in the training data is considered meaningful due to the inherent
stochastic nature of the process that generated the training data and second, generalization
is desirable. These are good reasons for looking at a concrete realization of a stochastic
process through some kind of raster, coarsening out the irrelevant.

Indeed, we already encountered such rasters in the form of indicative and characteristic
events, introduced in definition 4.1 together with interpretable OOMs.

Indicative and characteristic events were defined by partitionings of the sequence
space. Then, given a particular process realization, finite pieces of the realized trajectory
into the past (concrete past context) and finite pieces of the realized trajectory into the concrete past

contextfuture (concrete future context) relative to some fixed position in the realization (present)
concrete future

context
can be sorted out into disjunctive classes, the indicative and characteristic events (see
figure 5.1).

The procedure of sorting out a process realization (sample) due to given rasters and
counting the occurrences of the rasters is the basis for the basic OOM learning algorithm
presented in the next section (in particular, see equations 5.5).

5.3. The Basic Learning Algorithm

The basic OOM learning algorithm is a purely mechnical and constructive procedure
to compute an target OOM from the sample s, given the following additional input

(1) a dimension m ∈ N for the target OOM
(2) numbers l, k ∈ N

(3) a partitioning B1∪̇ . . . ∪̇Bm = Σl with Bj 6= ∅
(4) a partitioning A1∪̇ . . . ∪̇Am = Σk with Ai 6= ∅

This is a lot of input and indeed, the only input that is obvious is the training sample
s. What does the additional input mean and how do we derive it?
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Now, if we knew s to be a sample produced by a LDP (Xt) of dimension r with
distribution P, then in above input we needed to choose m = r and l, k, (Bj)j and (Ai)i

such that the partitionings are indicative and characteristic events, that is result in a
nonsingluar matrix V = P(BjAi)ij . The problem is that we do not have access to (Xt)
and hence do not know r and P. We refer to these issues as determining the right or jus-
tifiable model dimension and as choosing good indicative and characteristic events. For
now assume that we have made our choices.

Given the input of above, the basic OOM learning algorithm computes the target
OOM Ã = (Rm, (τ̃a)a∈Σ, w̃0) as

(w̃0)i := P̃s(Ai)(5.1)

τ̃a := W̃aṼ −1(5.2)

where

Ṽ = (Ṽ )ij := P̃s(BjAi)(5.3)

∀a ∈ Σ : W̃a = (W̃a)ij := P̃s(BjaAi)(5.4)

and

P̃s(Ai) :=
#{t ∈ {1, . . . , (|s| − k + 1)} : s[t : t + k] ∈ Ai}

|s| − k + 1
(5.5)

P̃s(BjAi) :=
#{t ∈ {1, . . . , (|s| − l − k + 1)} : s[t : t + l + k] ∈ BjAi}

|s| − l − k + 1
(5.6)

P̃s(BjaAi) :=
#{t ∈ {1, . . . , (|s| − l − k)} : s[t : t + k + l + 1] ∈ BjaAi}

|s| − l − k
(5.7)

Here, a ∈ Σ is an arbitrary single symbol and the terms P̃s(Ai), P̃s(BjAi) and P̃s(BjaAi)
are the empirical frequencies of occurrence of the events Ai, Bj and BjaAi in the sample
s. The derivation of these formula is straightforward and essentially builds on proposition
4.2 for interpretable OOMs. The details may be found in [Jae98], [Jae00].

When looking at the formulas just presented making up the basic OOM learning algo-
rithm one can only wonder about it’s simplicity. The substantial work to be done (besides
matrix multiplications and inversions) consists of counting the occurrences of certain well
defined events within the string s, that is a string matching and counting task. Hence, the
algorithm not only is it simple, but also constructive and the computational work done is
modest. In fact, in [Jae00] the run-time for the algorithm is argued to be O(n + |Σ|m3).
What follows is a discussion of some issues related to the run-time and space complexities
of the basic OOM learning algorithm.

The run-time needed for a naive single sweep counting procedure is linear in the length
of s only if we are allowed lookups of the form s[t : t + l + k + 1] ∈ BjaAi in constant
time. This can trivially be done by storing an array of size |Σl+k+1| which then contains
the index i of the characteristic event Ai, the index pair (j, i)1 for matching BjAi and
the index pair (j, i)2 for matching BjaAi. However, this results in storage requirements
exponential in l + k and hence quickly becomes prohibitive.
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I will present an advanced method based on suffix trees later. This method retains the
linear run-time for the counting procedure while at the same time consumes O(n log m)
memory.

Generally, when giving run-time complexities one must also give space complexities.
This is the case since with unlimited memory (accessible in constant time), every problem
can be solved in O(n) by simply storing precomputed solutions for every conceivable input
of length n and using the input as an index into the solution array. The “processing” to
be done then amounts to reading the input and looking up the solution. Obviously, an
algorithm that consumes exponential memory in the input length is just cheating.

Also note, that the run-time thus obtained does only include the processing that has
to be done after suitable indicative and characteristic events have been chosen. As the
reader may guess, the hard part is in finding good indicative and characteristic events and
likely considerable resources will be consumed in solving this “preprocessing step” before
the basic learning algorithm can be applied.

The situation can be compared with training feedforward neural networks. Here,
one usually measures the complexity of training the network based on the amount of
processing done only after choosing a particular network topology. Often, this amounts to
the run-time and memory consumption of backpropagation. The work done in choosing
the “right” topology is booked differently or not even discussed.

With training OOMs, the situation is comparable. As we have seen, the work done
after choosing particular indicative and characteristic events amount to a time-complexity
of O(n + |Σ|m3) and a space complexity of O(n log m + |Σ|m2) (will be shown). The work
done in finding good indicative and characteristic events is a different story.

5.4. The Asymptotic Learning Theorem

This section paraphrases the discussion of the basic OOM learning algorithm given in
[Jae00] with special emphasis to the aspect of “asymptotical correctness”. It differs in a
more technical formulation to fit into this thesis and by folding in the notion of ergodicity,
which is discussed in detail in section 8 and was already motivated in 5.1. I start by
presenting

Lemma 5.1 (adapted from [Jae00]). Let (Xt) be a stationary ergodic LDP of finite
dimension with distribution P taking values in a finite alphabet Σ. Let s ∈ Σ∞ a realiza-
tion of (Xt), Ai ⊂ Σk, Bj ⊂ Σl and P̃s[1:n](Ai) and P̃s[1:n](Bj) the frequencies of Ai and
Bj in the initial string s[1 : n] ∈ Σn of the realization s. Then P− a.s.

(1) P̃s[1:n](Ai)
n→∞
−→ P(Ai)

(2) P̃s[1:n](BjAi)
n→∞
−→ P(BjAi)

(3) ∀a ∈ Σ : P̃s[1:n](BjaAi)
n→∞
−→ P(BjaAi)

Proof. Since (Xt) is stationary ergodic by assumption, we are allowed by the ergodic

theorem to exchange the estimator of the ensemble average 1
|Σn|

∑

sn∈Σn P̃sn
(Ai) with a

time average limit limn→∞ P̃s[1:n](Ai) for almost every realization s. �

Based on the lemma just given, we now can transport the convergence result through
the other stations of the basic learning algorithm. In particular, the frequencies of events
Ai, BjAi and BjaAi in the sample make up the matrices Ṽ and W̃a. Hence,

Corollary 5.1 (adapted from [Jae00]). Assume the situation as in lemma 5.1. Let
V = (P(BjAi)) and Wa = (P(BjaAi)). Then P− a.s.

||V − Ṽ ||
n→∞
−→ 0

∀a ∈ Σ : ||Wa − W̃a||
n→∞
−→ 0

where || · || denotes a matrix norm (e.g. 2-norm).
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Proof. From the previous lemma we see that the convergence is P-a.s. in all respec-
tive matrix elements. This implies the P-a.s. convergence in matrix norm. �

The last station in the basic learning algorithm uses the estimates Ṽ and W̃a to
compute estimates for the operators τ̃a. Consequently, convergence is further transported
which is summarized in the following

Theorem 5.1 (adapted from [Jae00]). Let (Xt) be a stationary ergodic LDP of
dimension m on a finite alphabet Σ and s ∈ Σ∞ a single realization of (Xt). Assume
(Ai)i and (Bj)j are characteristic and indicative events of (Xt) and let A denote the
concrete OOM of (Xt) which is interpretable with respect to (Ai)i.

Then for the sequence Ãn(s) of OOMs estimated from the initial strings s[1 : n] by
applying the basic learning algorithm using (Ai)i and (Bj)j it holds

Ãn(s)
n→∞
−→ Ã P− a.s.

in some matrix norm.

Proof. Since V
n→∞
−→ Ṽ and Wa

n→∞
−→ W̃a (P−a.s.) when the basic learning algorithm

is deployed, it follows that

τ̃a = W̃aṼ −1 n→∞
−→ WaV −1 = τa P− a.s.

�
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5.5. Numerical Error Analysis of OOM Learning

The second phase of OOM learning is a merely mechanical computation that consist
of solving linear systems

(5.8) V T (τx)i = (WT
x )i i ∈ {1, . . . ,m}, x ∈ Σ

which yields the operator estimates τx, x ∈ Σ. Here, (τx)i denotes the i-th column vector
of the matrix τx.

The statistical fluctuations in the counting matrices V and W due to finite sample
size give rise to estimation errors in the operators τx.

An ill-conditioned matrix V is especially bad, since statistical errors will then be
greatly magnified.

The condition of a matrix V with respect to matrix norm ‖ · ‖ is given by

(5.9) cond(V ) = ‖V ‖ · ‖V −1‖

Note that always cond(V ) ≥ 1 and cond(V T ) = cond(V ). Often, the norm chosen is the
euclidian norm, also called Frobenius-norm:

(5.10) normF (V ) = ||V ||F =

√

∑

i,j

|(V )ij |2

in which case the condition of V is given by the relation of the largest and the smallest
singular value of V . This is also the condition we will use throughout this text.

As already stated, solving the linear systems from equation 5.8 with additive distur-
bances ∆(Vij) and ∆(Wij) will result in variations in the solutions τx.

Here we use the notation ∆(Vij) to denote the matrix which contains the disturbances
as entries that will get added to the undisturbed entries of (Vij).

The relative errors in τx with respect to variations in the right-hand sides (W T
x )i is

then given by

(5.11)
‖∆(τx)i‖

‖(τx)i‖
= cond(V T )

‖∆(Wx)i)‖

‖(Wx)i‖

whereas the relative errors in τx with respect to variations in the matrix (V T ) is given by

(5.12)
‖∆(τx)i‖

‖(τx)i‖
=

cond(V T )

1− cond(V T )‖∆(V T )i‖
‖(V T )i‖

·
‖∆(V T )i‖

‖(V T )i‖

A derivation of these formulas may be found in [Sto79], p152. The figure 5.2 shows the

dependency of the relative error in the estimated OOM operators ‖∆(τx)i‖
‖(τx)i‖

on the V matrix

condition cond(V T ) and the statistical error or the relative error in V given by ‖∆(V T )i‖
‖(V T )i‖

.

Now, we may speculate whether the minimization of condition over all possible par-
titionings (choices of indicative and characteristic events) is a good learning strategy. In-
deed, this was one line of thoughts when starting this thesis. However, it quickly became
apparent that a blind minimization of V -matrix condition does not work. The minimiza-
tion of the condition of the counting matrix V is trivial when no other restrictions are
imposed on the complexity or capacity of the chosen partitioning.
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Figure 5.2. Influence of statistical errors in V and condition of V on
estimation error in operators τx.

To show this, I will now give a constructive method of choosing characteristic and
indicative events such that the V -matrix condition is (near) 1 (also see lemma 15.1).

This can be seen as follows. Suppose s ∈ Σn is the given training sample and we
want to estimate a m dimensional OOM. Let s[: i] denote the prefix of s consisting of all
characters of s up to the i-th character and let s[i :] denote the suffix of s consisting of all
characters of s starting from the i-th character.

Choose two arbitrary vectors η1,2 ∈ {1, . . . ,m}n and interpret η1
i = li as that the

prefix s[: i] is put into the indicative event li. Likewise interpret η2
i = ki as that the suffix

s[i :] is put into the characteristic event ki.
Let $ /∈ Σ and define a partitioning πindicative of (Σ ∪ $)n into indicative events by

specifying the indices of partitions that prefixes . . . $s[: i] will get assigned to with

πindicative($ . . . $s[: i]) = li ⇐⇒ η1
i = li

and a similar partitioning πcharacteristic for characteristic events by

πcharacteristic(s[i :]$ . . . $) = ki ⇐⇒ η2
i = ki

Then, by construction, these partitionings will give rise to η1,2 when applied to
. . . $s$ . . .. Obviously, the corresponding counting matrix V can be directly computed
from η1,2 by

(Vij) = #{r ∈ {1, . . . , n} : η1
r = i ∧ η2

r+1 = j}

All this is a complicated way of stating that given complex enough partitionings, we can
produce any counting matrix V with integer elements that sum up to the sample length
n. If n is a multiple of m we thus can produce a perfect diagonal matrix V with entries
n/m. This matrix has condition 1. If n is no multiple of m, some entries will have to
deviate from n/m, but still the condition can be made ≈ 1.
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But even if we restrict ourselves to partitionings of limited complexity, the minimiza-
tion of the V matrix condition under the constraint of limited complexity still does not
seem to be sufficient in general. On the other hand, a very high condition number (e.g.
>> 10 − 20) often quickly results in bad and useless models in practice. This will be
further discussed in later sections on the basis of experimental results and in the context
of statistical learning theory.

In summary, the insights from numerical error analysis of OOM learning are important
but likely will not tell the whole story. This is because learning in practice happens in the
setting of finite sample data - a situation which cannot be fully analyzed using asymptotic
theory.



.



Part 2

Information Theory and OOMs



The modern theory of information and communication is to a great extent based on
the notion of information sources and the concept of entropy.

“An information source or source is a mathematical model for a phys-
ical entity that produces a succession of symbols called ’outputs’ in a
random manner.” [Gra90]

Information sources are nothing else than stochastic processes. The difference is
mainly the perspective and interpretation. Since OOMs are perfect stochastic processes,
it seems reasonable to expect some progress from applying information theory to our main
theme, learning OOMs from finite data. In particular, an important aim of this part is
to customize tools from information theory, e.g. to measure the quality of an estimated
model.

I will only briefly sketch the notions and results from information theory as far as nec-
essary in applying them to OOM learning. A comprehensive introduction to information
theory may be found in [CT91].



CHAPTER 6

Information Measures

There are many ways to introduce entropy, mutual information and the other infor-
mation measures, since there are many simple algebraic relations between them. One way
is to introduce divergence as the single primal notion to build everything else on.

6.1. Divergence

“The divergence plays a basic role in the family of information mea-
sures; all of the information measures that we will encounter - entropy,
relative entropy, mutual information, and the conditional forms of these
information measures - can be expressed as divergence.” [Gra90], p23

Moreover, divergence - once defined over arbitrary probability measures - allows us
to define all information measures for arbitrary valued random variables as well.

We first need a

Definition 6.1. A measure λ on some measurable space (E, E) is absolutely contin- absolute
continuousuous with respect to another measure µ on (E, E)

µ � λ

if
µ(E) = 0 ⇒ λ(E) = 0 ∀E ∈ E

Definition 6.2 (Divergence, from [Gra90], p77). Given probability measures p and divergence
q on some measurable space (Ω,F), then the divergence of p with respect to q is given by

D(p||q) =

{

supQ

∑

E∈Q p(E) log p(E)
q(E) if q � p,

∞ else.

where the supremum is over all finite measurable partitions Q of Ω.

Note, a finite measurable partition Q is given by Q ⊆ F where |Q| <∞ and E1, E2 ∈
Q ⇒ E1 ∩ E2 = ∅. Further, the definition is fully general, since we did not make any
restrictions on the measurable space or the probability measures.

As common in information theory, log shall denote the logarithm to the base 2.
Further, 0 · log 0

0 = 0 since 0 · log 0 = 0 as limx→0 x log x = 0 and p log p/0 = ∞ as
limx→0 p log p/x =∞.

Formally, divergence is a functional of two probability measures. Looking at the
definition, one may also recognize the general form of an expectation

(6.1) D(p||q) = sup
Q

∑

E∈Q

p(E) log
p(E)

q(E)
= sup

Q

Ep|Q log
p(E)

q(E)

where Ep|Q denotes the expectation with respect to the measure p on the finite par-
tition Q.

Before we present other notions, let us prove the following theorem, also known as
the divergence inequality.

43
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Theorem 6.1. Given probability measures p and q like above, then

D(p||q) ≥ 0

with equality if and only if p = q.

Proof. The proof directly follows from the following the lemma and the fact that
two measures p and q taking identical values on all finite partitions Q of Ω are identical.
This is the case since Q = A∪ {A for all A ⊂ Ω are finite partitions, and measures taking
identical values on all A ⊂ Ω are trivially identical. �

Lemma 6.1. Given two countable or finite sets of non-negative reals {pi} and {qi}
such that

∑

pi =
∑

qi = 1, then
∑

pi log pi/qi ≥ 0

with equality if and only if pi = qi for all i.

Proof. Since log(x) ≤ x− 1 with equality iff x = 1 it follows
∑

pi log pi/qi ≤
∑

pi(qi/pi − 1) =
∑

qi −
∑

pi = 0

with equality iff qi/pi = 1 for all i. �

The divergence inequality justifies the use of divergence as some kind of distance
measure of probability measures. It is not a distance in the strict sense, since it is not
symmetric and does not satisfy the triangle inequality. There are other functionals of
probability measures intended for measuring proximity between probability measures.
The functional I present next is one of them and - it is a true metric.

6.2. Hellinger Distance

The Kakutani-Hellinger distance or short Hellinger distance ([Shi95]) is, like diver-
gence, a measure of proximity of two probability measures.

Definition 6.3 (Hellinger Distance). Given probability measures p and q on someHellinger
distance measurable space (Ω,F), then the Hellinger distance between p and q is given by

D2
HL(p || q) = sup

Q

∑

E∈Q

(

√

p(E) −
√

q(E)
)2

where the supremum is over all finite measurable partitions Q of Ω.

Unlike divergence, the Hellinger distance is a metric on the set of probability measures
([Shi95], 9, Lemma 3.2, p364). That is, it is symmetric in it’s arguments and the triangle
inequality holds. Later, we will use it for qualitative comparison with relative entropy.

6.3. Entropies of Random Variables

When divergence is applied to the probability distributions of random variables it
becomes

Definition 6.4 (Relative entropy). Let X and Y be random variables with dis-relative entropy
tributions p(X) and p(Y ). Then the relative entropy of X with respect to Y is given
by

HX||Y (X,Y ) = D(p(X) || p(Y ))
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Relative entropy is also know as Kullback-Leibler divergence, Kullback-Leibler entropy,
Kullback-Leibler distance and Kullback-Leibler information number. In this thesis, I will
stick to the term relative entropy.

As we already mentioned, based on the notion of divergence we now can define all
other information measures straight forward.

Definition 6.5 (Entropy). Let X be a random variable with distribution p(X). Let entropy
p(X)p(X) denote the usual product measure and p(X,X)(E1, E2) = p(X)(E1) if E1 = E2

and 0 otherwise denote the diagonal measure on the product space. Then the entropy of
X is given by

H(X) : = D(p(X,X) || p(X)p(X))

=
∑

x1∈X

∑

x2∈X

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)

=
∑

x∈X

p(x) log p(x)−1

= −Ep(X) log p(X)

Definition 6.6 (Mutual Information, Joint Entropy, Conditional Entropy). Let
mutual information

joint entropy
conditional entropy

X and Y be random variables with joint distribution p(X,Y ), conditional distribution
p(Y | X) and marginal distributions p(X) and p(Y ). Then the mutual information be-
tween X and Y is the relative entropy between the joint distribution and the product
distribution

I(X;Y ) : = D(p(X,Y ) || p(X)p(Y ))

=
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= Ep(X,Y ) log
p(X,Y )

p(X)p(Y )

the joint entropy between X and Y is

H(X,Y ) : = D(p(X,Y ) || p2(X,Y ))

=
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y)−1

= −Ep(X,Y ) log p(X,Y )

and the conditional entropy of Y given X is given by

H(Y | X) : = D(p(X,Y ) || p2(Y | X))

=
∑

x∈X

∑

y∈Y

p(x, y) log p(y | x)−1

= −Ep(X,Y ) log p(Y | X)

A number of mechanical calculations the reader will find in any comprehensive text
book on information theory (e.g. [CT91]) show that

Lemma 6.2. Given two random variables X and Y . Then

(1) I(X;X) = H(X) ≥ 0,
(2) I(X;Y ) ≥ 0 with equality iff X and Y are stochastically independent
(3) I(X;Y ) ≤ H(X) and I(X;Y ) ≤ H(Y )
(4) H(Y | X) ≤ H(Y )
(5) I(X;Y ) = H(X) + H(Y )−H(X,Y )
(6) I(X;Y ) = I(Y ;X) = H(X)−H(X | Y ) = H(Y )−H(Y | X)
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(7) max(H(X), H(Y )) ≤ H(X,Y ) ≤ H(X) + H(Y )
(8) If X is finitely valued with values in X , then H(X) ≤ log |X |

6.4. Mutual Information of Matrices

Later, we will encounter matrices that store probabilities of joint events BjAi in their
entries. Also, it will be of interest to analyze the mutual information between random
variables X and Y defined through those events Ai and Bj .

