
Automated Data Extraction from Scholarly Line
Graphs

Sagnik Ray Choudhury
Information Sciences and Technology

Pennsylvania State University
sagnik@psu.edu

Shuting Wang
Computer Science and Engineering

Pennsylvania State University
sxw327@psu.edu

Prasenjit Mitra, C. Lee Giles
Information Sciences and Technology

Pennsylvania State University
pmitra@ist.psu.edu, giles@ist.psu.edu

Abstract—Line graphs are ubiquitous in scholarly papers.
They are usually generated from a data table and often used
to compare performances of various methods. The data in these
figures can not be accessed. Manual extraction of this data is
hard and not scalable. On the other hand, automated systems
for such data extraction task is not yet available. We report an
analysis of line graphs to explain the challenges of building a fully
automated data extraction system. Next, we describe a system for
automated data extraction from color line graphs. Our system
has multiple components: image classification for identifying line
graphs; text extraction from the figures and curve extraction.
For the classification, we show that unsupervised feature learning
outperforms traditional low-level image descriptors by 10%. For
the text extraction, our heuristics outperforms the accuracy of
the previous method by 29%. We also propose a novel curve
extraction method that has an average accuracy of 82%. A large
partially annotated dataset for future research is described.

I. INTRODUCTION

Scholarly papers usually contain many figures and tables.
For example, among 10,000 randomly selected articles pub-
lished in top 50 computer science conferences1 between 2004
and 2014, more than 70% contained at least one figure, more
than 43% contained at least one table, and more than 36%
contained at least one figure and one table. While there have
been many works about extraction and understanding of tables,
figures have received less attention [2].

Previously, Ray Chaudhury et al. [3] explored figure meta-
data (caption/mention) extraction. A recent paper by Clark
et al. [4] has proposed methods for automated extraction of
figures from scholarly PDF documents. Using their method we
extracted more than 40,000 figures from scholarly papers. This
paper focuses on line graphs that are a subset of these figures.
Preliminary analysis of the dataset is presented in section IV.

Line graphs are plots with single or multiple curves in the
plotting region. These figures are used to compare multiple
methods and are generated from data tables. For example, see
figure 1, a line graph that was generated from a data table that
can not be accessed from the paper. It is extremely beneficial
to regenerate that table, but manual methods2 are tedious and
not scalable. A fully automated system doesn’t exist till date,
and this work aims to bridge that gap.

We analyzed more than hundred randomly selected line
graphs from our dataset to understand the specific challenges

1http://academic.research.microsoft.com/
2http://arohatgi.info/WebPlotDigitizer/app/

of building a fully automated data extraction system. From our
analysis (section III), we were able to identify easy and hard
cases for data extraction. Our current system focuses on easy
cases: line graphs where the curves or data points are drawn
with separate colors.

The first module in our system is a classifier that classifies
an input image as a positive (color line graph) or negative
(bar graphs, pie chart, photograph) instance. While multiple
features for this problem has been proposed, we are the first to
show that unsupervised feature learning outperforms traditional
feature descriptors such as SIFT or HoG.

For color line graphs, the generic algorithm for data
extraction is:

1) Extract text “words” from the figure.
2) Classify the words as X-axis/Y-axis value/labels or leg-

ends. For the data extraction, every point in the plot
region needs to be mapped into a (X-value,Y-value) pair.
Assuming the plot scales are linear, two pairs of X-axis
values and Y-axis values are necessary and sufficient.

3) Extract the curves and associate them with the legends.

Kataria et al. [9] proposed heuristics for text extraction
from plot images, but their method was not evaluated using
the metrics standardized by document analysis community [8]
in recent times. Our system improves on their method.

Next, extracted text is classified in seven classes such as
axes value/labels (see section VI-C). It is easy to see that
once two X-axis values and two Y-axis values are identified
properly, every pixel in the plot region can be mapped to
a “data point”. The next step is the curve segmentation i.e.
assigning each non-text pixel in the plot region to one of the
curves. As we consider color plots, it might appear that the
process is trivial, and a color based segmentation would suffice.
While a color plot usually contains less than ten “visually
distinguishable” colors, it might have more than one thousand
distinct RGB color values due to anti-aliasing. Our algorithm
solves that problem.

