SDS Library

Andrew Owen Martin [a.martin@gold.ac.uk]

18th December 2017

1 Introduction

Stochastic Diffusion Search (SDS) is a swarm intelligence algorithm. It has many interesting
features, most significantly its simplicity, and the speed of its performance over suitable problems.

A suitable problem is search problem where the value of each solution can be estimated from
the value of a number of quick and simple tests. The quicker and simpler the tests, the better.
SDS is very tolerant of noise, so it tends to be more suitable in real-world problems rather than
theoretical problems.

An intuitive example is locating the string >hello’ in a larger text, each location in the text is a
potential solution and can be evaluated by the results of these five tests:

1. There is an ’h’ at the chosen location

2. There is an ’e’ one letter along from the chosen location

There is an ’1’ two letters along from the chosen location

- W

There is an *1’ three letters along from the chosen location
5. There is an o’ four letters along from the chosen location
To define an SDS using this library you largely just need to define a function which takes no

input and returns a random hypothesis (a potential solution), and define a list of functions each
of which take a hypothesis and return the result of a quick and simple test.

To define an SDS to perform the example task you’d therefore need something like these functions.

1.1 Random Hypothesis Function

This function takes a random generator which can be an instance of the Random class, or a
reference to the random module, or anything that performs randint, and returns an integer
which represents a hypothesised location of the model in the larger text.

larger_text = ’xxxhelxxxelloxxxxxxhelloxxxxx’
model = ’hello’
def random_hypothesis(random_obj):

return random_obj.randint(0, len(larger_text)-len(model))

Of course the larger_text variable can be much larger than the tiny string used here, by using
a file object and the seek method, text files representing entire genomes have been successfully
searched with SDS.

1.2 List of microtest functions

This defines microtests, a list of functions which each take a hypothesis generated by random_hypothesis
and returns the result of a simple test.

microtests = [

lambda hyp: larger_text[hyp] == ’h’,

lambda hyp: larger_text[hyp+1] == ’e’,
lambda hyp: larger_text[hyp+2] == ’1°,
lambda hyp: larger_text[hyp+3] == ’1°,
lambda hyp: larger_text[hyp+4] == ’0’,

These functions have been defined manually, but Python provides a number of ways to automati-
cally define functions for more complex tasks. Even this example could have been produced by
looping over a single function which returns test functions like the ones defined here.

1.3 Initialising a swarm

With the random hypothesis function defined and the list of microtests defined all that is required
is to define a swarm, a swarm is simply a list of Agents and Agents are simple data structures
which each maintain a single hypothesis and a boolean state variable which defines whether or
not they are active.

import sds
agent_count = 1000

swarm = sds.Agent.initialise(agent_count=agent_count)

After this code runs swarm will be a list of 1000 inactive agents with their hypothesis uninitialised.

1.4 Choosing a Diffusion function

The SDS library implements three diffusion functions, Passive, Context-Free and Context-
Sensitive. You should experiment with their different behaviours. When you need to choose
a diffusion function use one of sds.passive diffusion, sds.context free diffusion, or
sds.context_sensitive_diffusion. For now stick with Passive Diffusion.

1.5 Running SDS
The entry point for running SDS is the run function, the required arguments are as follows:

swarm Defined in the third section.

microtests Defined in the second section.

random_hypothesis_function Defined in the first section.

max_iterations The max number of iterations of SDS to run. None means loop until halted.
diffusion_function The diffusion function to employ.

random A random generator. (This will likely be made optional in later versions)

The run function returns its results as a collections.Counter of clusters, which details where
the active agents have decided to congregate.

clusters = sds.run(
swarm,
microtests,
random_hypothesis,
max_iterations=100,
diffusion_function=sds.passive_diffusion,
random,)

print(clusters.most_common(1))

There are other functions available but these are the main ones.

1.6 A full runnable example

The combination of make microtest function and the microtests list comprehension is equivalent
to the five manually defined functions in the Section “List of microtest functions”.