For convenience reasons, I introduce the following shortcut to refer to the mutual in-
formation of pairs of finitely valued random variables which joint probabilities are stored
in matrices. Generally, this allows to speak of the mutual information of matrices with
all positive entries that sum up to 1.

Definition 6.7. Given a matrix V ∈ R
n×m with Vij ≥ 0 and

∑

i,j Vij = 1. Then the
mutual information of V is given by

I(V ) :=
∑

i,j

Vij log
Vij

∑

k Vkj ·
∑

k Vik

This merely is a direct transcription of mutual information as introduced in definition 6.6.
Trivially, we can always normalize a matrix with positive entries such that the entries sum
up to 1.



CHAPTER 7

Information Rates

The last section introduced the basic information measures on single random variables
or pairs of random variables. Since our main concern is stochastic processes, that is
sequences of random variables, a natural question to ask is how the joint or conditional
entropy of a sequence of random variables develops as the sequence gets longer and longer.
This immediately leads to the notion of information rates, which subsequently will be
our major tool for comparing OOMs, measuring the distance between OOMs and also
measuring quality of model estimation.

7.1. Entropy Rate

Entropy rates can be defined in two ways. First, entropy rate can be defined as the
normalized limit of the joint entropy of finite initial sequences of the random variables
giving rise to the process

Definition 7.1. The entropy rate of a stochastic process (Xt) is given by entropy rate

h((Xt)) = lim
n→∞

1

n
H(X1, . . . , Xn)

when the limit exists.

The second way of defining entropy rate is by the limit of the conditional entropy of initial
sequences of the random variables conditioning the next step random variable

Definition 7.2. The conditional entropy rate of a stochastic process (Xt) is given conditional
entropy rateby

h′((Xt)) = lim
n→∞

H(Xn | Xn−1, . . . , X1)

when the limit exists.

Luckily, the following theorem shows that at least in the case of stationary processes we
do not have to commit to one over the other definition.

Theorem 7.1 (from [CT91]). For a stationary stochastic process (Xt), the limits in
definitions 7.1 and 7.2 exist and are equal

h((Xt)) = h′((Xt))

Proof. Since conditioning over more random variables reduces conditional entropy
(see lemma 6.2(4)) and (Xt) is stationary, it follows that

H(Xn+1 | Xn, . . . , X1) ≤ H(Xn+1 | Xn, . . . , X2) = H(Xn | Xn−1, . . . , X1)

is a decreasing sequence of non-negative reals and hence converges to a limit h′((Xt)).
Further, by the chain rule for the joint entropy of random variables

H(X1, . . . , Hn)

n
=

1

n

n
∑

i=1

H(Xi | Xi−1, . . . , X1)

47
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The Cesaro mean tells us, that given an → a and bn = 1
n

∑n

i=1 ai results in bn → a.
Hence,

h((Xt)) = lim
n→∞

H(X1, . . . , Xn)

n

= lim
n→∞

1

n

n
∑

i=1

H(Xi | Xi−1, . . . , X1)

= lim
n→∞

H(Xn | Xn−1, . . . , X1) = h′((Xt))

�

Note, that the above theorem holds for any stationary stochastic process. The importance
of the entropy rate is given by the fact that the entropy rate of a stationary ergodic process
gives the average information contained per symbol. Precisely, the expected description
length of a string of length n generated by a stationary ergodic process (Xt) is given by
n · h((Xt)). We will proof this in a later section.

7.2. Entropy Rates of OOMs

We now discuss some experimental results for concrete OOMs.

7.2.1. Experiments. The figures 7.1 and 7.2 show experimental results for approx-
imation of the entropy rates of two different OOMs computed as in definition 7.1 for finite
inital sequences up to a length of 10 and 15 respectively.

Precisely, the calculations were done as follows. For each “sample length” n in the
ranges 1− 15 (or 1− 10) the value plotted was computed as

(7.1) y(n) = 1/n ·H(X1, . . . , Xn) = 1/n
∑

w∈Σn

−p(w) log(p(w))

The two OOMs used are the following.

The “Probability Clock”. A 3-dimensional OOM on the alphabet Σ = {a, b}, which
is not describable as a (finite state) Hidden Markov Model, defined by

(7.2) A = (R3, (τx)x∈{a,b}, w0)

where

τa = 0.5





1 0 0
0 c s
0 −s c



 ,

τb =





.75 · .5 .75(1− .5c + .5s) .75(1− .5s− .5c)
0 0 0

.25 · .5 .25(1− .5c + .5s) .25(1− .5s− .5c)





with s = sin(1), c = cos(1) and w0 is the eigenvector of τa + τb to the eigenvalue 1,
approximately

w0 = (0.787274, 0.077788, 0.134938)

A 3-dimensional OOM on the alphabet Σ = {a, b, c}, which is also a Hidden Markov
Model, given by
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(7.3) A = (R3, (τx)x∈{a,b,c}, w0)

where

τa =





0.09 0 0.05
0.01 0.45 0
0 0.05 0.45



 , τb =





0.18 0 0.04
0.02 0.045 0
0 0.005 0.36



 ,

τc =





0.63 0 0.01
0.07 0.405 0
0 0.045 0.09





and

w0 = (1/3, 1/3, 1/3)T

7.2.2. Discussion. The approximations of entropy rates for the case when the mod-
els are started from an invariant starting distribution, which results in a stationary OOM,
are monotonically decreasing and obviously already can be seen to converge for small
initial sequence lengths (thick lines).

When the models are started from a non-invariant starting distribution and hence
behave as non-stationary stochastic processes, the theorem proved above will not generally
hold. However, at least in the plots shown we can see that also in these cases the non-
stationary initial transient of the models does not prevent the entropy rate approximations
from converging to the same limit, though not always monotonically (dashed lines). A
plausible explanation could be that if the non-stationary OOM does have a geometrically
fast decaying memory, any initial transients of the OOM will be quickly “forgotten” and
after that, when a quasi-stationary regime is reached, the OOM behaves as if it was
stationary. Thus, any finite contributions from the initial transients to the sums under
the limit in the entropy rate formulas will ultimately vanish. The contributions of initial
transients will be finite only if the memory decay is geometrically fast.

It would be interesting to further investigate entropy rates and specifically convergence
criteria of entropy rates for non-stationary OOMs. In this context, it might be of value
to analyze the rate of memory decay of certain OOMs in general.

7.3. Relative Entropy Rate

The entropy rate is an important characteristic of a stochastic process. However,
it is possible for two stochastic processes to have identical entropy rates but still be
completely different. What we want is a measure of similarity of stochastic processes. We
already have seen the notions of divergence, which measures a distance between probability
distributions and the analog of divergence for random variables, the relative entropy.

Unfortunately, computing the relative entropy of inital sequences of random variables
does not make sense since this diverges in the sequence length. Hence, it seems reasonable
to normalize the relative entropy by the sequence length to a relative entropy rate

Definition 7.3 (from [Gra90]). Given two stochastic processes (Xt) and (Yt) with relative entropy
ratedistributions pX and pY , the relative entropy rate of (Xt) with respect to (Yt) is given by

h̄pX ||pY
((Xt), (Yt)) = lim sup

n→∞

1

n
HpX ||pY

((Xn, . . . , X1) || (Yn, . . . , Y1))
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Figure 7.1. Finite-length approximations of entropy rate of the proba-
bility clock OOM. Thick line shows the entropy rate approximation for
the stationary case, whereas other lines show entropy rate approximations
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Figure 7.2. Finite-length approximation of entropy rate of a 3-
dimensional HMM. Thick line shows the entropy rate approximation for
the stationary case, whereas other lines show entropy rate approximations
for non-stationary cases.
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The relative entropy rate between two stochastic processes was only proven to be
finite in some situations. If, for example, one of the processes is a k-order Markov process
dominating the other, then the relative entropy rate between the two is finite [Gra90].
The question of finiteness of the relative entropy rate in the general case of arbitrary
OOMs is unknown. However, there exists a positive result for Hidden Markov Models
[JR85]. Thus, at least for OOMs that characterize stochastic processes which can also
be described as HMMs, the relative entropy rate is finite.

7.4. Monte-Carlo Integration

This section introduces the method of Monte-Carlo integration (see [Sin92]) which is
used for approximating sums and integrals.

I will show how to apply Monte-Carlo integration to the problem of approximating
relative entropy rates. Then, in the next section, experimental results will illustrate the
practical value of the method.

Instead of directly evaluating an integral, which often is infeasable, Monte-Carlo in-
tegration offers a generic transformation into an equivalent expected value computation
problem.

Given a continous function f : R → R and an arbitrary probability density function
u on R such that {x ∈ R : u(x) = 0 ∧ f(x) 6= 0} is countable, then

(7.4)

∫

f(x) dx =

∫

f(x)

u(x)
· u(x) dx = Eu

(

f(x)

u(x)

)

The expectation Eu( f(x)
u(x) ) may be estimated by sampling u. Sampling u in this context

means drawing a finite number of samples x1, . . . , xk according to the probability density
u. Then (sloppy):

(7.5) Eu

(

f(x)

u(x)

)

≈
1

k

k
∑

i=1

f(xi)

u(xi)

The method can be applied to the problem of approximating both the relative entropy
rate and the Hellinger distance between stochastic processes, as is shown in this thesis in
the following.

The divergence between probability measures p and q on a countable probability space
Ω can be approximated by

(7.6) D(p||q) =
∑

ω∈Ω

p(ω) log
p(ω)

q(ω)
= Eu

(

p(ω)

u(ω)
· log

p(ω)

q(ω)

)

u=p
= Eu log

p(ω)

q(ω)
≈

1

k

k
∑

i=1

log
p(ωi)

q(ωi)

Note, that here we have sampled according to u = p, which makes sense if p is our reference
distribution.

Similarily, the Hellinger distance can be approximated by

(7.7) D2
HL(p || q) =

∑

ω∈Ω

(

√

p(ω) −
√

q(ω)
)2

= Eu

(

1

u(ω)
·
(

√

p(ω) −
√

q(ω)
)2

)

u=p
≈

1

k

k
∑

i=1

(

1

p(ω)
·
(

√

p(ω) −
√

q(ω)
)2

)
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The significance of all this for our purposes is, that it enables us to approximate the rel-
ative entropy rate between stochastic processes more precisely given finite computational
resources.

This can be seen from the experimental results presented in the next section where the
Monte-Carlo integration method as applied to information rate approximation is compared
to a more direct method.

7.5. Relative Entropy and Hellinger Rates of OOMs

This section will discuss some experiments addressing the usefulness of relative entropy
rate and Hellinger rate in measuring the distance between OOMs and evaluating the
quality of estimated OOMs. The figures 7.3, 7.4, 7.5 and 7.6 show the obtained results.

7.5.1. Experiments. The experiments were done as follows. A given OOM, subse-
quently called the target OOM, was used to generate samples. Based on these samples,
new OOMs were estimated. Then, the relative entropy rates between the target OOM
and the estimated OOMs were analyzed.

One group of experiments studied the consequences of sample size. Here, models
where estimated based on increasing length of training sample: 50k, 100k and 200k data.
Results are given in figures 7.3 and 7.5.

The other group of experiments studied the influence of specific choices of indicative
and characteristic events (model a,b and c) while the training sample length was constant
(100k). Results are shown in figures 7.4 and 7.6.

Also, both groups of experiments were done for the relative entropy rate and the
Hellinger rate.

The relative entropy rates were approximated using two different methods. The thick
lines in the figures show approximations of the relative entropy rates using an “exact”
method: for each “sample length” n in the range 1− 12 the value plotted was computed
as

(7.8) y(n) = 1/n
∑

w∈Σn

p(w) log(
p(w)

q(w)
)

where p and q are the probability distributions of the target OOM and the estimated
OOM respectively.

Longer sample lengths quickly consume prohibitive many CPU cycles, since the num-
ber of finite sequences w growths exponentially in the sequence length. Therefore I de-
veloped a second approximation method which applies the technique of Monte-Carlo in-
tegration to the problem of relative entropy apporoximation.

The thinner and dashed lines give the relative entropy rate approximations by using
Monte-Carlo integration. Here, 103 samples each of length n were drawn according to the
distribution of the target OOM at each of the sample lengths n in the range of 1− 60 and
the plotted values were computed as

(7.9) y(n) =
1

103n

∑

w∈S

log(
p(w)

q(w)
)

where S is the sample of size 103 drawn from the target OOM.
The target OOM used was a 3-dimensional OOM on the alphabet Σ = {a, b, c} as

defined in equation 7.3.
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7.5.2. Discussion. Several aspects seem worth mentioning. First, the figures 7.3
and 7.5 suggest that the relative entropy rate approximations converge. In other words,
the limit that defines relative entropy rates exist. Note that the target OOM used in
the experiments was equivalent to a HMM. These findings are in accordance with [JR85]
where the existence of the relative entropy rates for Hidden Markov Models was proved.

It would be interesting however, to derive a similar result even for the case of arbitrary
non-HMM Observable Operator Models. That is, a proof of existence of the relative
entropy rate between arbitrary OOMs.

Second, if we compare the results given by the “exact” method for short sample length
(thick lines) and the results obtained based on Monte-Carlo integration (dashed/thin lines)
for greater length, we see that the Monte-Carlo method provides better results. This is
the case since the relative entropy rate is monotonically increasing. Hence, the “exact”
method underestimates the information rate or distance between the stochastic processes
in the example given. Also, the computational resources consumed for approximating
the relative entropy rate at sample length 60 based on 10k samples is much less than
computing the relative entropy rate for all samples of length 12.

I therefore conclude that the Monte-Carlo method of approximating information rates
introduced in this thesis is advantageous.

Third, another experimental result is that longer training data sizes indeed lead to
better models both for the relative entropy rate and the Hellinger rate. Of course, nothing
else was expected. Yet the model improvements seem to be non-proportional in the
training data size. Doubling the training data size from 50k to 100k and 200k does not
result in a proportional but limiting decrease of the distance of the so estimated models
with respect to the target model in this experiment.

Intuitively, it seem plausbile that increasing the training data size further and further
only results in diminishing improvements in the quality of the estimated model.

Forth, regarding the influence of particular choices of indicative and characteristic
events (partitionings), in figures 7.4 and 7.6 we see that indeed partitionings are of con-
siderable effect on the model quality independent of the training data size.

This strengthens the perspective that learning based on finite training data is fun-
damentally different from asymptotic learning from infinite training data. Only for the
latter the asymptotic learning theorem for OOMs tells us that, modulo certain weak re-
strictions (“nonsingular V matrix”), the specific choice of indicative and characteristic
events is irrelevant.

The experimental results presented here suggest that on the basis of finite training
data the choice of partitioning can make all the difference between good and poor model
estimates.

And fifth, from the figures it seems unclear if the Hellinger distance approximations
converge. Thus, it is unclear if the limit defining the Hellinger rate exists. Also, I am
not aware of any theoretical results in this direction. However, the results seem to be
qualitatively similar to those obtained based on relative entropy rates when it comes to
differentiating the models according to their quality or distance. And, the Hellinger rate
seems to be smoother and more stable to approximate.

I conclude, that the Hellinger rate may advantagous to the relative entropy rate when
it is only important to differentiate models on a qualitative but reliable level using as little
computational resources as possible.
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Figure 7.3. Relative entropy rate approximations between 3 models es-
timated from different training data sizes and the target OOM.
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Figure 7.4. Relative entropy rate approximations between 3 models es-
timated based on different indicative/characteristic events and the target
OOM.
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Figure 7.5. Hellinger rate approximations between 3 models estimated
from different training data sizes and the target OOM.
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CHAPTER 8

Ergodicity

Ergodic theory is the study of measure preserving transformations on a probability
space. Stationary stochastic processes can be studied as measure preserving transforma-
tions and vice versa. The standard definition of ergodicity of stochastic processes then is
in terms of properties of the corresponding measure preserving transformation. Hence, to
talk of ergodicity in the context of stochastic processes, one had to first introduce some
ergodic theory in general, but a formal introduction of ergodic theory is clearly beyond the
scope of this thesis. The reader may find such an introduction restricted to the perspective
of stochastic processes in [Shi95].

Here, I will only motivate ergodicity of stochastic processes as far as it is needed to
then (formally) state a number of interesting aspects which relate to information theory.
These will then be applied to the problem of OOM estimation within the context of
statistical learning theory.

8.1. Ergodic Processes

A stochastic process is stationary if all its statistical properties are invariant withstationary
stochastic

process
respect to time. Hence, for a stationary (in the strict sense) stochastic process (Xt)t∈T

taking values in X , functions of the random variables Xt making up the stochastic process
are independent of time translations, e.g. n-th moments of a stationary process are time
independent

(8.1) E(n)(Xt) = E(n)(Xt′) ∀t, t′ ∈ T

A trivial example of a stationary stochastic process is a white-noise (iid) process. Aergodic
stochastic

process
stationary process is also ergodic if all its statistical properties can be inferred from almost
any single realization or outcome of the process. In other words, almost every realization
of a stationary ergodic process exhibits statistical properties that are characteristic of the
whole process.

Ergodic stochastic processes are special stationary stochastic processes. The crucial
difference between arbitrary stationary and ergodic stochastic processes is that for the
latter the probability distribution has a special form which allows one to compute proba-
bilities of events both by ensemble averaging and by time averaging.

In physics, such situations usually are paraphrased by stating: “we are allowed to
exchange an ensemble average with a time average”.

A stationary stochastic process where all statistical quantities computed as time av-
erages are equal to the corresponding ensemble averages is called ergodic.

A time average is computed from averaging a desired function over a single realization
of the stochastic process in time, whereas with ensemble averages the function is averaged
(weighted according to probability) over all possible realizations, the ensemble.

For our previous example of n-th moments, the equality between ensemble and time
averages can be formulated as follows.

56
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(8.2) E(n)(Xt) =

∫

x∈X

xnP (Xt = x)dx =

∫

t∈T

x(t)ndt

where x ∈ X T is a single realization of the stochastic process and x(t) denotes the value
for the realization x at time t. For a discrete time (T = N), real valued (X = R) stationary
ergodic process (Xt) the above equality can be expressed

(8.3) E(n)(Xt) =

∫

x∈R

xnP (Xt = x)dx = lim
s→∞

1

2s

∫ +s

−s

x(t)dt

Since every property of a stochastic process (Xt) can be expressed as the expectation of
a suitable defined sequence of random variables (ξt) defined on top of the stochastic pro-
cess, the reader may look at the following theorem as a formalization of the introducing
comments about ergodic processes.

Theorem 8.1 (from [Shi95]). Let (ξt)t∈N be a stationary (in the strict sense) ergodic
sequence of random variables with finite expectation. Then

1

n

n
∑

t=1

ξt(w)→ E(ξ1) P-almost surely

A proof may be found in [Shi95]. Important ergodic processes are for example Markov
chains with transition probabilities pn

ij > 0 ∀i, j for some n [Sin92]. Also, many real-world
processes which are stationary are also ergodic. A simple example of a stochastic process
that is stationary, but not ergodic is a random constant process, where the outcome at
time 0 is random, but determines the value the process takes for all t > 0. Since this
example process is trivially a stationary LDP, I conclude that there are stationary non-
ergodic LDPs.

In the non-ergodic situation, one can not infer any statistical property of the process
by looking at a single realization of the process.