II. RELATED WORK

Classification of computer generated charts is a well-
studied problem, and multiple features have been proposed.
Shao et al. [15] and Huang et al. [7] used low-level graphemes
extracted from vector graphics. Prasad et al. [12] used a
set of very complicated features, extracted through various
transformations on the image. Most recent work by Savva et al.

Fig. 1. An example 2D line graph and the data table from which it was
generated. It also shows the seven classes of text inside the figure. The mapping
between these classes and the data table is apparent.

[13] showed unsupervised feature learning outperforms feature
engineering. Our work reinforces that finding (section V).

Early papers by Futrelle [5] introduced the concept of
“Generalized Equivalence Relations” (GER) between graphical
elements of a figure (symbols, lines, curves) and proposed a
pyramidal spatial index for efficient computations of GERs.
Subsequent work proposed a more complete grammar for
parsing the graphemes [6]. While these works have greatly
advanced the understanding of scholarly figures, they did not
focus much on the automated data extraction problem itself.
For example, they don’t clarify much how these graphemes
were extracted from the images, which would be the most
important step for the data extraction. In more recent works
by Shao et al. [14], [15] these graphemes were extracted from
vector graphics embedded in PDFs and not raster graphics.
Therefore, it would be hard to generalize their approaches
to all figures. Kataria et al. [9] proposed an architecture for
automated data extraction from 2D plots and their work is
most relevant to ours. A more comprehensive version of their
architecture [11] reported curve extraction techniques for line
graphs, but only for continuous curves. We explore another
aspect of the problem.

III. ANALYSIS OF LINE GRAPHS FOR DATA EXTRACTION

A line graph has curves and text words. A word can be
classified as one of the following: 1. X-axis value, 2. Y-axis
value 3. X-axis label, 4. Y-axis label, 5. Figure label, 6. Legend
and 7. Other text. The metadata structure for a line graph is a
table as shown in figure 1. Axes values are used to generate
the “data value” for the curve pixels. The axes labels are the
headers for the columns in the table. For one X-value, there are
multiple Y-values, corresponding to multiple curves. Legend
texts are the column headers for these curves. The figure
label is also a metadata for the graph, along with captions
and mentions. An automated system for data extraction would
need to extract all these information from the figure. While
previous work has explored parts of the problem, they are hard
to integrate into an architecture due to the variability of the
data.

Our research questions are: 1. What are the variations
in the plotting styles that make the text/graphics extraction
difficult? And 2. Can we identify easy and hard instances of

the problem? To answer them, we analyzed more than hundred
line graphs sampled from a large collection (section IV).

Many problems arise from the variations in the plotting
styles. Previous work [11] assumes that a line graph can be
segmented into X-axis, Y-axis and plotting region. Another
assumption is that the plotting region is always “ideal”, i.e.,
contains only two components: 1. Curves and 2. A legend
region. We find that is often not the case. Only 58% of the plots
in our dataset had such an ideal plotting region. We observed
that there were four main reasons for plots being “nonideal”:
1. The plotting region had a grid structure (as in figure 2):
87%; 2. Legend region was not present (15%) or not in the
plotting region (13%); 3. There were text/ graphic elements in
the plotting region which were neither legend nor curve (15%)
and 4. Plotting region background was nonwhite (10%). Note
that these characteristics were not exclusive, i.e. there were
nonideal plotting regions that had grid structures, as well as
legend regions were not inside the plotting region.

These statistics indicate two problems with existing meth-
ods: 1. The “grid” structure and non-white background needs
to be removed from the plotting region before applying any
algorithm, and 2. The assumption of legend regions being
inside the plotting region is not valid.

For curve extraction, line graphs can broadly be classified
in two classes: 1. Binary/ grayscale plots where curves
are plotted with black/gray pixels and are distinguished by
markers or other patterns. Liu et al. [11] proposed methods
for this problem, but they assumed that the curves were always
connected. That assumption is not valid in most real graphs
(see figure 2). 2. Color plots where curves can be distinguished
by their color. 42% of plots in our dataset are color plots.
Obviously, a color plot doesn’t automatically imply that each
curve is plotted with a separate color. However, for most of
these plots (89%) that is the case. Naturally, curve extraction
is easier for these plots.