In the search_space of this example are four intances of four of the five letter in the word
’hello’ appearing in sequence, the locations marked with a | in the code. Play around with the
search_space variable, and see how the results change.

import random
import sds

search_space = "xxhellxelloxhexhelxoxxxhxlloxxx"
I I |

model = "hello"

def random_hyp(rnd):
return rnd.randint(0,len(search_space)-len(model))

def make_microtest(offset):
return lambda hyp: search_space[hyptoffset] == model[offset]

microtests = [
make_microtest(offset) for offset in range(len(model))

swarm = sds.Agent.initialise(agent_count=1000)

clusters = sds.run(

swarm=swarm

microtests=microtests,
random_hypothesis_function=random_hyp,
max_iterations=300,
diffusion_function=sds.passive_diffusion,
random=random.Random() ,
report_iterations=10,

)

print (clusters.most_common())

Running this script should produce something similar to the following

0 Activity:
10 Activity:

20 Activity: 0.766. 2: 232, 23: 200, 6: 183, 15: 148, 5: 1, 12: 1,

0

0

0
30 Activity: 0.780. 2: 223, 6: 213, 23: 187, 15: 152, 3: 2, 12: 2,
40 Activity: 0.745. 6: 185, 23: 185, 2: 184, 15: 184, 14: 2, 1: 1,
50 Activity: 0.768. 15: 213, 2: 198, 6: 197, 23: 157, 12: 2, 5: 1
60 Activity: 0.772. 2: 213, 15: 205, 6: 179, 23: 169, 12: 2, 1: 1,
70 Activity: 0.777. 15: 230, 2: 218, 6: 179, 23: 146, 1: 2, 24: 1,
80 Activity: 0.768. 15: 240, 2: 199, 23: 178, 6: 146, 22: 1, 24: 1,
90 Activity: 0.748. 15: 272, 2: 191, 23: 143, 6: 134, 1: 3, 3: 2, 7:
100 Activity: 0.780. 15: 285, 2: 199, 23: 164, 6: 124, 24: 2, 14: 2, 3
110 Activity: 0.766. 15: 280, 2: 193, 23: 145, 6: 139, 12: 3, 1: 2,
120 Activity: 0.757. 15: 273, 23: 169, 6: 163, 2: 146, 14: 3, 3: 1,
130 Activity: 0.766. 15: 282, 23: 172, 6: 163, 2: 146, 24: 1, 7: 1,

.184. 23: 32, 6: 29, 15: 28, 2: 22, 12: 20, 3: 14, 5:
.763. 6: 216, 2: 208, 23: 171, 15: 164, 1: 2, 3: 1, 24:

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

L,

Activity: 0.724.
Activity: 0.741.
Activity: 0.775.
Activity: 0.754.
Activity: 0.750.
Activity: 0.751.
Activity: 0.746.
Activity: 0.749.
Activity: 0.763.
Activity: 0.756.
Activity: 0.750.
Activity: 0.771.
Activity: 0.753.
Activity: 0.744.
Activity: 0.767.
Activity: 0.772.
195), (15, 191),

: 262, 6:
: 269, 23:
: 260, 2:
: 261, 2:
. 234, 23:
: 261, 23: 181, 2:
. 241, 23: 192, 6:
. 214, 6: 204, 23:
6: 207, 15: 196, 23:
2: 192, 6: 192, 23:
2: 222, 6: 181, 23:
2
2

159, 23:
171, 2:
180, 23:
186, 23:
186, 2:

: 206, 23: 200, 6:
192, 15:
185, 2:
192, 2:
188, 6:

194, 23:
. 214, 23:
: 214, 6:
2: 214, 15:

(23, 190), (6, 186),

156,
164,
169,
176,
174,
159,
175,
181,
191,
182,
173,
184,

(22, 2),

N NN O N

15:
15:
15:
187, 6:
179, 6:
176, 23:
184, 23:

144,
129,
161,
134,
154,
155,
135,
146,
164,
182,
170,
178,
174,
154,
174,
181,

@3,

12: 2, 7: 1

1: 3, 12: , 22: 1, 14: 1
12: 3, 22: 1, 5: 1

12: 3, 1: 1, 3: 1, 22: 1, 7:
T: 1, 24: 1

12: 2, 1: 1, 5 1, 24: 1

14: 2, 12: 1

1: 1, 3: 1, 24: 1, 7: 1

24 2, b: 1, 12: 1, 14: 1
14: 4, 12: 2, 22: 1, 7: 1
12: 2, 3: 1, 7: 1

1: 1, 22: 1, 7: 1

7 2, 12: 2, 22: 1, 14: 1

5: 5, 1: 2, 12: 2, 24: 1, 22:
14: 3, 5 2, 22: 2, 12: 2,7
1: 2, 3 1, 5: 1, 14: 1

1, 6, 1, (24, 1, (12, D]

Ignoring the activity lines for now, each of the tuples in the list at the bottom represent a cluster,
the left number is the location of the cluster and the right numeber is the number of active agents
at that location, the list is ordered with the largest clusters first, so (2, 195) means 195 agents
are at location 2, and being the first tuple in the list means this must be the largest cluster.

	Introduction
	Random Hypothesis Function
	List of microtest functions
	Initialising a swarm
	Choosing a Diffusion function
	Running SDS
	A full runnable example