I find this point quite far reaching, when generalized to the problem of learning from
data as such. My argument is this: How could one expect to reliably estimate a
model from a sample sequence when the underlying process is not ergodic?
When the process is not ergodic, it might not help to have a longer and longer sam-
ple. Even an infinite sample sequence will not grasp all process properties in general.
Without additional knowledge about the process, learning in this setting does make little
sense. In other words, learning models from data produced by a non-ergodic or
even non-stationary process seems to require apriori knowledge. This apriori
knowledge will sneak in by restricting the class of candidate probability distributions, a
parametrized model class.

In the next sections, we will look at a number of important information theoretic
properties of stationary ergodic processes.

We will restrict our formulations to discrete time, finite valued processes. In the next
sections, I use (Xt)t∈N to denote a discrete time stochastic process that takes values in a
finite set Σ. Further, assume that (Xt) is stationary ergodic and specified by distribution
P (on finite initial sequences for example). We use Xn

1 = (X1, X2, . . . , Xn) to denotes a
finite inital sequence of random variables that define (Xt).
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8.2. Typical Sequences

Stochastic processes which are stationary and ergodic have a number of astonishing
and far reaching properties. One of those is that the set of sequences they produce can
be divided into two classes: the typical set and everything else ([Wyn95], [CT91]).

As it turns out, the set of typical sequences has these properties (*)

(1) it has probability near 1,
(2) it is not “too big”,
(3) all sequences within the set have approximately equal probability and
(4) the probability in (3) is a function of the entropy rate of the process

Every property that is proved for a typical sequence will then hold true with high
probability in general and for any sample that is long enough in particular.

The properties of typical sets just enumerated will now be presented formally and in
greater detail.

Definition 8.1 (from [Wyn95]). Let ε > 0, n ∈ N and h the entropy rate of (Xt).typical set
Then the typical set of (Xt) is given by

(8.4) T (n, ε) = {w ∈ Σn : |
1

n
log

1

P (Xn
1 = w)

− h| ≤ ε}

In other words, the typical set of (Xt) to the parameters ε and n consists of all finite
strings w of length n such that the probability of observing w is bounded by the inequal-
ity 2−n(h+ε) ≤ P (w) ≤ 2−n(h−ε) (property (3) in (*)).

The typical set T (n, ε) is roughly the same as the collection of substrings of length n
in a sample of XN

1 where N ≈ 2n(h+ε) ([Wyn95]).

8.3. The Asymptotic Equipartition Theorem

The Asymptotic Equipartition Theorem (AEP) can be considered the analog of the
weak law of large numbers in information theory.

Theorem 8.2 (Asymptotic Equipartition Theorem, from [Wyn95]). For a stationary
ergodic source

∀ε > 0 : lim
n→∞

P (T (n, ε)) = 1

that is
1

n
log

1

P (Xn
1 )
→ h in probability P

Hence, finite sequences produced by the stochastic process can be found in the typical set
with probability near one (property (1) in (*)). A proof of the theorem may be found
[Gal68]. However, there is a stronger version of the theorem which I present in the next
section and the reader may be more interested in the proof of that one.

Of course, without placing bounds on the size of typical sets, one may well object the
usefulness of the AEP at all. Fortunately, the following property gives an upper (lower)
bound on the size of typical sets (property (2) in (*))

Proposition 8.1 (from [Wyn95]). 2n(h−ε) ≤ |T (n, ε)| ≤ 2n(h+ε)
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Proof. Extended from [Wyn95]: the right inequality follows directly from

1 ≥ P (T (n, ε)) =
∑

w∈T

P (w) ≥ 2−n(h+ε)|T (l, ε)|

The left inequality follows from

1− ε < P (T (n, ε)) =
∑

w∈T

P (w) ≤ 2−n(h−ε)|T (l, ε)|

�

8.4. The Shannon-McMillan-Breiman Theorem

The Shannon-McMillan-Breiman theorem (SMB) is a stronger version of the AEP
([Wyn95]). It is the analog of the strong law of large numbers in information theory.

Theorem 8.3 (from [Wyn95], [CT91]). For a stationary ergodic source

P (w :
1

n
log

1

P (Xn
1 (w))

→ h) = 1

that is
1

n
log

1

P (Xn
1 )
→ h P-almost surely

A proof may be found in [CT91]. The SMB can be useful in various situations, for
example in analyzing optimal, lossless compression ([CT91]).



CHAPTER 9

Risk Minimization and Stochastic Processes

The theorem 5.1 states the correctness of the basic OOM learning algorithm in the
limit. That is the algorithm will estimate a “perfect” model almost surely when given an
infinite amount of training data. In this regard the theorem is an asymptotic result which
presumes a situation of infinite training data supply which is of course not realistic. As it
turns out, a learning situation where training data is practically limited to a finite sample
is fundamentally different.

Machine learning under the constraint of finite training data is the topic of statistical
learning theory ([Vap98], [Vap99]). Here, desired results are non-asymptotic, quanti-
tative statements about error bounds. In particular, the situation is analyzed from a
perspective of risk minimization where “risk” subsumes the expected loss or discrepancy
between our model estimate and the hidden target that produced the samples we use for
model estimation. Due to space constraints, I can not give an introduction to statistical
learning theory here. The reader may find a short introduction in [Vap99]. Nevertheless
I included this chapter to record some preliminary results and insights that might be of
value in future investigations.

The outline of the chapter is as follows. First I argue that a natural choice for the risk
functional in the context of estimating distributions of stochastic processes is the relative
entropy rate between the estimated model process and the target process. Second, it
is shown that under the assumption that the target process is stationary and ergodic,
minimizing the risk functional can be done by maximizing the training sample likelihood.
Third, under the restriction of finite sample data, to minimize the risk functional it is
no longer sufficient to maximize the sample likelihood. Instead, the risk functional is
bounded by the sum of the empirical risk and the structural risk which is determined by
the model’s complexity class. Some comments are given about possible ways of computing
the complexity of candidate models in the context of OOM estimation.

9.1. The Risk Functional for Stochastic Processes

In statistical learning theory one assumes that an unknown system has generated the
data we observe. The system is supposed to generate samples s independently and subject
to some distribution P . In the case the unknown system is a stationary stochastic process,
the observed data s might be a finite, contigous part of an realization of the unknown
process. The sample s is then used to estimate a model. The goal is to choose a model
Pα from a class of candidate models α ∈ Λ such that the expected loss or discrepancy
between Pα and P becomes minimal. The expectation in computing the loss is taken over
the distribution P and a natural ansatz might be the following

(9.1) R(α) := lim
n→∞

sup

∫

w∈Σn

L(P (w), Pα(w)) dP (w) = lim
n→∞

supEP [L(P (w), Pα(w))]

The expected loss is also called risk functional. We still need to choose a loss function
L. The loss function should measure the discrepancy between P and Pα on a concrete
realization w. Assume we choose

60
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(9.2) L(P (w), Pα(w) :=
1

|w|
log

P (w)

Pα(w)

Now, one may observe that the risk functional R with above loss function is nothing else
than the relative entropy rate between P and Pα

(9.3) R(α) = h̄P ||Pα

Consequently, minimizing the risk functional over all candidate models α ∈ Λ will
select the model with the smallest relative entropy rate in relation to the target process.
The following computation (this thesis) for the relative entropy rate between two station-
ary stochastic processes Xt and Yt distributed according to P and Pα shows that we can
even choose a simpler loss function without altering the selected model.

h̄P ||Pα
((Xt), (Yt)) = lim

n→∞
sup

1

n
HP ||Pα

((X1, . . . , Xn) || (Y1, . . . , Yn))

= lim
n→∞

sup
1

n
D(P (X1, . . . , Xn) || Pα(Y1, . . . , Yn))

= lim
n→∞

sup
1

n
EP log

P (X1, . . . , Xn)

Pα(Y1, . . . , Yn)

(1)
= lim

n→∞
sup

1

n
EP

(

log
1

Pα(Y1, . . . , Yn)
− log

1

P (X1, . . . , Xn)

)

(2)
= lim

n→∞
sup

1

n

(

EP log
1

Pα(Y1, . . . , Yn)
− EP log

1

P (X1, . . . , Xn)

)

(3)
= lim

n→∞

1

n
EP log

1

Pα(Y1, . . . , Yn)
− lim

n→∞

1

n
EP log

1

P (X1, . . . , Xn)

(4)
= lim

n→∞

1

n
EP log

1

Pα(Y1, . . . , Yn)
− h((Xt))

Up to (1): Definition of relative entropy rate and logarithm. (2): The arguments to
the logarithms are positive, thus the logs are positive too. Since (Xt) and (Yt) are sta-
tionary, their entropy rates exist (are finite) and hence we may split up the expectation.
(3): Again, since (Xt) and (Yt) are stationary, the sequence of expected values are non-
negative, monotonically decreasing and hence both convergent on their own. This allows
us to split the limit term and omit the supremum. (4): By definition of joint entropy and
entropy rate.

Since h((Xt)) is a constant independent of model selection α ∈ Λ, we may omit P (w)
in the loss function 9.2 obtaining a simpler loss function

(9.4) L(P (w), Pα(w) := −
1

|w|
log Pα(w)

without altering the model selection in doing so. The obtained loss function corresponds
to equation 5 in [Vap99] which is the favored loss function for solving the problem of
density estimation.
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9.2. Minimizing Empirical Risk and Sample Likelihood

The last section derived the risk functional for the problem of estimating the probabil-
ity distribution of a stochastic process. We saw that a model can be found by minimizing
the risk functional with the loss function 9.4. This involves the computation of expec-
tations EP log 1

Pα(Y1,...,Yn) , which is unfortunate since we obviously can not compute an

expectation EP without knowing P .
The problem can be obviated in case P is the distribution of an ergodic process. Then

we are allowed to omit the expectation

(9.5) lim
n→∞

1

n
EP log

1

Pα(Y1, . . . , Yn)
= lim

n→∞

1

n
log

1

Pα(Y1 = w1, . . . , Yn = wn)

almost surely for realizations w from P . Hence, to minimize the relative entropy rate
h̄P ||Pα

or the risk functional R(α) we can likewise maximize the likelihood Pα(Y1 =
w1, . . . , Yn = wn, . . .) of our model process (Yt) generating the observed realization w.

In statistical learning theory, the expected loss or risk functional R(α) is replaced by
the empirical risk functional Remp(α) since we do not know P and we usually only have
a finite sample s ∈ Σn not an infinite realization w. The empirical risk has the following
form in our case

(9.6) Remp(α) := −
1

n
log Pα(s) s ∈ Σn

The minimization of the empirical risk is called the principle of empirical risk minimization
(ERM). Also, the reader may notice that minimizing Remp(α) for a given finite sample s
is nothing else than the maximum likelihood method in the problem of density estimation.

9.3. Structural Risk and Model Complexity

In the last section equation 9.5 established that minimizing the risk functional when
estimating stochastic processes amounts to maximizing the likelihood of a process realiza-
tion. When facing finite training data we likewise may choose to minimize the empirical
risk given in equation 9.6. However, in this case we can not longer be sure about the
resulting true risk, since we do not have nonasymptotic bounds on the rate of uniform
convergence of the empirical risk functional to the risk functional ([Vap99]). Put bluntly,
a maximum likelihood fit of a finite sample may result in an overfitted model with bad
generalization ability. We are still missing an important point, and this is model com-
plexity. Optimal model selection from finite sample data must simultaneously minimize
empirical risk and restrict model complexity. In statistical learning theory this is called
the principle of structural risk minimization (SRM).

The true risk of model α is seen to be (nonasymptotically) bounded by the sum of
the empirical risk for the model α and the structural risk introduced by the complexity
H of the subclass Λk the model α is taken from:

(9.7) R(α) ≤ Remp(α) + H(Λk) Λk ⊂ Λ, α ∈ Λk

The right side of above equation is the guaranteed risk. Given finite data, learning then
must be done by choosing the “right” model complexity class Λk , thereby controlling
structural risk, and only within the chosen class minimize empirical risk by maximizing
the likelihood of the sample data.
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In statistical learning theory, when the model class Λ is the set of indicator functions
for example, the complexity of subsets of Λ is measured using the notion of VC-dimension
([Vap99]). We do not have the analog for stochastic processes or even OOMs. What
would be needed is a measure of complexity for subsets of OOMs taken from the set of
all OOMs of finite dimension over a fixed alphabet. I can only give first clues here. The
following might be relevant in definining complexity for OOMs

(1) the dimension m of the (minimal dimensional) OOM
(2) the complexity of indicative and characteristic events

The dimension of a minimal dimensional OOM is obviously a measure of complexity. An
OOM of higher dimension can model more complex data and has more free parameters.
The complexity of indicative and characteristic events used while estimating an OOM
from training data also might be of relevance, though the events are no longer needed and
“effective” after the OOM has been estimated. This is further discussed in section 14.3.



CHAPTER 10

Some Open Questions

The application of ideas from information theory to OOMs already gave valuable in-
sights. However, a number of questions were encountered that could not be treated due to
space and time constraints. I would like to close the present part of this thesis by giving
a short list of those open questions which might be of interest to OOM theory in the form
of tasks.

(1) Analyze convergence of entropy rate for non-stationary OOMs. As was stated,
the convergence of entropy rate is know for general stationary processes. How-
ever, the entropy rate of OOMs might exist even for non-stationary, but say
ergodic OOMs.

(2) Give a closed formula for the entropy rate of OOMs. Such a formula is known
for Markov chains for example and it would be nice to have it for OOMs too.

(3) Show finiteness of relative entropy rate between arbitrary OOMs. As was stated,
such a result is currently only available for HMMs. Given the importance of rela-
tive entropy rate as a quality measure of models, this would be important to have.

(4) Show that (ergodic) OOMs cannot have long memory.

(5) Give a closed formula of auto mutual information function for OOMs.

(6) Given an OOM of dimension m that defines a probability distribution P . Let
(Ai)i, i ∈ {1, . . . ,m}, Ai ⊂ Σk be characteristic events of the OOM. Let the
OOM be in state wt at time t. What is the probability that in the next z steps
beginning with t + 1 the OOM produces a trajectory which passes through the
series of characteristic events Aj1 , . . . , Ajz

where j1, . . . , jz ∈ {1, . . . ,m}? In
other words, how to compute

P ((Xt+1, . . . , Xt+k) ∈ Aj1 , (Xt+2, . . . , Xt+k+1) ∈ Aj2 , . . . ,

(Xt+z, . . . , Xt+k+z) ∈ Ajz
| wt) = ?

(7) Give a procedure for computing typical (finite) samples of an OOM. That is
one or more samples of given length which have highest probability among all
samples of that length.

(8) Give a procedure for computing a maximum likelihood OOM given a finite sam-
ple. That is compute an OOM of given dimension that gives maximum proba-
bility to the provided sample among all OOMs of that dimension.

(9) Develop a measure of complexity (“VC-dimension”) for OOMs and a theory of
statistical learning for estimating OOMs from finite data.

64



Part 3

Partitionings and Context Graphs



In the first part of this thesis, it was shown how to compute an OOM from a finite
sample by applying the basic OOM learning algorithm. The basis for the algorithm
was a procedure that counts the number of occurrences of certain rasters, indicative and
characteristic events, within the sample.

In the last part it was shown that the quality of the estimated OOM crucially depends
on the specific choice of indicative and characteristic events. Unfortunately, the search
space of indicative and characteristic events is obviously of combinatorial nature and of
exponential size.

Consequently, it is quite clear that any efficient learning method for OOMs that strives
for good models could profit from a single unified data structure that brings together

(1) an index of the training sample
(2) a representation of indicative and characteristic events
(3) counting statistics for those events

This part will satify those aims. In particular, I introduce a newly developed data
structure, the context graph capable of providing efficient access to all past and future
contexts within a string. Secondly, I show how to represent indicative and characteristic
events by partition colorings of context graphs and how to derive counting statistics as a
by-product.



CHAPTER 11

Strings

This chapter lays out some notation and notions related to strings in general which
is subsequently needed. The notation introduced is similar to a widely used notation in
the formal language community (e.g. [HU79]) unless otherwise noted.

11.1. Basic Notation

Strings are finite sequences of symbols from a finite alphabet. In particular, let string

(1) Σ fixed, finite and non-empty alphabet, the elements of which we call symbols alphabet,
symbol(2) Σk set of all strings over Σ of length k

(3) Σ∗ :=
⋃

k≥0 Σk set of all strings over Σ including the empty string ε

(4) Σ+ := Σ∗ \ ε set of all non-empty strings over Σ
(5) Σk∗ :=

⋃

i≥k Σi set of all strings over Σ having length at least k

(6) Σ∗k :=
⋃

i≤k Σi set of all strings over Σ having length at most k

The notations in (5) and (6) are specific to this thesis. In this text we will only be
concerned with fixed alphabets, which are independent of the length of any input string
in particular. For technical reasons, we will assume a total ordering ≺ on Σ, alphabet alphabet order
order, inducing a lexicographical ordering on Σ∗ which we also denote with ≺, where by
convention ε ≺ w, ∀w ∈ Σ+.

Occasionally, we will talk about infinite sequences of symbols from a finite alphabet.
These entities will be referred to just as sequences.

sequence

Σ∞ := {τ | τ : N −→ Σ} set of all (infinite) sequences over Σ

We use w, v, u, r, s, t to denote words or strings over Σ and x, y, z to denote single symbols
from the alphabet. A reversed string is written s−1. Further, let reversed string

(1) len(s) := |s| = length of string s
(2) for i, j ∈ {1, . . . , len(s)}

(a) s[i : j] factor (substring) of s starting from position i inclusive and ending factor
with position j inclusive

(b) s[i :] := s[i : len(s)] suffix of s starting from position i inclusive suffix
(c) s[: i] := s[1 : i] prefix of s ending with position i inclusive prefix

That is, symbol positions within strings are numbered beginning with 1, designating
the first symbol in the string, up to len(s) designating the last symbol in the string.
Further, we agree on s[i : j] = ε whenever i > j. We use the notation t v s when t is a
factor of s. A factor, prefix or suffix of a string w is called proper if it is different from proper factor,

suffix or prefixw itself.
The sets of all factors (substrings), prefixes and suffixes of a given string s are defined

as
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Definition 11.1 (Factorset, Prefixset, Suffixset (from [IHS+01a, IHS+01b])).

Factor(s) :=
⋃

i,j∈N

{s[i : j]}

Prefix(s) :=
⋃

i∈N

{s[: i]}

Suffix(s) :=
⋃

i∈N

{s[i :]}

Note, that both ε and s are elements of all three sets. Trivially, Prefix(s) ⊆ Factor(s) and
Suffix(s) ⊆ Factor(s) where the containment is strict iff |s| > 1. A factor w ∈ Factor(s)right-branching

left-branching of s is called right-branching (left-branching) if there exist x, y ∈ Σ, x 6= y such that
wx,wy ∈ Factor(s) (xw, yw ∈ Factor(s)).

A prefix v ∈ Prefix(s) of s is called nested, if there exists a wv ∈ Prefix(s) with w 6= ε.nested prefix or
suffix Thus, a nested prefix of s is itself a proper suffix to a different prefix of s. Similarly, a

suffix u ∈ Suffix(s) of s is called nested, if there exists a uw ∈ Suffix(s) with w 6= ε. A
nested suffix of s is itself a proper prefix to a different suffix of s.

11.2. Equivalence Relations on Strings

The notions introduced in the following may seem rather artificial first, but later on
will allow us to systematically introduce and x-ray suffix trees, a data structure of fun-
damental importance to this text. We will follow [IHS+01a, IHS+01b] here. Given a
fixed string s ∈ Σ+, we introduce two binary relations on Σ∗.

Definition 11.2.

w ≡L
s r :⇔ the set of positions in s at which w and r begin are identical

w ≡R
s r :⇔ the set of positions in s at which w and r end are identical

Obviously, the relations are equivalence relations. Given w ∈ Σ∗ the equivalence classes
containing w with respect to ≡L

s and ≡R
s will be denoted [w]Ls and [w]Rs respectively.

Given s ∈ Σ+, all strings not factors of s form one equivalence class under ≡L
s and

≡R
s each.

Example 11.1. Suppose Σ = {a, b, e, g} and s = baggage. Then [a]Ls = {a, ag},
[a]Rs = {a}, [ga]Ls = {ga, gag, gage} and [ga]Rs = {ga, gga, agga, bagga}.