To summarize:

1) The hardness of the problem lies in the variation of the
plotting styles, and that aspect has gone largely unnoticed
in previous works.

2) There are quite a few “easy” instances of the problem
that have not been explored properly. These plots are the
focus of this paper.

There are three challenges in curve extraction from color
plots: 1. Removal of the grid structure and non-white back-
ground, 2. Identifying “visually distinguishable colors” and
3. Overlapping curves. Section VI-C reports our methods for
these problems. Also, for the text extraction and classification,
we do not make any assumption about the legend region being
inside the plot region as in the previous work.

IV. DATASET

Our entire dataset consists of 40,000 figures extracted from
10,000 articles published in top fifty computer science con-
ferences between 2004 and 2014. The figures were extracted
using a recently released system by Clark et al. known as
“pdffigures” [4]. Their system produces a grayscale image file
and a JSON metadata file for each figure in the document. The
metadata contains following information:

Fig. 2. A monochrome plot (extracted from [10]) where the curves can only
be separated by their patterns.

• Page number for the page where the figure appears.
• Location of the figure on the page (bounding box).
• Caption of the figure.
• If the text inside the figure can be extracted from the

PDF itself, then for each text word in the figure follow-
ing metadata is available: 1. The text of the word, 2.
The bounding box of the word, and 3. The orientation
(horizontal/vertical). Typically, this happens when figures
are embedded as vector graphics (eps/ps/PDF).

We made two modifications to the existing system: 1. From the
metadata, we re-extracted the figure as a color image. However,
around 60% of these images were originally embedded in the
PDF as a grayscale image, therefore, were extracted as such.
2. We modified the metadata to include the paragraphs in the
document where the figure was mentioned [3].

We manually examined the images and found around 50%
of these figures contained sub-figures: often a combination of
line graphs, bar charts, and pie charts. From a random selection
of 10,000 figures, we manually selected 2250 plots that were
either a line graph or contained at least one line graph as
a sub-figure. Among them, 882 were color plots. These 882
images were subsequently sampled for various experiments
in this paper except for the figure classification experiment
(to maintain consistency with previous work). A hundred of
these figures were manually tagged with word class labels as
discussed in section VI-B). To avoid bias in the algorithm
design, a completely separate sample of 120 figures were used
for the problem analysis (section III). This dataset will be made
publicly available.

V. CLASSIFICATION OF FIGURES

The first step in our architecture is a classification problem:
an input image is classified as a line graph or not. Previous
works have explored a similar multiclass classification prob-
lem, where images are classified as a line graph, a bar graph
or a pie chart, etc. Surprisingly, none of the previous methods
has used common low-level image descriptors such as SIFT
and HoG. We used these descriptors in a bag of words (BoG)
model.

The SIFT feature descriptor tries to find key points in an
image using scale-space extrema in a difference-of-Gaussians
(DoG) pyramid. A Gaussian pyramid is created by repeated
smoothing and subsampling of an image by a Gaussian kernel,

and the DoG pyramid is created by computing the differ-
ence between the adjacent levels in the Gaussian pyramid.
Histogram of Oriented Gradients (HOG) algorithm counts
occurrences of gradient orientation in localized portions of an
image and combines them to produce a final feature descriptor.
Both HoG and SIFT have been extensively used in object
detection and image classification. Our motivation for using
them was to represent specific structures such as bars in the
bar graphs and curves in the line graphs in the feature space.

The BoG method in our case works in two steps. First,
interest points and descriptors for these points are extracted
from the image and then clustered to create a “visual words”
dictionary or codebook. Then, each image is represented as a
frequency distribution over these visual words. This distribu-
tion is used as a feature vector.