Example 11.2. Suppose Σ = {a, b} and s = aabbabbbaabbabaabbba. Then [aab]Ls =
{aa, aab, aabb} and [aab]Rs = {aab}.

Example 11.3. Suppose Σ = {a, c, o} and s = cocoa. Then [ε]Rs = {ε}, [c]Rs = {c},
[o]Rs = {o, co}, [a]Rs = {a, oa, coa, ocoa, cocoa} [oc]Rs = {oc, coc} and [oco]Rs = {oco, coco}.
Further all w ∈ Σ∗ not already member of one of the listed equivalence classes form one
class.

By definition of ≡
L|R
s and given w ∈ Σ∗, r1, r2 ∈ [w]

L|R
s then either r1 is prefix (suffix)

of r2 or vice versa. Hence, we always find a unique longest member
s
−→w and

s
←−w in every

equivalence class [w]Ls and [w]Rs , which will serve as the representative of the respective
class. In other words
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[w]Ls ⊂ Prefix
(

s
−→w

)

(11.1)

[w]Rs ⊂ Suffix
(

s
←−w

)

(11.2)



CHAPTER 12

Partitionings

In this chapter I introduce partitionings, partition functions and a natural equivalence
relation on the space of partitionings and partition functions. These notions have been
developed in the present thesis with the aim of being able to compare all possible choices
of characteristic or indicative events within a unified space of partitionings.

The chapter will follow this outline: First, partitionings of Σk are defined using two
equivalent notions. Second, the domains of those partitionings are extended in two steps
to the full string space Σ∗ which allows us to directly compare them in a unified space.
Third, we study the space of all such extended partitionings with respect to some given
and fixed s ∈ Σ∗ and derive a natural equivalence relation. This equivalence relation will
later be rediscovered within the context of partition colored suffix trees.

12.1. Partitionings and Partition Functions

The idea of decomposing a set of strings Σk into a familiy of disjoint sets can be
formalized using a set- or a function-oriented notion. A set-oriented formulation is

Definition 12.1. A m-partitioning of Σk where m ∈ N, m ≥ 2 is a family {Ai}i∈{1,..,m},m-partitioning

Ai ⊂ Σk such that

(1)
⋃

i∈{1,..,m} Ai = Σk

(2) Ai ∩Aj = ∅ ∀i 6= j i, j ∈ {1, ..,m}
(3) Ai 6= ∅ ∀i ∈ {1, ..,m}

Requirement (3) ensures that the m-partitioning does not degenerate. A function-oriented
formulation of the same idea is

Definition 12.2. A m-partition function π of Σk is a membership functionm-partition
function

π : Σk −→ {1, . . . ,m}

such that π is surjective.

Obviously, m-partitionings of Σk and m-partition functions of Σk are formally equivalent
and we will use the one over the other where it is convenient to do so.

Also, we use shorthands of the form π = (Ai)i∈{1,...,m} to specify m-partition func-
tions where Ai are sets as with m-partitionings.

12.2. Closures of Partition Functions

We proceed with step 2 of the chapter outline, extending the domain of partitionings
and partition functions.

Given some m-partition function π of Σk one can extend the domain of the function
to Σk∗ using some outer closure operator oCl:
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Definition 12.3. Given a m-partition function π of Σk, the outer closure of π is
given by outer closure

oCl(π) : Σk∗ −→ {1, . . . ,m}

where

oCl(π)(s) := π(s[: k])

The outer closure oCl(·) plainly assigns values exactly as the original partition function
does on k-prefixes of the given string.

Now, it is natural to ask if, for a given m-partition function π of Σk, there is a l < k
and a m-partition function π̃ over Σl such that

(12.1) oCl(π̃)(s) = π(s) ∀s ∈ Σk

If this is the case, we call π degenerate as π̃ is equivalent to π but is specified on the degenerate
partitioningsmaller set Σl.

Example 12.1. Suppose Σ = {a, b} and you are given a 2-partition function π of Σ2

defined as π(aa) = 1, π(ab) = 1, π(ba) = 2, π(bb) = 2. Obviously, π is degenerate as
there is a 1-partition function π̃ of Σ1 with π̃(a) = 1, π̃(b) = 2 that has a outer closure
oCl(π̃) and takes identical values on Σk as π itself.

This last observation suggests the

Definition 12.4. Given a m-partition function π of Σk, the depth of π is given by depth of
partition
functiondepth(π) := max

s∈Σ∗(k−1)
{|s|+ 1 | ∃w,w′ ∈ Σk−|s| : π(sw) 6= π(sw′)}

Obviously, if for a given m-partition function π of Σk the depth(π) < k, then π is degen-
erate. Intuitively, it is wasted effort to specify a partition function for Σk if we could do
the same as with outer closure of some partition function of Σk′

where k′ < k.
Also, the depth of a partition function can be thought of as a possible measure of

complexity of the thus defined partitioning.

Example 12.2. Suppose Σ = {a, b} and π = (A1, A2) is a 2-partition function of Σ3

defined by A1 = {aaa, aab} and A2 = {a, b}3 \A1. Then depth(π) = 2.

Our immediate goal now is to extend the domain of m-partition functions π of Σk to the
whole Σ∗. The outer closure oCl(π) takes us only half the way on this road. What we
need is

Definition 12.5. Given a m-partition function π of Σk, the inner closure of π is inner closure
given by

iCl(π) : Σ∗k −→ {0, 1, . . . ,m}

iCl(π)(s) :=

{

π(s·) if ∀ω, ω′ ∈ Σk−|s| : π(sω) = π(sω′)

0 else



72 12. PARTITIONINGS

What we added is a pseudo partition 0 to the existing set of partitions {1, . . . ,m}.
This pseudo partition 0 corresponds to neutrally colored nodes in a partition colored suffix
tree - a concept we will introduce later.

We now have inner and outer closures of m-partition functions and can combine both
to form the complete closure

Definition 12.6. Given some arbitrary m-partition function π of Σk, we define thecomplete
closure closure of π to be

Cl(π) : Σ∗ −→ {0, 1, . . . ,m}

with

Cl(π)(s) =

{

iCl(s) if |s| ≤ k

oCl(s) else

Because of all this, beginning from here we will just speak of the closure Cl(π) of a partition
function π.

12.3. Equivalence of Partitionings

With the help of the closure operator just introduced, we are now ready to directly
compare all partition functions in one unified space of partition functions

Definition 12.7. Given an alphabet Σ and m ∈ N, the m-partition space over Σ ispartition space
given by

Πm(Σ) :=
⋃

k∈N

{Cl(π) : π is m-partition function of Σk}

Beginning from now, when Σ is agreed upon, the elements of Πm will plainly be called
m-partition functions or m-partitionings.

The final stage 3 of our initial chapter outline involves comparing partition functions
due to some suitable equivalence relation, when given a fixed string s ∈ Σ+.

Given a fixed string s ∈ Σ+ and a fixed dimension m ∈ N, we introduce a binary
relation =s on the partition space Πm(Σ)

Definition 12.8. Two partitionings π, π′ ∈ Πm(Σ) are equivalent with respect to s

π =s π′

iff

∀w v s : π(w) = π′(w)

This makes sense, since given a fixed string s, two partition functions can only be distin-
guished up to a point where they take identical values on all substrings of our reference
s. If this is the case, we identify both. In other words

Lemma 12.1. =s is an equivalence relation.

Proof. Obviously, =s is reflexive and symmetric. The relation is also transitive since
π1(w) = π2(w) ∧ π2(w) = π3(w) implies π1(w) = π3(w). �

We complete our notation by
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Definition 12.9. Given s ∈ Σ∗ and a m-partition function π ∈ Πm(Σ). Then the
equivalence class of π with respect to s is given by

[π]s ⊂ Πm(Σ)

with
π′ ∈ [π]s :⇔ π′ =s π

Example 12.3. Given Σ = {a, b} and s = abb. Then the 3-partition functions
π1 = ({aa}, {ab, bb}, {ba}) and π2 = ({ba}, {ab, bb}, {aa}) are equivalent with respect to
s, that is π1 =s π2. This is the case since π1(a) = π2(a) = 0, π1(b) = π2(b) = 0,
π1(ab) = π2(ab) = 2 and π1(bb) = π2(bb) = 2.



CHAPTER 13

Suffix Trees

13.1. An Informal Introduction

Exposing the internal structure of individual strings or making a set of strings acces-
sible is important for effectively solving many practical problems. The search for good
indicative and characteristic events when given a finite training sample is one application.
This section is a gentle preface to the formal treatment of the topic in later sections.

Historically, one of the earliest notions in the area was that of a trie. A trie (fromtrie
retrieval), is a multi-way (k-adic) tree structure useful for storing strings over an alphabet
Σ of size k. The concept is usually attributed to Fredkin in 1960 [Fre60].

Edges are labeled with symbols from the alphabet. The crucial point is, that all
edges leaving some node must start with a different symbol. This facilitates the idea
that all stored strings sharing some prefix should hang off a common node. Strings are
then inserted by creating new nodes and edges as necessary such that a string can be
recovered by traveling from the root to some node and writing down the concatenation
of edge labels. All strings stored in a trie can be recovered by a depth-first scan of the tree.

A Patricia tree is like a trie, but with non-branching internal nodes collapsed orPatricia tree
compacted, such that every node other than the root or a leaf has at least two children.
Patricia trees were introduced as an index structure for searching in marked-up text by
Morrison in the late 1960s [Mor68] as an improvement over tries. Treatments of Patricia
trees can be found in many data structures textbooks.

An atomic suffix tree of a string s ∈ Σn is a trie built over all suffixes of s, whereasatomic suffix
tree

compact suffix
tree

a compact suffix tree of a string s ∈ Σn is a Patricia tree built over all suffixes of s. Thus,
atomic and compact suffix trees are special cases of tries and Patricia trees where the set
of strings stored is the suffix set of a single string. However, the crucial point is that the
suffixes of a given string are not independent. This, as it turns out, has many rich and
powerful consequences.

Trivial examples of atomic and compact suffix trees are given in figure 13.1. The
figure also sketches interesting connections between two other closely related data struc-
tures, discussed further below.

A Directed Acyclic Word Graph (DAWG) of a string s specifies the smallest finiteDAWG
state automaton (FSA) that recognizes all suffixes of s. It can be built from s in time
O(len(s)) and stored in space O(len(s)). The storage requirements of the atomic suffix
tree of s is of O(len(s)2) as is the time complexity to build it.

The compact DAWG of a string s is simply the edge compressed or compacted DAWGcompact DAWG
of s.

We now discuss some further aspects of suffix trees. Since every substring of a string
s is a prefix of some suffix of s, a suffix tree of s contains all substrings of s.

If len(s) = n, then there are n · (n + 1)/2 substrings in s. Hence, an atomic has suffix
tree at most O(n2) nodes. Of course, the substrings of s do not have to be all different.
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Figure 13.1. Relationship among atomic suffix tree, compact suffix tree,
DAWG and compact DAWG for string ’cocoa’. (adapted from
[IHS+01b])

Appending just one symbol at the end of s adds n + 1 substrings, but again these are not
independent.

In contrast, compact suffix trees can be built in both space and time complexity O(n).
The linear space complexity can be achieved by storing edges in some compressed form,
e.g. only storing indexes into the input string instead of storing the actual substring asso-
ciated with the edge. The linear time complexity is really surprising and indeed the first
algorithm to meet this bound was given in the 1970s by Weiner [Wei73]. Later improve-
ments are due to McCreight [McC76]. Recently, another linear run-time algorithm was
invented by Ukkonen [Ukk95] with the additional property of reading the input strictly
left-to-right and producing suffic trees already in every intermediate step, the so-called
on-line property, which is important for some applications. It must be noted that the
linear time algorithms for compact suffix tree construction are non-trivial and not simple
to grasp. This might be one reason that suffix trees today are virtually never treated in
standard data structures textbooks, which is quite astonishing given their power.

I found the following references especially valuable introductions into the topic of suffix
trees [Gus97], [GK97]. Today, the research in suffix tree algorithms includes improving
the constant in linear time complexity and, also important, improving the constant in
storage needed ([GKS99]). Other directions of research are persistent and external stor-
age suffix trees ([FFM]) and large alphabets ([Far96]). A topic which is very intersting
but cannot be treated here for reasons of limited resources is asymptotic properties of suf-
fix trees under probabilistic assumptions for the distribution of input strings ([Szp93b],
[Szp93a]). Another fascinating direction are affix trees which are suffix tree extensions
such that the resulting structure is self-dual ([Sto95], [Maa00]).
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13.2. Applications of Suffix Trees

Its probably fair to say that suffix trees are among the most versatile data structures
currently known. Applications range from exact, approximate and regular expression
string matching, general string searching and processing to biosequence analysis. An
extensive treatment of the just mentioned applications can be found in [Gus97], [Apo85].

Other, more unusual applications include data compression ([Lar98], [BK00]) and
accelerating string kernels for Support Vector Machine (SVM) based text classification
[LEN02].

Here are four problems from the string processing domain effectively solvable using
suffix trees. Of course there are many more.

(1) String Search Searching for a pattern p in a text s can be solved in O(len(s)) for
preprocessing the string s once, which means building the suffix tree, and then
for every search of a pattern p a time of O(len(p)). The search is performed
by traversing the suffix tree beginning from the root, along edges matching the
pattern string searched for. If all symbols of the patterns have been eaten up
without a mismatch, then and only then the search pattern occurs in the text.

(2) Longest Repeated Substring A longest repeated substring is a substring occuring
at least twice, having a length that is maximal among those reoccurring sub-
strings. An instance can be found by looking for a deepest forking node in the
suffix tree, where depth is measured by the number of symbols traversed from
the root along the way to the forking node. This can be done in O(n).

(3) Longest Common Substring of two strings s1 and s2 can be found by building
the suffix tree for s1$s2# where $ and # must not occur in s1 and s2. Then,
look for the deepest forking node which has both a continuation where only #
appears in (a substring of s2) and a continuation where $ appears in (a prefix of
a substring of s1). Again, this can be done in O(n).

(4) Longest Palindrome A palindrome of s is a substring ω such that ω = ω−1. A
longest palindrome can be found by building the suffix tree for s$s−1# and look-
ing for a deepest forking node that satifies the criteria like in Longest Common
Substring.
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13.3. Σ+-trees

This and the next section reintroduces suffix trees and related notions, this time for-
mally. The results and notation follow [GK97] except proposition 13.2 which was derived
in this thesis.

Definition 13.1. A Σ+-tree T is a tree with edges labeled from Σ+ such that no Σ+-tree
two edges leaving some node k of T have labels beginning with the same symbol a ∈ Σ.

Because of this special uniqueness property of outgoing edge labels, we may speak of the path
path to a node k of T , defined as the concatenation of all edge labels encountered when
traveling from the root to k. Since paths of nodes are unique themself, we can identify
the node k with w̄ iff path(k) = w.

Definition 13.2. A Σ+-Tree is T called atomic if all edges in T are labeled with atomic and
compact
Σ+-trees

exactly one symbol each. A Σ+-Tree T is called compact if all nodes in T are either leaves
or have at least two children. In other words, all internal nodes are branching.

The nodes w̄ where ∃k ∈ T : w = path(k)v are called explicit nodes when v = ε and explicit nodes

implicit nodesare called implicit nodes when v 6= ε. In the latter case, the “nodes” reside within edges.
Obviously, in an atomic suffix tree all nodes are explicit.

It seems natural to ask what symbol sequences we can encounter on any journey be-
ginning at the root of a Σ+-Tree, which leads to the following

Definition 13.3. Given a Σ+-Tree T , then Words(T ) is defined Words

w ∈Words(T ) :⇐⇒ ∃k ∈ T : w = path(k)v

where v is a prefix of an outgoing edge of k

When w ∈ Words(T ), then the reference node of w, denoted ref(w), is the unique node reference node
in T such that path(ref(w)) is the longest prefix of w among all nodes of T . It will then
hold that w = path(ref(w))v where v is a prefix of an outgoing edge of ref(w).

Further we use the notations Leaves(T ) to denote the set of all leaves in a tree T , Leaves

Descs

Children

Parent

Leaves(k) to denote the set of all leaves in T under a node k, Descs(k) to denote the set
of all descendants under node k including k itself, Children(k) to denote all direct children
of k (if any) and Parent(k) the parent node of node k with Parent(k) = k if k is the root.

13.4. Atomic and Compact Suffix Trees

Now, a suffix tree T (s) of some string s is simply a Σ+-Tree such that suffix tree

(13.1) Words(T (s)) = Factor(s).

An atomic suffix tree of s will be denoted ast(s). A compact suffix tree of s will be denoted
cst(s) instead. Note, that a suffix tree of s is not uniquely determined in general, but the
atomic and compact forms are.

A suffix tree of s−1 is a reverse prefix tree of s ([GK97]). This is easy to see if we reverse prefix
treeobserve that every suffix in s−1 is equal to a prefix of s when the prefix is reversed. The

atomic and compact forms of reverse prefix trees of s will be denoted apt(s) = ast(s−1)
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and cpt(s) = cst(s−1) respectively.

If s has a suffix s1 which is itself prefix to another suffix s2 of s, then s1 cannot
be represented by a leaf in any suffix tree of s. However, sometimes it is desireable to
have every suffix of s represented by a leaf. Thinking about it, one observes that thissentinel
can be enforced by appending a sentinel symbol $, a symbol which does not occur any-
where else in s. Then, every suffix of s$ and only the suffixes of s are represented as leaves.

Examples of the compact suffix tree and the reverse prefix tree for the same string
s = aabbabbbaabbabaabbba ∈ {a, b}20 extended by a sentinel $ are given in figures 13.5
and 13.5. The graphics were automatically generated as a byproduct by the suffix tree
analysis tool sftree which I developed during this thesis. The tool is described in detail in
appendix 20.

The following two lemmata are merely reformulations of the discussion in [GK97] to
help in understanding suffix trees.

Lemma 13.1. Let w be a factor of s and T a suffix tree of s. Then all factors of s
having w as a prefix can be found in the subtree of T hanging off ref(w) or the parent or
ancestors of ref(w).

Proof. Since edges leaving a node are uniquely distinguished by the first symbol on
their edge label, all positions in T found by traversing the tree via label matching are
unique. Further, every so found position also represents a string which is a substring of s.
Finally, given a position in T that represent w, all positions downwards the tree represent
longer strings wv. �

Lemma 13.2. Let w be a factor of s and T a suffix tree of s. Then, if no suffix of s is
nested, the number of occurrences of w in s is given by the leaf count in the substree of
T hanging off ref(w).

Proof. Since no suffix of s is nested, a suffix tree for s will have exactly |s| leaves,
one for each suffix of s. Further, observe that every substring of s is a prefix of some suffix
of s. Hence, we just have to count all the suffixes of s that have the prefix w. But those
suffixes with prefix w are all in the subtree specified as the previous lemma has shown
and are represented by leaves therein. �

The precondition that no suffix of s is nested can be reached simply by appending a sen-
tinel $ /∈ Σ to s. In other words, the string s$ has no nested suffixes as $ by definition
does not occur anywhere in s.

13.5. Suffix Links

For the construction of suffix trees and various applications a special kind of auxiliary
edges connecting nodes in a suffix tree is important. These edges are in addition to the
normal tree edges.

Definition 13.4. (from [GK97]) Given a Σ+-tree T and a node x̄w in T . Let v besuffix link
the longest suffix of w such that v̄ is a node in T and let xw = uv. Then an edge x̄w → v̄
is called a suffix link in T . A suffix link x̄w → w̄ (that is u = x and v = w) is called
atomic.

Thus, the suffix link of x̄w is pointing to a node with a path label v that is derived of xw
by separating the shortest possible prefix u.
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u

suffixlink
ofxw

xw

v

xw= u v

Figure 13.2. A suffix link.

Also, the node v̄ is well-defined since ε is a suffix of w and ε̄ is a node in T (the root).
An example of a suffix link is given in figure 13.2. Note, that suffix links are sometimes
defined as unlabeled edges. Alternatively, suffix links x̄w → v̄, where xw = uv may be
labeled by the prefix u they separate.

The following propositions state some interesting facts about suffix links.

Proposition 13.1. (from [GK97])

(1) In the atomic suffix tree of s all suffix links are atomic.
(2) In the compact suffix tree of s$ where $ /∈ Σ, all suffix links are atomic.

Proof. (1): Follows from the definition of atomic suffix trees, since in ast(s) all nodes
are explicit. (2): x̄w is either a branching node or a leaf. Thus, xw is right-branching or
a non-nested suffix of s$. But then the same holds true for w and so w̄ must also be an
explicit node in cst(s$). �

Proposition 13.2. (this thesis) In the compact suffix tree of s$ where $ /∈ Σ, all
suffix links of leaves again point to leaves.

Proof. Let k ∈ Leaves(cst(s$)). Then path(k) = xw$ for some w ∈ Σ∗, x ∈ Σ, the
suffix link of k is atomic (proposition 13.1(2)) and points to a node l with path label w$.
Hence l is a leaf. �
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CHAPTER 14

Partition Colorings of Suffix Trees

In section 12.3 we saw that with respect to a fixed string s ∈ Σ∗ the set of all m-
partition functions Πm(Σ) resolves into equivalence classes. Recall, this was the case as s
simply does not contain every string t ∈ Σ∗ and thus partition functions only differing in
the classes they assign to t will be indifferent with respect to s.

How can we effectively represent the s-distinguishable m-partition functions? As it
turns out, there is a one-to-one relation between certain colorings of compact suffix trees
and equivalence classes of partition functions. All results and notions in this chapter were
derived in this thesis.

14.1. Partition Colorings

Definition 14.1. Given a string s ∈ Σ∗, a sentinel $ /∈ Σ and m ∈ N. Then am-partition
coloring m-partition coloring of T = cst(s$) is a mapping

π : T → {0, . . . ,m}

such that

(1) π is surjective
(2) π(l) > 0 for all l ∈ Leaves(T ).
(3) π(k) > 0 ⇒ π(k′) = π(k) ∀k′ ∈ ChildrenT (k)

Similar to definition 12.5, if π(k) = 0 we say the node k is neutrally colored. The conditions
assure that (1) the coloring is non-degenerate, (2) all leaves are colored by a non-neutral
color and (3) once a node is colored non-neutrally, then all its children and thereby all
its descendents have the same color. Examples of partition colorings of a suffix tree are
given in the figures 14.1 and 14.2. Note that in these figures the edge labels have been
written not along the edges between nodes but within the nodes. That is the label of an
edge to a parent node is written in the node itself. Further, the index pairs give start and
end indices into the input string. For example “abb(1, 3)” means that during suffix tree
construction the edge label abb has been constructed from s[2, 4]. The indices must be
incremented by one, since for historical reasons in the figures the indices were taken to
start at 0.

It is important to note that the top-down propagation of node colorings by condition
(3) in above definition 14.1 has a simple consequence

Proposition 14.1. A m-partition coloring π of a suffix tree T = cst(s$) is already
fully specified by giving

π(l) ∀l ∈ Leaves(T )

that is the coloring of all leaves of T .

Proof. Given that π is already defined on all leaves of T we have to define π
on all inner nodes. This can be done recursively by: if π(k) = π(k′) for all k, k′ ∈
Children(Parent(k)) then define π(Parent(k)) := π(k). Otherwise define π(Parent(k)) :=
0. �

82
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The proposition shows, that if we are given a m-partition colored suffix tree it is sufficient
for us to know the colorings of the leaves to know the complete m-partition coloring. How-
ever, not every coloring of leaves gives rise to a valid partition coloring, as the following
proposition clearifies.

Proposition 14.2. A coloring π of the leaves of a suffix tree T = cst(s$) induces a
m-partition coloring π of T iff

(1) π(l) > 0 ∀l ∈ Leaves(T )
(2) ∀r ∈ {1, . . . ,m} : ∃l ∈ Leaves(T ) : π(k) = r

Proof. This is easy to see from the previous proposition and the fact that π is
surjective in {1, . . . ,m} iff π is surjective in {1, . . . ,m} on the leaves of T . �

In other words, a coloring of the leaves of a suffix tree gives rise to a uniquely determined
partition coloring iff all leaves are colored non-neutrally and every color {1, . . . ,m} occurs.

14.2. Equivalence of Partition Colorings and Partition Functions

Now, given s ∈ Σ∗ and a m-partition function π ∈ Πm(Σ ∪ {$}) such that

π(s[i :]$) > 0 ∀i(14.1)

∀r ∈ {1, . . . ,m} ∃i : π(s[i :]$) = r(14.2)

The conditions assure that π maps all suffixes of s$ surjectively to {1, . . . ,m}. Then we
can define a coloring π̃ of cst(s$).

(14.3) π̃(k) = π(path(k)) for all k ∈ Nodes(cst(s$))

Lemma 14.1. π̃ is a m-partition coloring of cst(s$)

Proof. By construction π maps all suffixes of s$ surjectively into {1, . . . ,m}. Hence,
as the compact suffix tree of s$ has exactly one leaf per suffix of s$, π̃(l) > 0 for all leaves
l. Further note, that by definition of iCl, π(w) > 0 implies π(wr) = π(wr′) ∀r, r′ which
directly translates to π̃, that is π̃(w̄r) = π̃(w̄r′) ∀r, r′. �

Further observe that

Lemma 14.2. If π1, π2 ∈ [π]s$ are two m-partition functions equivalent with respect
to s$ (and fulfilling the conditions 14.1 and 14.2), then the m-partition colorings of cst(s$)
induced by the above construction are identical.

Proof. An m-partition coloring of cst(s$) is completely specified by the colorings
on all tree nodes k. Since path(k) is a substring of s for any node k, π1 and π2 will take
identical values as π1 =s π2. �

On the other hand, if we are given a m-partition coloring π̃ of cst(s$) we can canonically
construct a m-partition function π by putting

(14.4) π(w) =

{

π̃(ref(w)) ∀w v s$

0 else
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which allows us to prove the

Lemma 14.3. π constructed as in equation 14.4 is a m-partition function which fulfills
the conditions 14.1 and 14.2.

Proof. π is defined on Σ∗ and surjective since π̃ is surjective by definition 14.1(1).
Condition 14.1 follows since π̃(l) > 0 for all leaves in cst(s$) by definition 14.1(2) and
condition 14.2 follows because if π̃ is surjective on inner nodes, it is also surjective on
leaves (via 14.1(3)) and hence π is surjective on all suffixes of s$. �

We can summarize all previous results by

Lemma 14.4. Given s ∈ Σ∗. Then there is a unique bijection between

{[π]s$ : π ∈ Πm(Σ ∪ {$}) and π fulfills conditions 14.1 and 14.2}

and

{π̃ : π̃ is a m-partition coloring of cst(s$)}

Proof. Observe that if π fulfills conditions 14.1 and 14.2 with respect to s$, then
every π′ ∈ [π]s$ fulfills the conditions also. Then the result follows by applying the
previously proved lemmata. �

The practical significance of these results is, that we are now able to represent a fixed
string and all partitionings distinguishable with respect to the string in one and the same
data structure, namely a partition colored suffix tree. The partition coloring π need not
be stored separately from the suffix tree but can be stored as node attributes directly in
the suffix tree.

14.3. Complexity of Partitionings

Another potential use of representing the equivalence classes of partitionings with
respect to s as partition colorings of the suffix tree of s$ is that it suggests a natural
measure of complexity for partitionings. Why would we want to measure the “complexity”
of partitionings? Because it might be relevant in the setting of learning OOMs from finite
data.

In statistical learning theory ([Vap98], [Vap99]) which is all about learning from
finite data, the complexity of a model class of candidate models is of central importance
in controlling the generalization capabilities of an estimated model.

When learning OOMs, we may ask what else besides the OOM dimension contributes
to the complexity of the candidate class of OOMs considered when estimating an OOM
from finite data. The answer could be that the complexity of indicative and character-
istic events used in the estimation might influence the stability of the estimate and the
generalization capabilities of the estimated OOM.

How can we define the complexity of a partitioning then? I suggest the following
definition might be useful.

Definition 14.2. Given a string s ∈ Σ∗ and a m-partition coloring π of T = cst(s$).
Then the partition complexity of π is given bypartition

complexity
C(T ) :=

#{k ∈ Nodes(T ) | π(k) = 0}

#Nodes(T )

and the partition border complexity of π is given bypartition border
complexity

CB(T ) :=
#{k ∈ Nodes(T ) | π(k) > 0 ∧ π(Parent(k)) = 0}

#Leaves(T )
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Two examples which illustrate partitionings of minimal and maximal complexity in the
sense just introduced are given in figures 14.3 and 14.4. Also, the introduced complexities
are well normalized:

Proposition 14.3. For the partition complexity and the partition border complexity
it holds that

0 < C(·), CB(·) ≤ 1

Proof. Observe that a most complex partition coloring of a suffix tree is given when
only leaves are colored non-neutrally (> 0). Further a suffix tree with n leaves has at most
n inner nodes. This proves the upper bound of 1 which can be reached. The lower bound
of 0 follows from the fact that for a partition coloring to be valid, it must be surjective in
the colors > 0. �

Intuitively, it seems clear that one should get more stable OOM estimates when using
indicative and characteristic events of lower complexity. Of course we can not choose
partitionings of arbitrarily low complexity for indicative and characteristic events, since
either the partitionings simply will no longer be indicative and characteristic events by
violating the non-singularity condition in definition 4.1 or do not longer fully exploit the
information contained in the sample.

Due to space and time constraints, I cannot go in to greater detail here. However,
one last critical comment: the complexity of indicative and characteristic events seems
important, despite the fact that after learning the OOM, the indicative and characterstic
events used in the estimation are no longer needed. In other words, the final estimated
OOM is defined exclusively through it’s operators and obviously it’s complexity cannot be
related to the complexity of any partitionings. However, during the process of estimating
the OOM we made use of indicative and characteristic events, whose complexity likely
effects the stability of the model estimate. How this relates to the generalization capability
of the final OOM estimate is another question of course.
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CHAPTER 15

Context Graphs

This section extends concepts introduced in previous sections, in particular suffix
trees and partition colorings of suffix trees. I will introduce context graphs, which are new
data structures developed in this thesis. Context graphs are indexing all past and future
contexts within a string. Finally, partition colorings of context graphs are discussed.

With partition colored context graphs we finally have reached one of the goals initially
set out in this thesis - to devise a data structure capable of representing both the training
sample used in learning an OOM and all candidates of indicative and characteristic events.

15.1. Past and Future Contexts

Given a sample s ∈ Σn lets look at the string $s$, which has s expanded at both ends
with a sentinel character $ /∈ Σ. Obviously, for every t ∈ {0, . . . , n} the string $s$ resolves
into a prefix and a suffix part

$s$ = $s[1 : t]s[t + 1 : n]$

which is illustrated in figure 15.1. We will call the prefix $s[1 : t] the past context andpast context
the suffix s[t + 1 : n]$ the future context to the present t within s.future context

We have already seen that every suffix (and only the suffixes) of s$, that is every
future context within s$ is represented by a leaf in the compact suffix tree cst(s$). It is
natural to ask where we can find the prefixes of s, that is the past contexts within s.

In section 13.4 we mentioned that the reversed prefixes of a string s are represented
by the compact reverse prefix tree cpt(s) and that this tree is given by

cpt(s) = cst(s−1)

The path labels that can be found in cpt(s) are all prefixes of s, but reversed. This
should be clear, since the reverse prefix tree is given as the suffix tree of the reversed
string s.

Again, since we want to find every (reversed) prefix of s (and only those) as a leaf in
the tree, we must ensure that no prefix is nested in s. For this, observe that

cpt($s) = cst(($s)−1) = cst(s−1$)

$s$ =

$abbbbaaaababb ... ... bbaaabbaab$... abba   baab ...

t t + 1

Present FuturePast

s[t+1:n]$$s[1:t]

Figure 15.1. The past and future context to the present t within s.
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s$

$s[1:1] $s[1:2] $s[1:3] $s[1:n-1] $s$

s[2:n]$ s[3:n]$ s[4:n]$ s[n:n]$ $

$s[1:n-3] $s[1:n-2]

s[n-2:n]$ s[n-1:n]$

. . .

Figure 15.2. A partitioning of past and future contexts.

and hence, similarily to appending a sentinel $ when building the tree for future contexts,
we simply prepend the sentinel $ to s in building the tree for past contexts of s. This will
do the job since s−1$ has no suffix nested.

In summary, all the past and future contexts of s can be represented as the leaves of
the compact reverse prefix tree cpt($s) and the compact suffix tree cst(s$) respectively.
Of course, those trees will represent and index all reverse and forward substrings of s too.

15.2. Context Partitionings

In chapter 14 we saw how to (uniquely) represent each class of partition functions
equivalent with respect to a fixed string s ∈ Σn by a particular coloring of the suffix tree
cst(s$). It was also shown, that it suffices to define the coloring of the leaves of cpt(s$).
The last section showed that all the past and future contexts of s can be represented as
the leaves of cpt($s) and cst(s$). Now, this section discusses the results from bringing
both insights together.

The net effect in choosing specific indicative and characteristic events is to partition
or sort out all past and future contexts actually occurring in a sample s into a number of
classes or partitions.

Precisely, we speak of partitions, because those classes are disjunctive and exhaustive
with respect to all possible contexts. Nevertheless, in the light of a given, fixed input
sample s it is sufficient to define the mapping to partitions for all actual occurring past
and future contexts, as for contexts that do not appear in s we may proceed arbitrarily
without recognizing any effect.

This is illustrated in figure 15.2, where past and future contexts are partitioned into
2 partitions, blue and yellow, respectively. The upper series shows a possible partition
mapping for all n + 1 past contexts of $s$, the lower series shows a possible partition
mapping for all n + 1 future contexts of $s$.

For each present t ∈ {0, . . . , n} the partitioning determines into which indicative event
Bj the past context $s[1 : t] is mapped and into characteristic event Ai the future context
s[t + 1, n]$ is mapped.

Again, as we saw in chapter 14, the coloring of leaves of the trees, or the partition-
ing of all past and future contexts already suffice to define the partition colorings on the
complete trees.

Yet, the construction of the counting matrices V and Wx, x ∈ Σ needed as the basis
for the basic OOM learning algorithm is even possible without any further data structures
at all:

(1) For V start with a m ×m matrix with all zeroes and increment Vij each time
you observe a pair (j, i)t when sweeping through the context partitioning as in
figure 15.2.
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Figure 15.3. Commuting suffix links.

(2) For each Wx start with a m ×m matrix with all zeroes and increment (Wx)ij

each time you observe an occurence of (j, ·)t, (·, i)t+1 where s[t : t] = x.

How can we observe (j, ·)t, (·, i)t+1? To see this, recall that in a compact suffix tree of s$,
where no suffixes are nested, it holds that

(1) all suffix links are atomic (proposition 13.1)
(2) suffix links of leaves again point to leaves (proposition 13.2)

The situation is illustrated in figure 15.3. We can procede as follows. Given we ob-
serve node in the reverse prefix tree with path label $v (upper left in the figure) at time
t. We read off the partition color j (yellow) to determine that $v will be mapped into the
indicative event Bj . We then look at the suffix link of the node in the suffix tree with
path label xw$ (lower left) and follow it’s suffix link. The suffix link is labeled with the
symbol x and leads us to the node with path label w$. Here we read off the partition
color i (yellow) to determine that w$ will be mapped into the characteristic event Ai. In
summary, we will increment (Wx)ij by one.

Of course this naive procedure is not very satisfying (we discuss this later in the
chapter), but illuminates an important point: One may always find indicative and char-
acteristic events such that for instance the V counting matrix obtained from applying the
chosen events to the sample s has certain special properties, like minimal condition. In
other words and more formally,

Lemma 15.1. Given a string s ∈ Σn, m ∈ N where m ≥ 2 and a m ×m matrix V
such that

(1)
∑

i,j

Vij = n, Vij ∈ N0

(2) V is non-singular

Then there exist indicative events (Bj)j and characteristic events (Ai)i that, when applied
to s give rise to a counting matrix (#BjAi)ij identical to V .

Proof. The proof is by construction. First, order all prefixes and suffixes of $s$
(where $ /∈ Σ) into a sequence of pairs (vt, wt)t, t ∈ {1, . . . , n+2} as in figure 15.2. Then,
color the first V11 pairs with the colors (1, 1), the following V12 pairs with the colors (1, 2)
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and so on until coloring the last Vmm pairs with colors (m,m). Now define indicative and
characteristic events as two partitionings of (Σ ∪ {$})n+2 by putting

Bj := {r ∈ Σn+2 | ∃t : vt is colored j and vt is a suffix of r}

Ai := {r ∈ Σn+2 | ∃t : wt is colored i and wt is a prefix of r}

Then #BjAi will be given as the number of prefix-suffix pairs (vt, wt) that are colored
(j, i). �

Lemma 15.1 shows that any V matrix which fulfills the conditions 15.1(1) and 15.1(2)
can be obtained. In particular, this includes V matrices with minimal condition (near 1)
and maximal mutual information (see section 6.4). The lemma also indicates, that this is
to the expense of a possible huge partitioning space (Σ ∪ {$})n+2 which is exponential in
the length of the string s. Obviously, the complexity of the partitionings must be involved
and considered somehow.

An intuitive argument is this. If we choose arbitrary complex partitionings we will
overinterpret the sample. Details in the sample contained only by chance will be given
significant effect on our model estimate. In other words, we are overfitting the data. More
radically, given a finite sample, the most precise model of the sample is the sample itself.

The general situation of model learning from finite data while avoiding overfitting has
been analyzed deeply in Statistical Learning Theory ([Vap98], [Vap99]). There, the key
instrument in controlling the problem of overfitting and dually achieving good general-
ization performance is model complexity (VC-dimension or VC-capacity). A somewhat
comparable approach is model estimation under the principle of Minimum Description
Length (MDL) ([BRY98]).

Regarding the complexity of indicative and characteristic events, two measures of
complexity were already introduced in section 14.3. Those were developed in the present
thesis but due to space and time constraints a thorough analysis of the complexity mea-
sures could not be conducted.

15.3. Context Graphs

Context graphs are special directed graphs. A introduction to the general theory of
graphs is [Die96]. Context graphs were developed in this thesis from insights into the
relation of reverse prefix and suffix trees of a string s ∈ Σ∗ and how they represent all
past and future contexts within $s$. Context graphs combine the nodes and edges from
the compact reverse prefix tree and the compact suffix tree of the input string. Further,
context graphs have additional edges which connect the nodes of both trees, the context
links.

Using context links, we can quickly give answers to questions like given a partial future partial future
contextcontext w ∈ Σ∗ give me all past contexts $vj ∈ Σ∗ after which w occurred in s, that is in-

cidences where $vjw is a prefix of $s$. Note that a full future context w$ defines a unique
position in s since it ends with the sentinel $ which nowhere else appears in s, whereas
a partial future context can appear at different positions in s. Or, given a partial past partial past

contextcontext v ∈ Σ∗ give me all future contexts wi$ before which v occurred, that is incidences
where vwi$ is a suffix of $s$. Again, a partial past context can appear more than once in s.

I will introduce context graphs formally and then discuss these aspects in more de-
tail. Note that we introduced cpt($s) to denote the compact reverse prefix tree of $s and
cst(s$) to denote the compact suffix tree of s$.

Definition 15.1. Given a string s ∈ Σ∗ and a sentinel $ /∈ Σ the context graph of s context graph
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denoted ctg(s) is the directed graph with nodes

Nodes(ctg(s)) := Nodes(cpt($s)) ∪ Nodes(cst(s$))

where each node k has three outgoing edges given by the target nodes parent(k), suffix(k)
and context(k) the edges project to and defined by

parent(k) := parent node of k in either cpt($s) or cst(s$)

suffix(k) := target node of suffix link of k in either cpt($s) or cst(s$)

and let context(k) ∈ Nodes(ctg(s)) recursively defined by

path(k)−1path(context(k)) = $s$ if k ∈ Leaves(cpt($s))

path(context(k))−1path(k) = $s$ if k ∈ Leaves(cst(s$))

and
context(k) := LCA({context(h) | h ∈ Leaves(k)})

if k is not a leaf.

Here, LCA denotes the least common ancestor node of a given non-empty set ofleast common
ancestor nodes. The reader may easily verify that in above definition, the set of nodes LCA is

applied to is never empty, hence l is always well defined. Also note, that we agree on
parent(root) = root in both trees.