For the same classification problem, Savva et al. [13] used
random patches of pixels in a BoG model instead of image
descriptors. Their method is motivated by recent advances in
unsupervised feature learning that has shown excellent promise
in natural image classification. We used their dataset for the
sake of comparison. In summary, we had 1130 images divided
in eight categories: bar charts (215, 19%), line graphs (147
13%), maps (200 17.7%), Pareto charts (117, 10.3%), pie
charts (118 10.4%), radar plots (86 7.6%), scatter plots (159
14.2%) and Venn diagrams (88 7.8%). We used stratified k-
fold cross validation and compared the accuracies on the test
data. The results are shown in table I. In terms of average
accuracy (mean of class specific accuracies), HoG descriptor
(68%) performed better than the SIFT descriptor (40%) but
neither of them outperformed the random patches method
(80%). This indicates that the scholarly charts usually do not
contain complex structures and randomly selected patches are
sufficiently good representations.

Random (Savva et al. [13]) HoG SIFT
Curve Plot 73% 64% 48%

Maps 84% 68% 52%
Pareto Plot 85% 67% 51%

Pie Plot 79% 71% 42%
Radar Plot 88% 70% 44%
Scatter Plot 79% 63% 40%

Bar Plot 78% 66% 39%
Table 86% 72% 46%

Venn Plot 75% 68% 42%
Average 80% 68% 40%

TABLE I. ACCURACY RESULTS FOR COMPUTER GENERATED CHARTS
CLASSIFICATION: RANDOM PATCH BASED UNSUPERVISED FEATURE

LEARNING OUTPERFORMS LOW-LEVEL IMAGE DESCRIPTORS SUCH AS
HOG AND SIFT.

VI. WORD EXTRACTION AND CLASSIFICATION

The goal of this module is to extract the text words from
the image and classify them to aid the data extraction process.

A. Word Extraction

Text extraction in our case is easier than natural scene
images. One choice is to use off-the-shelf OCR systems such as
Tesseract, but they have less accuracy on these images because
of the text sparsity [9], [17]. Zhu et al. [17] used a convolu-
tional K-means approach to extract text regions from patent
images. While their method achieved good accuracy (71%), it

was computationally very expensive because they used multi-
scale sliding windows. Kataria et al. [9] used a much simpler
approach based on connected components. In their method,
first an edge map of the image is created and connected
component (CC)s are extracted. These CCs are the candidates
for the text characters. Therefore, the ones with an area greater
than 20% of the image are discarded because rarely characters
in scholarly figures are larger than that. The rest of the CCs are
merged to form “words” if they are “close” to each other. Two
CCs Ci and Cj are considered “close” if P (Ci, Cj) > 0.05

where P (Ci, Cj) = e(C
y
ij
−a)/2s21 .e(C

x
ij−b)/2s

2
2 . Cy

ij and Cx
ij

are the vertical and horizontal distances between Ci and Cj ,
respectively. The parameters a,b,s1 and s2 are the mean and
standard deviations of vertical and horizontal distances on the
training data.

While the CC approach was computationally efficient, we
found several problems with it. Most text characters had an
area smaller than 1% of the image area. Also, all CCs having
area <1% were not text characters. Therefore, a filtering
step was needed to remove noise. The merging heuristic
generated large text regions often containing multiple words
that needed further segmentation. Also, the proposed merging
algorithm was non-iterative and depended on the order of
inputs. In recent times, the document analysis community has
proposed standardized evaluation metrics for text extraction
from images. The previous algorithm was not evaluated using
them.

We made following changes to the existing algorithm:

• CCs having area < 1% of the image area were considered as
candidates for the text characters.
• Candidate CCs were filtered to remove noise. We found that

text in the color line graphs is almost always written using
black pixels. Therefore, color based filter sufficed. However,
it is hard to identify black, gray or white pixels from an
image because of anti-aliasing. In section VI-C we propose
an algorithm for that. In future, trained classifiers can be used.
The output from this step was a set of CCs that are the text
characters. In the next step, they were merged to form words.
• We observed that most texts in these figures were horizontal,

except for Y-axis labels. Therefore, it was beneficial to use
these two distances separately rather than combining them as
in the previous work. CCs that are within 10% of the image
width from left are the candidates for Y-axis labels and merged
vertically if the vertical distances between them are less than a
threshold. Other CCs are merged horizontally using a separate
distance threshold. We experimented with several distance
thresholds such as minimum, second minimum, median and
mean of the horizontal/vertical distances. The second minimum
heuristic worked best among them. The merging process is
run iteratively until there is no merge. The process is usually
terminated in two or three iterations.

1) Experiments and Results: From our dataset (see section
IV) of extracted figures, we selected 200 color line graphs
that were originally embedded as vector graphics. These
figures being vector graphics, bounding boxes of the words
were available, and we used them as the gold standard. Our
evaluation protocol is adopted from Wolf et al. [16] that has
been used extensively in other works and competitions [8] for
text extraction from images. For each image, ground truth G

contains coordinates of i bounding boxes for the words. A
predicted result P contains coordinates of j bounding boxes.
For each box bG in G, the box in P (bP) having maximum
overlap is defined as the equivalence. This is defined as one-
to-one matching. Note that Wolf et al. allows for other types of
matching such as many-to-one (multiple boxes predicted for a
single box) and one-to-many matching (one box predicted for
multiple boxes in the gold standard). These other matchings
are not helpful for us. For a pair (P,G), the precision (POB)
and recall (ROB) scores are calculated as follows:

• for all pairs (bP , bG)
◦ if Area-Precision(bP ,bG) >= σP and Area-

Recall(bP ,bG) >= σR
◦ no. of correctly identified rectangles+=1

• POB =
no. of correctly identified rectangles

|P |

• ROB =
no. of correctly identified rectangles

|G|

Area-Precision is defined as the ratio of the overlap be-
tween bP , bG and the area of bP . Area-Recall is defined as
the ratio of the overlap between bP , bG and the area of bG.
The thresholds σR and σP are both set to 0.4. The standard
practice for these values are 0.4 and 0.8 [8] respectively, but
many-to-one and one-to-many matchings are also valid in those
cases.

Figures 3a, 3b and 3c show the comparative histograms of
POB , ROB and F1 values for the text extraction from 200
images, with our method and Kataria et al. [9] as baseline.
The baseline method segments the image into X-axis region
(area below X-axis), Y-axis region and plot region. The text
extraction depends on this step, but the segmentation is heuris-
tic, i.e. the longest pair of intersecting vertical and horizontal
lines are considered as axes lines. We found that assumption
to be wrong for most of our images. We believe that attributed
to the poor result. Our average precision, recall, and F1 values
are 63%, 75%, and 67% respectively, which is better than the
baseline by 32%, 18%, and 29%.

B. Word Classification

Extracted words need to be classified in one of the fol-
lowing seven classes: 1. X-axis value, 2. Y-axis value 3. X-
axis label, 4. Y-axis label, 5. Figure label, 6. Legend and 7.
Other text. While most of the words can be classified as one
of the first six classes, sometimes line graphs contain words
that are used to show specific points of interest. These words
are classified as “other text”. For the data extraction, we need
to map each point in the plotting region to a data value.Two
X-axis values and two Y-axis values suffice for that step. Also,
other words can be mapped to the metadata structure for the
line graph as shown in figure 1. While this classification step is
essential in an automated data extraction process, it has gone
largely unnoticed in the previous works.

We only have two features for each word: 1. The text of the
word and 2. The location of the word on the image. Therefore,
it is hard to train a classifier. However, the probability of a text
having a particular class label is dependent on the labels of its
neighbors. For example, if a word is classified as an “X-axis
label”, nearby words have a higher probability of being an X-
axis label. This is similar to pixel labeling problems in image

(a) (b) (c)

Fig. 3. Comprative results for text extraction: our method and Kataria et al. [9]

processing [1], where an energy equation such as equation 1)
is minimized:

E(L) =
∑
p∈P

Dp(Lp) +
∑

p,q∈N
Vp,q(Lp, Lq). (1)

Here L = {Lp|p ∈ P} is a labeling of the image P, Dp(Lp) is
a cost function for the pixel p having the label Lp (also known
as a “data penalty function”), and Vp,q models the interaction
between two neighboring pixels p and q having labels Lp and
Lq (also known as “n interaction potential”). N is the set of
all pairs of neighboring pixels.

We are trying to predict the class label for the words
instead of pixels. The minimization problem is NP-hard for
more than two labels, and we have seven labels. Efficient
approximations based on max-flow/min-cut techniques exist
[1], but we developed a much simpler algorithm to model the
interaction between neighboring words. The key observation
is that the labels can change iteratively depending on the
neighboring labels.