A schematic drawing of a context graph with some context links is given in figure
15.4. A detailed example for a context graph is given in figure 15.3.

As may be seen from the definition and suggested in figure 15.3, the context links
constitute a bijection between the leaves of the reverse prefix and suffix tree.

For an inner node k, the context link of k points to node l in the “opposite” tree such
that l is the least common ancestor of the leaves that are pointed to by context links of
the leaves under k. Context links of inner nodes are further illustrated in the figures 15.3,
15.3, 15.3 and 15.3.

For convenience, the following definition declares names for the two node sets making
up the nodes of a context graph.

Definition 15.2. Given a context graph ctg(s) we will denote the nodes of the reverse
prefix tree part as

PrefixNodes(ctg(s)) := Nodes(cpt($s))

and the nodes of the suffix tree part as

SuffixNodes(ctg(s)) := Nodes(cst(s$))

The context links give us direct access to all forward and reverse continuations of arbitrary
substrings in s. This was already said in the introduction to this section and we are now
able to state and prove this claim formally.

Lemma 15.2. Given s ∈ Σ∗, a substring t v s and the context graph ctg(s) of s. Let
refPrefix(t

−1) denote the reference node of t−1 within the reverse prefix tree part of ctg(s)
and refSuffix(t) denote the reference node of t within the suffix tree part of ctg(s). Then
all forward continuations tw v s of t in s may be found in the subtree hanging off the
node

context(refPrefix(t
−1))

and all backward continuations wt v s of t in s may be found in the substree hanging off
node

context(refSuffix(t))



15.3. CONTEXT GRAPHS 95

Reverse Prefix Tree of $s

Suffix Tree of s$

Figure 15.4. Schematic drawing of a context graph with some context links.

Proof. If k := refPrefix(t
−1) is a leaf in the reverse prefix tree part of ctg(s) then

t occurs only once in s, path(k)−1path(context(k)) = $s$ by definition of context links,
context(k) is a leaf in the suffix tree part of ctg(s) and all continuations of t in s can be
found as prefixes of path(context(k)). If k is a non-leaf inner node then every occurrence
of t in s is represented by a leaf h ∈ Leaves(k) and all continuations of t in s can be found
as prefixes of leaves path(context(h)) in the suffix tree part of ctg(s). But then those
continuations will also be found in the subtree hanging off the least common ancestor
node LCA({context(h) | h ∈ Leaves(k)} which is the target node context(k) by definition
of context links. The proof for backward continuations is similar. �

The structure of context graphs has three aspects. First, the parent edges constitute the
involved reverse prefix and suffix trees. Second, the suffix edges make up the suffix links
of the involved trees. Up to this point, the structure is nothing more than the union of
the structures of both trees. On the other hand, the context edges and the context links
they represent impose a third and different level of structure onto the set of nodes. The
following proposition will shed some light onto the structure thus added and should be
compared to figure 15.4.
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Proposition 15.1. Given s ∈ Σ∗ and the context graph ctg(s) of s. Then for all
k ∈ Nodes(ctg(s)) it holds that

(1) k ∈ Descs(context(context(k)))
(2) context(k) ∈ Descs(context(Parent(k)))

Proof. In general, given subsets of leaf nodes L1, L2 ⊂ Leaves(T ) of some tree T .
Then L1 ⊂ L2 implies LCA(L1) ∈ Descs(LCA(L2)). The proposition is now easy to see
from the definition of context links in context graphs. �

The last notion I introduce and discuss was motivated by the following observation. Sup-
pose k = context(context(k)). What does this mean? It means that every occurrence of
the (partial) past or future context represented by node k is always co-occurring with the
(partial) future or past context context(k). But if this is the case, this relation will also
hold in the opposite direction. What we have is a special case of proposition 15.1(1). Now,
with OOM learning and choosing good indicative and characteristic events, we are usually
indeed interested in the co-occurrence of partial past and future contexts as candidates
for or taking part in indicative and characteristic events. This motivated the following

Definition 15.3. Given s ∈ Σ∗ and the context graph ctg(s) of s. Then the contextcontext
matching factor matching factor of a node k ∈ Leaves(ctg(s)) is given by

#Leaves(k)

#Leaves(context(k))

The context matching factor can be seen as measuring the co-occurrence of the con-
text represented by node k and the context represented by node context(k). The factor
has a number of trivial properties

Proposition 15.2. For any node k ∈ Leaves(ctg(s)) it holds

(1) g(k) = 1 ∀k ∈ Leaves(ctg(s))
(2) g(k) = 1 if k = root
(3) 0 < g(k) ≤ 1

Proof. (1) holds since context(k) ∈ Leaves(ctg(s)) for all leaves k ∈ Leaves(ctg(s).
(2) follows from the fact that #Leaves(cpt($s)) = #Leaves(cst(s$)) and context(rootcpt($s)) =
rootcst(s$) and context(rootcst(s$)) = rootcpt($s). (3) follows from (1) and the fact that
#Leaves(LCA(L)) ≥ #L for every subset L of leaves in a tree. �

15.4. Partition Colored Context Graphs

In this and the last chapter it was discussed how colorings of the reverse prefix and
the suffix tree of a string can define partitionings and thereby indicative and characteristic
events.

To complete our set of notions, I shortly give a formal definition of partition colored
context graphs that merely subsumes the notions already introduced.

Definition 15.4. Given s ∈ Σ∗. Then a partition colored context graph of s is a
context graph ctg(s) of s where the reverse prefix tree and suffix tree parts of ctg(s) have
a valid partition coloring (as in definition 14.1).

A schematic drawing of a partition colored context graph is given in figure 15.11. Note,
that in this drawing the leaves of both trees have been reordered, which results from the
natural lexicographical order within a suffix tree or reverse prefix tree that is induced from
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Figure 15.5. Compact context graph for $s$ =
$aabbabbbaabbabaabbba$. The thick lines represent the reverse pre-
fix ($aabbabbbaabba)−1 (node 14 in cpt($s)) and the suffix baabbba$
(node 26 in cst(s$)). The thick line between nodes 14 and 26 represents
the forward and backward context links that link those two nodes. All
other context links and all suffix and reverse prefix links are not shown.

an ordering of Σ.

Every path from top to bottom of the context information tree goes through the
reverse prefix tree and through the suffix tree and corresponds to some present t. The
thick line in figure 15.11 is an example for t = 2.

The leaves of both trees have been labeled by the path-labels of the respective nodes.
The leaves of the reverse prefix tree have been labeled by path(·)−1 for convenience.
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Figure 15.7. Compact context graph for $s$ =
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shows the context link of node 21 in cst(s$) representing the substring
bab pointing to node 33 in cpt($s) representing the reverse substring
(aab)−1.
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Figure 15.9. Compact context graph for $s$ =
$aabbabbbaabbabaabbba$. The thick blue twisted line with arrow
shows the context link of node 35 in cpt($s) representing the reverse
substring (aa)−1 pointing to node 9 in cst(s$) representing the substring
bb.
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Figure 15.10. Compact context graph for $s$ =
$aabbabbbaabbabaabbba$. The thick blue twisted line with arrow
shows the context link of node 9 in cst(s$) representing the substring bb
pointing to node 0 in cpt($s) representing the substring ε.



15.4. PARTITION COLORED CONTEXT GRAPHS 103

$$s[1:1]$s[1:2]$s[1:3] $s[1:n-3]$s[1:n-2] $s[1:n-1] $s

s$ s[2:n]$s[3:n]$ s[4:n]$ s[n-2:n]$s[n-1:n]$ s[n:n]$ $

. . .

. . .

Reverse Prefix Tree of $s

Suffix Tree of s$

b

a

Past

Present

Future

Figure 15.11. Schematic drawing of a partition colored context graph.



CHAPTER 16

The COPRUMIC Learning Algorithm

In the last chapter it was shown how to use context graphs and colorings of context
graphs in representing strings and characteristic and indicative events. In this chapter, I
present a complete heuristic learning algorithm for OOMs that builds on context graphs
and the notion of mutual information.

The COPRUMIC (COntext PRuning Mutual Information Clustering) learning al-
gorithm is a method of OOM estimation from finite data. It is build around two ideas:

(1) context pruning of suffixtrees
(2) clustering based on mutual information

Both ideas and the resulting algorithm are detailed in the following sections. This is
done by a top-down decomposition of the COPRUMIC algorithm.

It is worth noting, that the clustering part builds on the context pruning part, but
the context pruning method can be deployed independently. In fact, in [Kre] another
OOM estimation method is built on top of the context pruning algorithm.

16.1. COPRUMIC

The high level structure of COPRUMIC is given below. It works by first construction
so-called raw counting vectors and matrices for the events Ai, Bj and BjAi and BjxAi.
This is done via the Context-Pruning method, which is described in subsection 16.4.

The final form of the counting matrices V and W [x] is computed from the raw counting
vectors and matrices by an algorithm called Mutual-Information-Clustering which
is described in subsection 16.3. Finally, an OOM estimate is computed by an embedded
basic OOM learning algorithm.

COPRUMIC(s, pdim, dim)
1 Araw, Braw, Vraw,Wraw ← Context-Pruning(s, pdim)
2 Vraw ← Vraw/|s|
3 V,Clrows, Clcols ←Mutual-Information-Clustering(Vraw, dim)
4 A← Reduce-Vector(Araw, dim,Clrows)
5 w0 ← 1/|s| ·A
6 for x ∈ Σ
7 do
8 W [x]← Reduce-Matrix(Wraw[x], dim,Clrows, Clcols)
9 τ [x]←W [x]V −1

10 return w0, τ []

The run-time and space complexities of COPRUMIC is clearified by the following

Lemma 16.1. The COPRUMIC algorithm has a run-time complexity of

O(|s|+ (|Σ| · pdim)2 + pdim4 + |Σ|dim3)

and a space complexity of

O(|s| log pdim + |Σ|dim3)

104
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Proof. The run-time is of order |Σ|dim3 because of the matrix multiplications in
W [x]V −1 for computing the final operator estimates. The run-time is of order pdim4

because Vraw has a dimension of order pdim × pdim and the run-time complexity of
the Mutual-Information-Clustering algorithm is then O(pdim4). Further, the run-
time complexity is of order |s| + (|Σ| · pdim)2 as this holds for the Context-Pruning

algorithm also. The space complexity is of order |s| log pdim since suffixtrees take order of
|s| space and colored suffixtrees must take log pdim additional storage per node to store
the assigned partition. Finally, space complexity is of order |Σ|dim3 since this is what it
takes to store all operators τ [x]. �

16.2. Reduce-Vector and Reduce-Matrix

The following two functions are fairly trivial helper functions to reduce vectors and
matrices by row and column merges specified by merge (reduction) vectors.

The function Reduce-Vector takes a vector vec[n] of dimension n, a target dimen-
sion dim and a merge vector cl[n] and reduces vec to a new vector nvec[dim] of dimension
dim. The merge vector contains in it’s entries the target indices for entries in the original
vector. Assume for example cl[5] = 3, then vec[5] will be merged (added) to target vector
entry nvec[3]. Obviously, n ≥ dim must hold.

Reduce-Vector(vec[n], dim, cl[n])
1 nvec← new vector of dimension dim
2 nvec← 0
3 for i = 1 . . . n
4 do
5 k ← cl(i)
6 nvec(k)← nvec(k) + vec(i)
7 return nvec

The function Reduce-Matrix takes a matrix mat[n,m] of dimension nxm, a target
dimension dim, a row merge vector clr[n] and a column merge vector clc[n] and reduces
mat to a new matrix nmat[dim, dim] of dimension dim×dim. The merge vectors contain
in their entries the target indices for entries in the original matrix. Assume for example
clr[5] = 3 and clc[4] = 1, then mat[5, 4] will be merged (added) to target matrix entry
nmat[3, 1]. Obviously, n ≥ dim and m ≥ dim must hold.

Reduce-Matrix(mat[n,m], dim, clr[n], clc[m])
1 nmat← new matrix of dimension dim× dim
2 nmat← 0
3 for i = 1 . . . n
4 do
5 for j = 1 . . . m
6 do k ← clr(i)
7 l← clc(j)
8 nmat(k, l)← nmat(k, l) + mat(i, j)
9

10 return nmat

16.3. Mutual-Information-Clustering

The mutual information clustering algorithm is a method of stepwise reducing the
dimensions of a u×w matrix to a quadratic matrix of dimension d×d by row and column
merges. The input matrix must have all positive entries that sum up to 1.
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In each reduction step, a single pair, either a row or a column pair is merged by adding
them. This is done until a finally dxd matrix is reached. Obviously, u ≥ d and w ≥ d must
hold. The column or row pair to be merged in each step is chosen such that the reduction
of mutual information of the intermediate matrix is minimal among all candidate pairs.
The mutual information of a matrix was introduced in 6.7.

Mutual-Information-Clustering(M,d)
1 R←M
2 clr ← new vector of dimension rows(R)
3 clc← new vector of dimension columns(R)
4 while rows(R) > d or columns(R) > d
5 do
6 find pair i, j of row or column indices such that R
7 with i, j merged has highest mutual information
8 merge rows or columns i, j
9 track i, j merge in clr or clc

10 return R, clr, clc

The algorithm is a local, greedy cluster method. The function returns the reduced
matrix R and two vectors clr and clc that contain information about which rows and
columns have been merged during the reduction process. The merge vectors contain in
their entries the target indices in the reduced matrix for entries in the original matrix.
Assume for example clr[5] = 3 and clc[4] = 1. Then M(5, 4) was merged (added) to target
matrix entry R(3, 1). Obviously, rows(M) ≥ d and columns(M) ≥ d must hold.

Lemma 16.2. The algorithm Mutual-Information-Clustering has a run-time
given by

O(n4) where n = max{rows(M), columns(M)}

Proof. Checking all possible pairs of rows and columns for the resulting mutual
information when the matrix would be reduced accordingly takes less than 2n2 steps.
Further, the matrix can at most be reduced 2n times. Each check for the mutual infor-
mation that would result can be done without recomputing the mutual information of the
candidate matrix from scratch but only by adjusting the mutual information from a in-
termediate matrix by the change introduced by a row or column pair merge. To compute
this change, n matrix entries have to be touched. This finishes the proof. �

16.4. Context-Pruning

The context pruning algorithm takes as input a sample s ∈ Σn and a dimension
pdim ∈ N, pdim ≥ 2. The algorithm first builds the suffixtree of s$ and the suffixtree
of ($s)−1, the latter of which is the reverse prefix tree of $s. Here, $ is assumed to be a
sentinel character not contained in the alphabet Σ.

Next, both trees are partition colored using a suffix pruning algorithm described in the
next section. Both trees then have a complete and valid partition coloring. In particular,
all the leaves of both trees are assigned a partition, that is indicative and characteristic
events.

Finally, the counting vectors for indicative and characteristic events B and A and the
containing matrices V and W [x], ∀x ∈ Σ are computed. All vectors and matrices are
computed merely from the partition indices assigned to leaf nodes in both trees. That
is, assume the leaf l ∈ Leaves(cpt) representing a concrete past context has assigned a
partition index (indicative event) j = partition(l). Then the concrete future context im-
mediately following the conditioning past context is represented by contextLink(l) and has
assigned a partition index (characteristic event) given by i = partition(contextLink(l)).
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Here, contextLink(l) is the node in cpt obtained by following the context link from l.
Note, that in this algorithm we only need context links for leaves. We do not need a
complete context graph which would contain context links for all nodes in both trees.
The context links for leaves can be computed on the fly (described later). Up to now, we
have already seen how to compute A, B and V . What is left is a description how the
algorithm computes W [x]. The key insight is illustrated in figure 15.3. The figure shows
some leaves of the suffix and reverse prefix trees. Also shown are context links (in one
direction) and suffix links. The point is that for leaves in a compact suffixtree, all suffix
links point to nodes which are again leaves. We can use the situation to count events of
the form BjxAi like follows.

Assume the leaf l ∈ Leaves(cpt) representing a concrete past context has assigned
a partition index (indicative event) j = partition(l). Further let path(l) = $b be the
path of the leaf l. If we now follow the suffix link arriving in l in reversed direction, we
reach a leaf revSuffixLink(l) in the reverse prefix tree with path label $bx for some
x = revSuffixLink(l)[1] ∈ Σ. Now from there, follow the context link which leads us to
a leaf contextLink(revSuffixLink(l)) in the suffix tree with some path a$. It then holds
that $s$ = $bxa$ and we found an incident of the event

Bpartition(l)xApartition(contextLink(revSuffixLink(l)))

Context-Pruning(s, pdim)
1 cst← Suffix-Tree(s$)
2 cpt← Suffix-Tree(($s)−1)
3 cut← |s$| / pdim
4 CstBorderNodes, CstPartitionCount← Prune-Suffixtree(cst, cut, 1, root(cst))
5 CptBorderNodes, CptPartitionCount← Prune-Suffixtree(cpt, cut, 1, root(cpt))
6 A← new CstPartitionCount vector
7 A← 0
8 B ← new CptPartitionCount vector
9 B ← 0

10 V ← new CstPartitionCount x CptPartitionCount matrix
11 V ← 0
12 for x ∈ Σ
13 do
14 W [x]← new CstPartitionCount x CptPartitionCount matrix
15 W [x]← 0
16 for l ∈ Leaves(cpt)
17 do
18 i← partition(contextLink(l))
19 j ← partition(l)
20 A(i)← +1
21 B(j)← +1
22 V (i, j)← +1
23 k ← partition(contextLink(revSuffixLink(l)))
24 x← revSuffixLink(l)[1]
25 W [x](k, j)← +1
26 return A,B, V,W []

Lemma 16.3. The algorithm Context-Pruning has a run-time given by

O(n + (|Σ| · pdim)2) where n = |s|

Proof. Observe that the construction of the suffixtree of s can be done in linear
time in the length of s and the reversal of s and the creation of the reverse prefix tree also
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takes linear time. This can be achieved by using the Ukkonen algorithm for linear-time
suffixtree construction. Further, it holds that

CstPartitionCount · CptPartitionCount ≤ (|Σ| · pdim)2

which follows from the method of tree pruning used. Hence, the allocation and initializa-
tion of A, B, V and W [x] takes time of order (|Σ|·pdim)2. The actual counting loop which
finally computes A, B, V and W [x] by incrementing entries in the vectors and matrices is
done in time linear in the number of leaves of the reverse prefix tree and thus again linear
in the input length. �

16.5. Prune-Suffixtree

The following recursive function is the core of the pruning method. It simply traverses
a suffix tree in depth-first order and checks if the number of leaves hanging off the current
node is still higher than a user specified cutoff in which case the node gets assigned a
partition number of 0 (“neutrally colored”). If the leaf count drops below that mark or if
a leaf is reached, the depth traversal is stopped, the current node and all it’s descendants
are colored using the current partition number, the partition number is incremented and
the current node and partition number are returned. In full detail, the function works as
follows:

Prune-Suffixtree(tree, cut, partition, node)
1 if #Children(tree, node) > 0
2 then
3 if #Leaves(tree, node) > cut
4 then
5 partition(node)← 0
6 R← {}
7 for child ∈ Children(tree, node)
8 do
9 R← R ∪ Prune-Suffixtree(tree, cut, partition, child)

10 return R, partition
11 else
12 for desc ∈ Descs(tree, node) ∪ {node}
13 do
14 partition(desc)← partition
15 partition← partition + 1
16 return {node}, partition
17
18 else
19 partition(node)← partition
20 partition← partition + 1
21 return {node}, partition

The net result is a partition colored suffix tree. The nodes which are neutrally colored
(partition number = 0) do have more than the specified cutoff number of leaves in their
subtree. The nodes which have a partition number > 0 assigned have less than the
specified cutoff number of leaves hanging off. All nodes having partition number > 0 have
all their descendant nodes identically colored.

Usually, the pruning recursion is started from the root node, giving the desired cutoff
and a starting partition number 1 as in the following example:
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Example 16.1.

tree ← cst(s$)

cut ← 0.1 · Leaves(tree)

borderNodes, partitionCount ← Prune-Suffixtree(tree, cut, 1, root(tree))

The function returns the border node set, that is the set of nodes which have parti-
tion number > 0 but whose parents are neutrally colored. The function also returns the
partition count, that is the number of colors that were assigned. Also, the partition count
is identical to the number of nodes in the border node set.

Lemma 16.4. The function Prune-Suffixtree has a run-time given by

O(n) where n = #Nodes(tree)

Proof. The function performs a depth-first traversal of the tree which is bounded
in run-time by the number of nodes in the tree. The number of nodes in any compact
suffixtree of a string of length n is bounded by 2|n|. �



CHAPTER 17

Screening of 103 estimated OOMs

This section presents experimental results for 103 OOMs estimated using the COPRU-
MIC learning algorithm described in the previous chapter. Training data was generated
using a 3-dimensional OOM (the probability clock). Based on different samples (all of
length 1k) and different pruning cutoffs chosen in the COPRUMIC algorithm, 103 OOMs
were estimated and the resulting models were compared to the target OOM. Varying the
pruning cutoff in the COPRUMIC algorithm resulted in different indicative and charac-
teristic events of varying complexity. Our goal here was to look out for possible relations
between the investigated parameters.

17.1. Investigated Parameters

The figures presented in this section are xy-plots where each point represents a learned
model and x and y are taken from a fixed set of parameters that where compared

(1) The relative entropy rate was used to objectively measure the quality of the es-
timated model by measuring the distance in the probability distributions of the
estimated and the real model.

(2) The sample log-likelihood is the logarithm to the base of 2 of the probability the
estimated model gives for the training sample.

(3) The V matrix condition gives the condition in the 2-norm of the counting matrix
V that is obtained from the sample based on the specific choice of indicative and
characteristic events made for estimating the model.

(4) The V matrix mutual information gives the mutual information derived from
the counting matrix V that is obtained from the sample based on the specific
choice of indicative and characteristic events made for estimating the model (see
section 6.4).

(5) The border node count is a complexity measure of the partitioning (choice of
indicative and characteristic events). It is given as the number of colored nodes
that have neutrally colored parent nodes in the colored context graph for the
sample and the partitioning chosen (compare definition 14.2).

17.2. Discussion of Results

This section gives a very short discussion of the results represented. Perhaps the
most important result is illustrated in figure 17.1. Here, the relative entropy rate of the
estimated models with respect to the target model is plotted versus the log-likelihood
given to the training sample by the estimated models. The thick line drawn (by hand)
indicates a mean value of the dots printed. The dashed vertical line indicates the location
where the mean relative entropy rate reached a minimum (sample likelihood p = 2−975).
Obviously, this is not where the log-likelihood was maximal (sample likelihood p = 2−955)
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Figure 17.1. Sample log-likelihood versus relative entropy rate.

and thus the sample would have had highest probability. One may interpret this minimum
as the balance point between model precision achieved by increasing the log-likelihood and
overfitting the sample.

Other aspects that may be seen from the figures are:

(1) Neither the V matrix condition nor the V matrix mutual information alone can
indicate a low relative entropy rate, that is good model quality (see figures 17.2
and 17.3) or a high sample log-likelihood (see figures 17.5 and 17.6). In other
words, model precision as indicated by a low V matrix condition or a high V
matrix mutual information alone is not enough for high model quality, since
overfitting may happen impairing the model’s generalization abilities.

(2) Border node count alone, as a measure of model complexity is also not sufficient
in indicating a high model quality (see figure 17.4) or a high sample log-likelihood
(see figure 17.7).

(3) Relative entropy rate and Hellinger rate give qualitatively similar results (see
figure 17.8).
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Figure 17.2. V matrix condition versus relative entropy rate.
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Figure 17.3. V matrix mutual information versus relative entropy rate.
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Figure 17.4. Border node count versus relative entropy rate.
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Figure 17.5. V matrix condition versus sample log-likelihood.
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Figure 17.6. V matrix mutual information versus sample log-likelihood.
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Figure 17.7. Border node count versus sample log-likelihood.
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Figure 17.8. Hellinger rate versus relative entropy rate.



Part 4

Observable Operater Modeling Kit



A major part of the work done in this thesis consisted of developing a software package
for the simulation, analysis and training of OOMs.

The software developed, the Observable Operator Modeling Kit (OMK) was written
from scratch and consists of 30.000 lines of portable C++ code. The package is well
documented and already used internally in the lab. For example an OOM estimation
method [Kre] has been developed using the facilities provided by OMK and based on the
context pruning method.

In the sections of this part I will first outline the functionality and overall architecture
of OMK. Then I describe the different modules in higher detail with respect to function,
design and implementation. I close with a short outlook on future work.



CHAPTER 18

Functionality, Architecture and Design Paradigm

18.1. Functionality

The OMK provides a number of orthogonal facilities that together lay the founda-
tion for the simulation, analysis and training of OOMs. In particular, the kit provides
functionality for

(1) simulating OOMs
(2) information theoretic analysis of stochastic processes
(3) numerical linear algebra and non-linear optimization
(4) suffix tree and context graph construction and analysis
(5) OOM estimation method based on mutual information

The OMK is targeted towards OOM applications. However, the software has a modular
design which allows to reuse some of the facilities of the OMK in applications unrelated
to OOMs. In particular, the suffix tree, context graph and numerical modules are self-
contained and could be useful elsewhere.

18.2. Architecture

The static structure of the OMK is documented and specified in figures 19.1, 19.2,
19.3, 19.4, 19.5 using the class diagram notation of the Unified Modeling Language (UML)
[Oes01]. The UML is a semi-formal graphical notation for specifiying object-oriented
systems. It is widely accepted in the field of object-oriented technology and standardized
by the Object Management Group (OMG) [Gro].

18.3. Design Paradigm

The OMK was designed based on the paradigm of generic programming. Generic
programming is both a design paradigm and a implementation method. It is a modern
concept younger than object-orientation ([Ale01]).

“My working definition of generic programming is ’programming with
concepts’, where a concept is defined as a family of abstractions that
are all related by a common set of requirements. A large part of the
activity of generic programming, particularly in the design of generic
software components, consists of concept development - identifying sets
of requirements that are general enough to be met by a large family of
abstractions but still restrictive enough that programs can be written
that work efficiently with all members of the family.” (from [Mus])

The design aspect of generic programming stresses the importance of orthogonality.
This means factoring domain aspects such that no domain abstraction overlaps arise and
all domain abstractions may be freely combined. We will quickly see an example.

The implementation aspect of generic programming is realized by the programming
language in use. In C++ ([Str00]), the template language facility is particulary effective
for implementing software in a generic programming style. The wonderful thing in doing
so is that it combines powerful abstraction without sacrificing efficiency. This is different
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from classical object-oriented programming, where much use is made from run-time poly-
morphism and virtual functions which can compromise performance severely. It is fun
to note that in Java, where no language facilities for generic programming are available,
a recent effort is to introduce so-called Java-generics trying to retrofit crippled support
for generic programming. It is important to note, that C++ is far from providing simple
and complete generic programming facilities. C++ is a monster. Clean support from the
language core is available in functional programming language based on typed Lambda
calculus like e.g. ML or Haskell.

Probably the best known example of generic programming in the C++ community is
the widely deployed C++ Standard Template Library (STL) ([PSLM01]) which is part
of the C++ language standard. A considerable part of the library is built on only three
concepts

• container
• iterator
• algorithm

Iterators are the glue between algorithms and containers. That is, algorithms working
on containers are insulated by the use of iterators.

How is generic programming deployed in OMK? Like the STL has containers, itera-
tors and algorithms, the OMK includes the following concepts

• process
• sample
• measure

We will not go into the details of these concepts right now (see subsection 19.1.1) but
just give an impression how generic programming looks like with OMK. The following
code snippets shows a signature of a typcial function template in OMK:

template<class P, class Q, class F, class S>

double pfunctional (P& p_process,

Q& q_process,

const F& measure,

S& sample);

Now, for example, we could use the function pfunctional to compute the relative
entropy (= measure) between two OOMs (= process) on the basis of a sample generated
from one of the processes itself (= sample). This illustrates how orthogonal domain
abstractions (process, sample and measure) are combined a flexible and transparent way.
It is important to note, that this is achieved without losing efficiency. I will not go into
the details of C++ compiler technology and template instantiations here, which would be
necessary to provide sufficient arguments to support the efficiency claim. The reader may
consult [Str00] or the compiler vendor documentation for details on this topic.



CHAPTER 19

Modules

19.1. OOM Simulation and Analysis

Given a particular OOM, the OMK provides for

(1) generate samples according to the distribution defined by the OOM
(2) evaluate probabilities for the OOM emitting given strings

The generation and evaluation functions together will be called OOM run-mode. The
implementation of OOM run-mode in the OMK has a number of special features:

• efficient support for large alphabets
• efficient support for high dimensional OOMs
• numerical precision and alphabet type are user defined
• factor 200 speed-up over previous Matlab implementation
• can use vendor optimized numerical libraries (e.g. [int]) for LAPACK/BLAS)
• uses state of the art pseudo-random number generator ([MN98])

In the course of this thesis I found the efficient and reliable simulation of OOMs
indispensable for any successful work directed towards experimental analysis and training
of OOMs. The OMK provides this basis.

19.1.1. Design and Implementation. In OMK there are three basic domain ab-
stractions related to the simulation and analysis of stochastic processes:

(1) process
(2) sample
(3) measure

An OOM is a specific process. Other available processes include the iid -process and
the surrogate-process. This is illustrated in figure 19.3 using the UML class diagram no-
tation. The fact that the three classes Oom, SurrogateProcess and IudProcess are all
specific realizations of the abstract process domain concept is expressed via the inheritance
relation to the interface IProcess. However, the interface base class IProcess only serves
documentation purposes and is deliberately not implemented since the OMK was designed
using generic programming and compile-time polymorphism in mind as explained in sec-
tion 18.3.

Similarily to the process concept, the domain concept sample is implemented by dif-
ferent classes providing different realizations of the domain concept (figure 19.4). The
class IudSample provides samples generated independently and identical distributed and
the class TotalSample provides for all strings of fixed length from the given alphabet. The
samples generated from class ProcessSample are produced by a stochastic process that the
user provides. In terms of generic programming, the class ProcessSample is parametrized
by a process type. This allows for the generation of samples based on OOMs for example.

The power of generic programming becomes visible when we look at the third domain
concept: measure. A measure is a functional of the probability distribution of a stochastic
process. The measure is evaluated on the basis of a sample. The relations may become
clear from figure 19.5.
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An example would be: evalutate the relative entropy between two OOMs on the
basis of a fixed number of iid samples. We can see how the domain concept of measure
combines entities (OOM, iid sample) of the orthogonal doman concepts process and sample
to compute some value (relative entropy).

Generic programming in this situation not only leads to a clear design by separating
orthogonal aspects, but when implemented using the C++ facility of templates this also
results in highly efficient code. This is very different from a OO style design, where we
could have also separated aspects, but the resulting implementation would have been
crippled by performance problems due to the use of run-time polymorphism and virtual
functions.

19.2. Numerics

The C++ language was choosen as the main implementation language because of its
unique combination of high performance (if done right) and modern abstraction facilities
(classes and templates). In particular, C++ shines at data structures and applied discrete
mathematics.

However, in addition OMK also needed basic and some advanced numerical functions
as well:

• matrix-matrix product, matrix-vector product, dot product
• matrix inversion, solving systems of linear equations
• matrix norms and condition estimation
• singular value decomposition (SVD)
• non-linear constrained optimization

Implementing stable and efficient numerical codes can be tricky and time consuming.
Instead, I decided to build on the experience of the Fortran community with numerical
codes by developing an C++ interface layer on top of standard Fortran numerical libraries.

The Fortran community has 40+ years of numerical codes know-how and a number
of defacto standard libraries are in wide use:

(1) BLAS
(2) LAPACK
(3) PORT

All three libraries have a Fortran interface and are implemented in Fortran77.

19.2.1. BLAS/LAPACK. BLAS stands for Basic Linear Algebra Subprograms,
which also describes the functionality provided by the library. LAPACK, which stands
for Linear Algebra PACKage is a successor to LINPACK and EISPACK, all of which are
concerned with numerical linear algebra beyond simple matrix and vector arithmetics:

“LAPACK is written in Fortran77 and provides routines for solving sys-
tems of simultaneous linear equations, least-squares solutions of linear
systems of equations, eigenvalue problems, and singular value prob-
lems.” [net]

BLAS and LAPACK are available on many platforms both in open-source imple-
mentations ([net]) and in vendor optimized versions. For example, Intel offers a version
aggressively optimized for Intel processors, the Intel Math Kernel Library ([int]):

“The Intel Math Kernel Library (Intel MKL) is composed of highly
optimized mathematical functions for math, engineering, scientific and
financial applications requiring high performance on Intel platforms.
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Intel MKL contains LAPACK, the basic linear algebra subprograms
(BLAS), and the extended BLAS (sparse).”

Also, many commercial math applications like Matlab and Mathematica rely on LA-
PACK/BLAS and today major Linux distributions already contain precompiled, easy to
install versions of LAPACK/BLAS. All in all, BLAS/LAPACK was chosen as OMK’s un-
derlying numerical library because

(1) it is widely known and professionally deployed
(2) has stable, efficient and proven implementations available
(3) provides both basic and advanced numerical linear algebra functionality

Looking back, this decision proved to be right.

19.2.2. PORT. Another particular OOM learning method developed in the lab
([Kre]) required non-linear constrained optimization functionality besides the function-
ality already implemented in the OMK. To enable these efforts, I further extended the
numerics module by implementing an interface layer on top of another advanced Fortran
library.

PORT is a Fortran77 numerical package that includes functionality for non-linear
optimization. PORT is made available by Bell Labs ([por]) and is free to use for non-
commerical purposes:

“The PORT Mathematical Subroutine Library (third edition) is a col-
lection of Fortran 77 routines that address many traditional areas of
mathematical software, including approximation, ordinary and partial
differential equations, linear algebra and eigensystems, optimization,
quadrature, root finding, special functions, and Fourier transforms,
but excluding statistical calculations. PORT stands for Portable, Out-
standing, Reliable, and Tested.”

19.2.3. Design and Implementation. To interface Fortran libraries to C++ code
and to provide numerical functions the OMK contains a numerics module. The OMK

numerics module consists of

(1) vector and matrix classes
(2) LAPACK/BLAS routine wrappers
(3) PORT routine wrappers
(4) additional routines

The vector and matrix classes are fairly light-weight, templated C++ classes parametrized
over their numeric type

template<class T> Matrix { ... };

template<class T> Vector { ... };

The matrix and vector classes handle the Fortran/C++ issues of different element
numbering and different storage layout. Internally, the classes use Fortran-style column
major order memory layout for storing arrays. Thus, no efficiency is lost because no
column to row major order conversion must be performed.

Based on the matrix and vector abstractions, the interface to the various numerical
codes has a signature like in the following example

template<class T> inline Vector<T>& svd (Matrix<T>& a, Vector<T>& s);

The wrapper code internally handles the Fortran/C++ issues of different calling con-
ventions. The vector and matrix classes together with the routine wrappers serve as an
interface layer to the Fortran libraries. The layer was designed to be easy to use and
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extend and preserve the efficiency of Fortran libraries.

The interface to the PORT library is very similar and likewise builds on the vector
and matrix classes. An example of a non-linear optimization routine:

/**

* Abstract driver for non-linear minimization subject to simple

* constraints (component bounds) where no derivates are needed.

* Note: this is a simplified version, where scaling is internally

* computed as x0*_i = 1. / x0_i.

*

* @param f function object for objective function

* @param x0 initial guess or start vector

* @param bounds a 2 x dim(x0) matrix containing lower and upper bounds

* @param info parameter and knob settings for optimization; return info

* @return f(x*) at computed minimum x*

*/

template<class T, class F>

inline

T

mnfb (F& f,

Vector<T>& x0,

const Matrix<T>& bounds,

OptInfoSet<T>& info);

Besides the wrapper routines, I developed a number of additional routines for purposes
of

(1) linear regression
(2) matrix reductions based on

(a) euclidean distance
(b) mutual information
(c) matrix condition

where (2.b) is used in the implementation of a simple OOM learning method (“context
pruning + greedycluster”).

A UML class diagram illustrating the static class structure behind the OMK numerics
module is given in figure 19.2. In summary, the gap between a modern object-oriented
generic language (C++) and reliable and efficient numerical codes (Fortran) was success-
fully bridged. Also, as the infrastructure is in place, future extensions like wrapping up
more routines or more Fortran libraries are easy to do.

19.3. Suffix Trees and Context Graphs

Suffix trees are terrific data structures with broad applications. For the purposes of
OOM learning, I extended the notion of suffix trees in two aspects:

(1) colorings of suffix trees
(2) reverse-prefix tree / suffix tree pairs plus context links (= context graphs)

(1) is necessary to represent both the input training sample and the chosen partition-
ing within the same data structure. (2) is important to represent both partitionings of
past and future context giving rise to indicative and characteristic events within the same
data structure. All this was already discussed in the part about suffix trees and context
graphs.

For OMK, I implemented suffix trees based on the linear-time, linear-space Ukkonen
algorithm ([Ukk95]) and context graphs with above characteristics.
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The implementation has a couple of unique features:

• string type is user defined
• efficient support for large alphabets up to 10.000’s of symbols
• extensive built-in tree statistics

In particular, the efficient support for large alphabets enables a number of interesting
experiments. For example, I have built and analyzed suffix trees and context graphs over
word alphabets where the symbols are taken as the words appearing in a natural language
text.

A suffix tree can be built from a string and tree statistics computed and printed as
simple as this

std::string input;

...

UStree<std::string> stree (input.data (), input.length ());

UStreeFull<std::string> streeFull (stree);

UStreeFull<std::string>::UStreeStatistics stats (streeFull.getStats ());

stats.print (std::cout);
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+append()
+count()

-nodes_
-edges_

UStree

string_type

+getRoot()
+getNode()
+getPathLabel()
+getLabel()
+findNode()
+count()
+getStats()
+setPartition()
+clearPartitions ()
+verifyPartitioning ()
+setPartitionsByPruning ()

-nodes_
-stats_
-sfxnodes_
-treeStats_

UStreeFull

string_type

std::basic_string<T>

<< binds >>

+randomizePartitioning()
+rebuildPartitioning()
+getColoredStats()
+printColoredStats()

-coloredStats_

UStreeColored

string_type

+getPastContext ()
+getFutureContext ()

ContextGraph

string_type

+leafCountPruning ()
+randomizedFolding ()
+setFolding ()
+matchLeafes()
+countMatches()
+getA()
+getB()
+getV()
+getW()

ContextStat

string_type, numeric_type

1 * * 1

<< binds >>

<< binds >>

Figure 19.1. OMK class diagram - suffixtree and context module
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+operator()()
+row()
+col()
+clear()
+data()

-data_

Matrix

����� eric_type

+operator()()
+stride()
+clear()
+data()

-data_

Vector

����� eric_type

+mmult()
+l � � ��� tor()
+svd()
+solve()
+invert()	�
 � ���� pose()
+mean()
+variance()
+s ����� ()
+norm()
+norminf()	  � ����� )
+cond()
+condinf()
+cond2()
+eig_st()
+sv_nrm ()
+eig()
+eig_order()
+c ����� ()
+dot()
+sum()
+asum()
+qsum()
+axpy()
+scal()
+gemv()
+reduce()
+linregr()

«Schnittstelle»
Laroutine

«Teilsystem»
Laroutine

«verwendet»

«Teilsystem»
BLAS/L����� C K

+mnfb()
+setstacksize()
+getstacksize()
+seterr()
+geterr()
+clrerr()

«Schnittstelle»
Po �!  outine

«Teilsystem»
Po �!  outine

«verwendet»

«Teilsystem»
PORT

OptInfoSet

����� eric_type

«verwendet»

	#"$� ����� ycluster_mi()	#"$� ����� ycluster_ve()	#"$� ����� ycluster_cond()

«Schnittstelle»
GreedyCluster

«Teilsystem»
GreedyCluster

Figure 19.2. OMK class diagram - numerics module
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+operator[]()
+sta � ��� )
+reset()
+init()
+isValid ()��� � � �	��
�� rorReport()
+force()
+dim()
+symb()

-ops_
-start_
-dim_
-rand_

Oom

numeric_type, symbol_type

+count()
+symbol()
+index()

SymbolTable

symbol_type

*

-sample_
-rand_

SurrogateProcess

numeric_type, symbol_type

+eval()
+logeval()
+generate()
+loggenerate()
+save()
+restore()

� ������������
numeric_type, symbol_type

-symb_
-rand_

IudProcess

numeric_type, symbol_type

*

1

Figure 19.3. OMK class diagram - OOM and process module
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������� w()
+reset()
+hasMore()
+symb()
+poolSize()

ISample

symbol_type

-symb_
-rng_

IudSample

symbol_type, rng_type

-process_
-rng_

ProcessSample

process_type, rng_type

-symb_
-length_

TotalSample

symbol_type

+count()
+symbol()
+index()

SymbolTable

symbol_type

*

1

I �	��
� ess

numeric_type, symbol_type

<<bind>>

Figure 19.4. OMK class diagram - sample module
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L2Distance

HellingerDistance

pfunctional

p_type, q_type, sample_type, measure_type

pfunctional

p_type, sample_type, measure_type

Entr�����

RelativeEntr�����

pdistrate

p_type, q_type, measure_type

IProcess

numeric_type, symbol_type

ISample

symbol_type

<< binds >>

<< binds >>

<< binds >>

<< binds >>

<< binds >>

<< binds >>

Figure 19.5. OMK class diagram - pfunctional module



CHAPTER 20

Sftree

Presently, OMK is largely a library of classes for developing OOM applications and
adresses software developers and researchers. In the mid-term, a number of end-user tools
will be created that can be deployed without programming. A first tool developed in this
direction is sftree.

sftree is a command line tool that uses the suffix tree facilities of OMK to create a
compact suffixtree or reverse prefix tree from given input, compute detailed tree statistics
and output tree structure and statistics in different formats.