We designed heuristics for the class prediction problem that
are summarized in table II. Each heuristics in the table II can
be considered as a confidence point. While it is easy to design
heuristics for classes such as axes values and axes labels,
classes such as legend or “other text” don’t have intuitive
heuristics.

In the first step, each text is classified as one of the classes
in the table II or “other text”. We observed that the heuristics
were very accurate for the following three classes: X-axis
value, Y-axis value and Y-axis label (see table III). In the
seconds step, each word that was not classified as one of these
classes was relabeled as “other text”, if a word of class “other
text” was close to it. A word is considered to be “close” to
another, if the horizontal or vertical distance between them is
less than 5% of the image width or image height, respectively.

Usually, the legend region is the most textually dense
region of the figure. That motivated our third step, where
we employed a region growing algorithm to label some of
the “other text” words as legends. A region is defined as the
“legend box” which is initially empty. Iteratively the words
labeled as “other text” are selected. If they are close to each
other, they are merged, and the bounding box is updated with
the merged region. This process is continued until there is no

merge possible. Finally, the words inside the “legend box” are
classified as legends and rest of the words are classified as
“other text”.

For the experiment, we manually tagged the 2000 words
from 100 figures in the aforementioned seven classes. One
versus all precision, recall and f1 scores are reported in table
III. It is important to note that we predicted the class labels
for two classes “legends” and “other text” with 91% and 57%
accuracy, without desigining any heuristic. Most words are
classified correctly, except for the class “other text”. We believe
this is because they are randomly spread over the images and
do not follow a logical layout structure.

Class Heuristics for classification
X-axis
value

1. Text is a number, 2. Within 10% of image height from
the bottom of the image.

X-axis la-
bel

2. Text is not a number, 2. There’s nothing below the text.

Y-axis
value

1. Text is a number, 2. Within 10% from image width from
the left of the image.

Y-axis la-
bel

1. Text is vertical, 2. Not a number, 3. There’s nothing to
the left of the text.

Figure la-
bel

1. Within 10% of the image height from the top, 2. There’s
nothing above the text.

TABLE II. PRECISION, RECALL AND F1-SCORES FOR THE
CLASSIFICATION OF WORDS IN THE FIGURES.

precision recall f1-score
X-axis value 99% 90% 95%
X-axis label 82% 95% 88%
Y-axis value 97% 95% 95%
Y-axis label 95% 97% 96%
Figure label 83% 73% 78%

Legend 90% 93% 91%
Other text 48% 71% 57%

TABLE III. PRECISION, RECALL AND F1-SCORES FOR THE
CLASSIFICATION OF WORDS IN THE FIGURES.

C. Curve Segmentation and Assignment

The final module in our system is a heuristic algorithm
that separates out the curves in the plots and matches the
plots with the legend text. While a color plot usually has
very few “visually distinguishable” colors, it has more than
thousand distinct RGB values due to “anti-aliasing”, as these
plots are extracted from PDFs. RGB space is not a “natural”
representation of colors as a small Euclidean distance between
two RGB values doesn’t imply that the colors are visually

close. Therefore, we converted the images into HSV color
space. In HSV, the hue component determines the color and
the saturation and value components determine the shade of
the color. Therefore, we first quantized the pixels in 36 color
bins based on their hue value (bin size=10, min hue value 0,
max 360).

Three important observations are: 1. Text in the plots
are almost always written in black colors, 2. White and
gray pixels are almost always background values and 3. In
color plots very rarely curves are drawn with black pixels.
Therefore, it was evident that white, gray and black pixels
can be removed. These pixels have low saturation or value.
However, determining such threshold is hard. Our experiments
suggested that if the “value” parameter is less than six and the
saturation parameter is less than eleven, that pixel could be
classified as white,black or gray, and hence removed. Note that
in section III we mentioned that one problem with color graphs
is the presence of the grid structure in the plotting region.
This approach solved that problem. Indeed, some curves are
drawn with black pixels, and hence would be removed by
our algorithm. We sacrifice the recall in favor of precision.
In future, we plan to investigate this problem further.