I will shortly introduce the provided functionality along with the command line op-
tions and explain the program’s output. After that, I discuss some results from applying
the tool to time-series data of various types.

20.1. Sftree Usage

The tool was developed during the initial phase of this thesis to explore the capabilities
and characteristics of suffix trees built from sample data of various kinds. It is quite flex-
ible and also capable of computing a rich set of tree statistics. In particular sftree can do:

• read input from file or from stdin
• compute suffixtree or reverse prefix tree of input
• output tree structure in text format, csv (comma separated value) or in pstree 1

• compute histograms over symbol alphabet and edge labels
• compute tree level expansion ratios
• compute summary statistics over various tree aspects

The tool is efficient - it is no problem to analyze inputs of length 1M - 10M. Help
is available by invoking the tool without any parameters, which gives complete list of
command line options

toberste@stalker% sftree -h

sftree v1.4 - Copyright 2002 Tobias Oberstein.

<tobias.oberstein@ais.fraunhofer.de>

sftree [-servhOL] [-p | -P] [-lLabelLength] [-mMode] (-iInputFile | -IInput)

[-oOutputFile] [-tSeparatorChar]

-s print statistics

-e print edge label histogram

-r print leaf count histogram

-v validate suffix tree structures

-h print this help message

-O suppress output

-L print label in edge compressed format

1pstree is a latex package for typesetting trees; I used sftree and pstree to produce the figures 13.5
and 13.5

129
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-p create the reverse prefix tree instead

-P like -p, but do not include the last character (sentinel)

in reversal of input

-lLabelLength print edge labels up to given length

-yScale scaling factor for pstree mode (\scalebox{Scale})

-mMode output mode: either plain, csv or pstree

-iInputFile input file to read from

-IInput read input from arg, like -I"abba*"

-oOutputFile output file to write to

-tSeparatorChar separator character in csv mode

A typical invocation might look like this

sftree -Os -i datafile

which is also what I used in generating the output for various time-series data exam-
ples in the next section.

20.2. Sftree Statistics Output

20.2.1. Alphabet Histograms. sftree computes histograms over the symbol alpha-
bet occurring in the input. The alphabet histogram just gives the number of occurrences
of the different symbols in the alphabet of the input. The alphabet of the input is just all
symbols occurring anywhere in the input. Currently, the input is interpreted as one byte
equals one symbol. Thus, it is not possible to read the input having two bytes interpreted
as one symbol each, what would be possible from the underyling OMK suffix tree classes
though.

20.2.2. Edge Label Histogram. Labels are finite strings attached to tree edges.
All labels are substrings of the original input. The edge histogram gives us the number
of occurrences of labels attached to tree edges. In general, a given edge label will occur
more than once within the tree.

20.2.3. Tree Level Expansion Ratios. sftree also computes so-called tree level
expansion ratios. This works as follows. Suppose the symbol alphabet of the input would
be Σ. Then we can imagine a fully expanded, maximal tree where all nodes have |Σ|
children and the edges to those children are labeled with one symbol each, for all the
different symbols in Σ. Observe, that the suffixtree constructed for the input will be a
subtree of the full tree then, if we expand compacted edges again. Now we may ask what
fraction of nodes in the full tree residing at some given level (node depth from the root)
is also occupied by the suffixtree subtree for the input. This fraction is the tree level
expansion ratio and is obviously a number between 1 and 0.

20.2.4. Summary Statistics. sftree computes so-called summary statistics, that is

• mean
• standard deviation
• minimum
• maximum

over three node sets

• all internal nodes without the root node
• all node without the root node
• all leaf nodes

and for different node data

• descendant, child and leaf count
• path, node and fork depth
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For a fixed node k, the descendant, child and leaf count give the number of nodes
in the subtree below k, the number of children of k and the number of leaves residing
somewhere in the subtree below k. The statistics for counts are only computed for the
full node set.

The path and node depth is the cumulative length of all concatenated labels from the
root down to node k and the number of nodes from the root down to node k. The fork
depth is the path depth of the parent of node k plus 1. The fork depth is computed only
for leaf nodes, whereas the path and node depth are computed for all nodes and all nodes
/ leaves only.

The idea behind the fork depth is the following. What is the number of symbols we
must observe, until we know already the complete context? Obviously, if in the suffixtree
we have arrived at a parent node of some leaf, then observing one more symbol will
disambiguate the edge we have to travel to the final leaf. Thus, we have taken the path
length of the parent node of the leaf plus 1 symbols to fully determine the context. This
exactly is teh fork depth. For example, a mean fork depth of 10 means that on average
we must be presented 10 consecutive symbols of the input such that we already know the
exact position of the presented string within the input.

20.3. Analyzing Time-Series Data with Sftree

This section presents output generated from sftree for various samples of time-series,
all of length 10k. The motivation was to gain experience with suffixtrees and insight into
how structure and statistics of suffixtrees are influenced by the characteristics of the input
strings. A diverse set of time-series was used to build suffixtrees from and compute tree
statistics. The results presented in this section are for the following time-series:

• Independent Identically Distributed
• Short-Long Memory HMM
• Three dimensional OOM
• The Probability Clock
• Discretized Mackey-Glass
• Discretized Linear Congruential
• The “showcase” 2-dimensional HMM
• Independently Distributed

The results of suffixtree summary statistics for leaf node depth and leaf fork depth is
given in figures 20.1 and 20.2 respectively.

20.3.1. Independent Identically Distributed. The sample was generated by
drawing symbols from the alphabet Σ = {a, b, c} independently and with equal proba-
bility.

Standard Statistics

--------------------------------------------------

input length 10001

alphabet size 4

alphabet abc~

nodes 17346

leafs 10001

internal nodes 7345

Alphabet Histogram

--------------------------------------------------

a 3370

b 3312

c 3318
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Leaf node depth

0

5

10

15

20

25

30

35

Independent
Identically
Distributed

Three
dimensional OOM

Discretized Linear
Congruential

Independently
Distributed

Long-term
Memory HMM

Discretized
Mackey-Glass

The Probability
Clock

The showcase 2-
dimensional HMM

Figure 20.1. Leaf node depth mean and standard deviation
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Figure 20.2. Leaf fork depth mean and standard deviation

~ 1

Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 17.47 141.95 2 5864

leaf count * 10.92 81.84 2 3370

child count* 2.36 0.48 2 4

path depth + 2886.84 3300.50 1 10001
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node depth + 8.40 1.21 1 12

node depth # 9.02 0.79 1 12

fork depth # 9.39 1.22 1 16

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)

# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 0.625000

3 0.437500

4 0.320312

5 0.238281

6 0.178223

7 0.132324

8 0.078674

9 0.030144

10 0.008792

11 0.002316

12 0.000590

13 0.000148

14 0.000037

15 0.000009

16 0.000002

20.3.2. Short-Long Memory HMM. The sample was generated by an OOM that
was obtained by transforming the HMM as defined in equations 20.1, 20.2 for ε = 0.1 into
an OOM as indicated in 20.3. The OOM was allowed a 10k warm-up to wash out any
numerical non-stationarity.

(20.1) M =









0 1 0 0
0 1− ε ε 0
0 0 0 1
ε
2 0 ε

2 1− ε









(20.2) Oa =









1
0

0
0









, Ob =









0
0

1
0









, Oc =









0
1

0
1









(20.3) τx = MT ·Ox, x ∈ {a, b, c} and choose w0 such that MT · w0 = w0

Standard Statistics

--------------------------------------------------

input length 10001

alphabet size 4
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alphabet abc~

nodes 18855

leafs 10001

internal nodes 8854

Alphabet Histogram

--------------------------------------------------

a 339

b 651

c 9010

~ 1

Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 42.26 394.12 2 16988

leaf count * 23.35 209.28 2 9010

child count* 2.13 0.35 2 4

path depth + 2664.65 3253.95 1 10001

node depth + 20.85 8.33 1 61

node depth # 21.67 8.32 1 61

fork depth # 28.54 9.91 1 68

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)

# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 0.375000

3 0.171875

4 0.074219

5 0.034180

6 0.015137

7 0.006226

8 0.002472

9 0.000954

10 0.000343

11 0.000118

12 0.000039

13 0.000013

14 0.000004

15 0.000001

16 0.000000

.. ..

68 0.000000

20.3.3. Three dimensional OOM. Data was generated by a 3-dimensional, syn-
thetically constructed OOM on the alphabet Σ = {a, b, c} as defined in equations 7.3 and
??. This is also one of the reference OOMs used in the examples of P-distance measures.
The OOM was allowed a 10k warm-up to wash out any numerical non-stationarity.
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Standard Statistics

--------------------------------------------------

input length 10001

alphabet size 4

alphabet abc~

nodes 17627

leafs 10001

internal nodes 7626

Alphabet Histogram

--------------------------------------------------

a 3812

b 2116

c 4072

~ 1

Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 18.60 152.27 2 7199

leaf count * 11.40 86.32 2 4072

child count* 2.31 0.46 2 4

path depth + 2841.28 3293.59 1 10001

node depth + 9.05 1.73 1 16

node depth # 9.69 1.46 1 16

fork depth # 10.24 1.88 1 19

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)

# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 0.625000

3 0.437500

4 0.320312

5 0.238281

6 0.176758

7 0.116760

8 0.057755

9 0.022072

10 0.007141

11 0.002064

12 0.000558

13 0.000145

14 0.000037

15 0.000009

16 0.000002

17 0.000001

.. ..

19 0.000000
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20.3.4. The Probability Clock. The classic: probability clock.

Standard Statistics

--------------------------------------------------

input length 10001

alphabet size 3

alphabet ab~

nodes 19988

leafs 10001

internal nodes 9987

Alphabet Histogram

--------------------------------------------------

a 4809

b 5191

~ 1

Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 23.88 201.78 2 10375

leaf count * 12.95 100.95 2 5191

child count* 2.00 0.03 2 3

path depth + 2508.65 3223.71 1 10001

node depth + 12.93 1.97 1 19

node depth # 13.93 1.39 1 19

fork depth # 15.00 2.15 1 26

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)

# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 0.555556

3 0.333333

4 0.209877

5 0.135802

6 0.089163

7 0.058985

8 0.039018

9 0.025860

10 0.016952

11 0.010680

12 0.006164

13 0.003132

14 0.001397

15 0.000556

16 0.000206

17 0.000073

18 0.000025

19 0.000008
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20 0.000003

21 0.000001

.. ..

26 0.000000

20.3.5. Discretized Mackey-Glass. Data generated from discretized Mackey-Glass
time-series. The Mackey-Glass time series itself was computed using a 4th-order Runge-
Kutta method (Roger Jang, EECS Dept., UC Berkeley, 1992). The resulting real valued
time series was discretized into the alphabet Σ = {a, b, c} using the threshold levels ’a’ if
> 1.0, ’b’ if > 0.8 and ’c’ otherwise.

Standard Statistics

--------------------------------------------------

input length 10001

alphabet size 4

alphabet abc~

nodes 19964

leafs 10001

internal nodes 9963

Alphabet Histogram

--------------------------------------------------

a 4539

b 2385

c 3076

~ 1

Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 38.65 304.02 2 9051

leaf count * 20.34 152.14 2 4539

child count* 2.00 0.06 2 4

path depth + 2561.52 3186.79 1 10001

node depth + 20.29 6.70 1 40

node depth # 21.26 6.58 1 40

fork depth # 152.67 121.75 1 694

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)

# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 0.500000

3 0.218750

4 0.082031

5 0.031250

6 0.011475

7 0.004028

8 0.001358

9 0.000450
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10 0.000140

11 0.000041

12 0.000012

13 0.000003

14 0.000001

.. ..

694 0.000000

20.3.6. Discretized Linear Congruential. Data was generated based on a prim-
itive linear congruential generator:

(20.4) x(t + 1) = 37379 · x(t) mod 17203

The real valued series x(t) was discretized as ’a’ if x(t) mod 3 = 0, ’b’ if x(t) mod 3 =
1 and ’c’ otherwise.

Standard Statistics

--------------------------------------------------

input length 10001

alphabet size 4

alphabet abc~

nodes 18515

leafs 10001

internal nodes 8514

Alphabet Histogram

--------------------------------------------------

a 3307

b 3333

c 3360

~ 1

Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 16.53 140.86 2 6210

leaf count * 9.79 76.07 2 3360

child count* 2.17 0.38 2 4

path depth + 3194.72 3033.98 1 10001

node depth + 8.60 1.27 1 12

node depth # 9.33 0.80 1 12

fork depth # 1822.27 1363.89 1 4267

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)

# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 0.625000

3 0.437500

4 0.320312

5 0.238281
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6 0.178223

7 0.125549

8 0.060654

9 0.019634

10 0.005311

11 0.001354

12 0.000341

13 0.000085

14 0.000021

15 0.000005

16 0.000001

17 0.000000

.. ..

4267 0.000000

20.3.7. The “showcase” 2-dimensional HMM. Sample generated from show-
case 2-dimensional OOM constructed by transforming a HMM working on the alphabet
Σ = {a, b}. Defined via the equations 20.5 and 20.6.

(20.5) τa =

(

1/8 1/5
3/8 0

)

, τb =

(

1/8 4/5
3/8 0

)

(20.6) w0 = (2/3, 1/3)T

Standard Statistics

--------------------------------------------------

input length 10000

alphabet size 2

alphabet ab

nodes 19963

leafs 9982

internal nodes 9981

Alphabet Histogram

--------------------------------------------------

a 3360

b 6640

Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 25.35 220.19 2 13250

leaf count * 13.67 110.10 2 6626

child count* 2.00 0.00 2 2

path depth + 2511.75 3223.76 1 10000

node depth + 13.67 2.41 1 21

node depth # 14.67 1.96 1 21

fork depth # 16.09 2.73 7 31

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)
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# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 1.000000

3 1.000000

4 1.000000

5 1.000000

6 1.000000

7 1.000000

8 0.976562

9 0.939453

10 0.864258

11 0.751465

12 0.607422

13 0.451294

14 0.308533

15 0.194550

16 0.114822

17 0.064476

18 0.034668

19 0.018076

20 0.009248

21 0.004681

22 0.002356

23 0.001183

24 0.000593

25 0.000297

26 0.000149

27 0.000074

28 0.000037

29 0.000019

30 0.000009

31 0.000005

20.3.8. Independently Distributed.

Standard Statistics

--------------------------------------------------

input length 10001

alphabet size 4

alphabet abc~

nodes 18534

leafs 10001

internal nodes 8533

Alphabet Histogram

--------------------------------------------------

a 331

b 630

c 9039

~ 1
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Summary Statistics of Suffix Tree

--------------------------------------------------

mean stddev min max

desc count * 46.55 423.88 2 16749

leaf count * 25.99 228.96 2 9039

child count* 2.17 0.38 2 4

path depth + 2710.70 3262.98 1 10001

node depth + 22.43 10.09 1 58

node depth # 23.17 10.06 1 58

fork depth # 29.02 11.73 1 67

* : stats over internal nodes (not the root)

+ : stats over all nodes (not the root)

# : stats over leaf nodes

Tree Level Expansion

--------------------------------------------------

level expansion ratio

1 1.000000

2 0.625000

3 0.375000

4 0.210938

5 0.099609

6 0.041504

7 0.015991

8 0.005798

9 0.001976

10 0.000657

11 0.000210

12 0.000065

13 0.000020

14 0.000006

15 0.000002

16 0.000001

.. ..

67 0.000000



CHAPTER 21

Future Development

In this section I will shortly given some thoughts where OMK could improve in the
immediate future. I think OMK should strive for two overall goals

(1) integrated coherent package
(2) simplified usage

21.1. Integrated Coherent Package

For making OMK into an integrated, coherent package, two subgoals must be ad-
dressed:

(1) fully integrate the OOM estimation method from [Kre] with OMK

(2) provide a set of small, self-contained and simple to use command line tools that
can be combined (like Unix commands) for
(a) suffix tree, context graph building and analysis (both character and word

based)
(b) information theoretic sample analysis
(c) OOM run-mode
(d) OOM estimation: greedycluster, softcluster

The tools should use a simple external file format for storing OOMs like e.g. Matlab
scriptcode (use a Matlab ASCII format to write/read OOM definitions) or XML. The
functionality is already there, but lacks integration, coherence and polish to make a full
set of user level tools.

A final step would be to assemble a ready to use binary distribution of OMK for
popular platforms.

21.2. Simplified Usage

Simplified usage can apply to at least two different levels of usage: end-user and de-
veloper. The simplification for the end-user will likely come as a result of easy to use
command line tools and a ready to use binary distribution. This was discussed in the last
subsection. The simplification for the developer using OMK to build new applications will
come from

(1) simple and consistent package interfaces
(2) small codebase to understand
(3) good package documentation and examples
(4) limited external dependencies

Currently, the OMK has the following external dependencies: Standard C++ library
and BLAS/LAPACK. The softclustering method has the additional dependency on PORT
due to the use of constrained non-linear optimization. The sftree command line tool has
the dependency on GNU getopt for command line argument parsing. The PORT library
is free to use only for research purposes but the dependency is likely unavoidable at this
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time. GNU getopt use should be surrected in the future. It is not worth the dependency
it introduces.

Even during the short time of OMK development, the package has seen a growth to
approximately 30.000 lines of code. A certain amount of this codebase was accumulated
during an experimental phase and is no longer in active use. Throwing out code no longer
used and refactoring the package to reduce the overall amount of code is thus a valid
target.

21.3. Long-term

On the long-term, when a very good learning method is established and fully developed
a pure ANSI-C implementation without any external dependencies, no BLAS/LAPACK,
no whatsoever could be targeted.

The main reason for this perspective is, that though a pure ANSI-C implementation
would be inferior from a software engineering stand, such a package implementation would
likely ensure widest acceptance and spread.
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[Sto95] J. Stoye, Affixbäume, Master’s thesis, Universität Bielefeld, May 1995.

[Str00] Bjarne Stroustrup, The C++ Programming Language, Special Edition ed., Addison Wesley,
2000.

[Szp93a] Wojciech Szpankowski, A generalized suffix tree and its (un)expected asymptotic behaviors,
SIAM J. Comp. (1993), no. 22, 1176–1198.

[Szp93b] , Asymptotic Properties of Data Compression and Suffix Trees, IEEE Transactions on
Information Theory 39 (1993).

[Ukk95] E. Ukkonen, On-line construction of suffix trees, Algorithmica (1995), no. 14, 249–260.
[Vap98] Vladimir N. Vapnik, Statistical Learning Theory, John Wiley and Sons, 1998.
[Vap99] , An Overview of Statistical Learning Theory, IEEE Trans. on Neural Networks 10

(1999), no. 5, 988–999.
[Wei73] P. Weiner, Linear pattern matching algorithms, Proceedings of the 14th Symposium on Switch-

ing and Automata Theory, 1973, pp. 1–11.
[Wyn95] Aaron D. Wyner, 1994 Shannon Lecture - Typical Sequences and All That: Entropy, Pattern

Matching, and Data Compression, IEEE Information Theory Society Newsletter (1995).