Given a set of quantized “color” pixels, the problem
reduces to determining the actual number of colors. We sorted
the color bins based on their frequency (number of pixels in
each bin). The bins with high-frequency values correspond
to the curves. Bins are selected iteratively from higher to
lower frequency: from 1 to i such that frequency of bin (i-
1) - frequency of bin (i) > 0.5* frequency of bin (i-1). This
heuristic is motivated by the idea of the rate of change in a
variable.

Overlapping curves pose a challenge when the curves are
drawn by solid bold lines. But for curves with dotted lines,
even overlapping ones can be extracted easily. In future, a
sequential error correction model common in OCR can be
used.

For evaluation, we manually examined the original image
and the reconstructed curves and predicted the number of
colors. On a random sample of 165 images, our algorithm
correctly predicted the number of colors in 82% of cases.
Once the curves are segmented and the text from the figure is
classified, the curve-legend assignment is easy for color curves.
We observed that for almost all plots, the color symbol appears
left or right to the legend text.

VII. CONCLUSION

Line graphs are abundant in scholarly papers. These figures
are generated from tabular data and that data, while very
important, can not be accessed or searched on. We report an
architecture for automated data extraction for such line graphs.
We present an analysis of line graphs to identify easy and
hard cases. Next, we present algorithms for text extraction,
classification and curve extraction from line graphs. We also
briefly discuss our dataset of figures extracted from scholarly
papers. In future, we plan to improve the text extraction
accuracy and consider curve extraction from BW/grayscale line
graphs.

VIII. ACKNOWLEDGMENTS

We gratefully acknowledge partial support from the Na-
tional Science Foundation and NPRP grant # 4-029-1-007
from the Qatar National Research Fund (a member of Qatar
Foundation).

REFERENCES

[1] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 9,
pp. 1124–1137, 2004.

[2] S. Carberry, S. Elzer, and S. Demir, “Information graphics: an untapped
resource for digital libraries,” in Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2006, pp. 581–588.

[3] S. R. Choudhury, P. Mitra, A. Kirk, S. Szep, D. Pellegrino, S. Jones,
and C. L. Giles, “Figure metadata extraction from digital documents,” in
Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on. IEEE, 2013, pp. 135–139.

[4] C. Clark and S. Divvala, “Looking beyond text: Extracting figures,
tables, and captions from computer science paper,” 2015.

[5] R. P. Futrelle, “Strategies for diagram understanding: Object/spatial data
structures, animate vision, and generalized equivalence,” in Proceedings
of the 10th ICPR, 1990, pp. 403–408.

[6] R. P. Futrelle and N. Nikolakis, “Efficient analysis of complex diagrams
using constraint-based parsing,” in Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on, vol. 2.
IEEE, 1995, pp. 782–790.

[7] W. Huang, C. L. Tan, and W. K. Leow, “Model-based chart image
recognition,” in Graphics Recognition. Recent Advances and Perspec-
tives. Springer, 2004, pp. 87–99.

[8] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. Gomez i Bigorda,
S. Robles Mestre, J. Mas, D. Fernandez Mota, J. Almazan Almazan,
and L.-P. de las Heras, “Icdar 2013 robust reading competition,” in
Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on. IEEE, 2013, pp. 1484–1493.

[9] S. Kataria, W. Browuer, P. Mitra, and C. Giles, “Automatic extraction
of data points and text blocks from 2-dimensional plots in digital
documents,” in Proceedings of the 23rd national conference on Artificial
intelligence, vol. 2, 2008, pp. 1169–1174.

[10] J. Ledlie, P. Gardner, and M. Seltzer, “Network coordinates in the wild,”
in Proceedings of the 4th USENIX conference on Networked systems
design & implementation. USENIX Association, 2007, pp. 22–22.

[11] X. Lu, S. Kataria, W. J. Brouwer, J. Z. Wang, P. Mitra, and C. L. Giles,
“Automated analysis of images in documents for intelligent document
search,” IJDAR, vol. 12, no. 2, pp. 65–81, 2009.

[12] V. Prasad, B. Siddiquie, J. Golbeck, and L. Davis, “Classifying com-
puter generated charts,” in Content-Based Multimedia Indexing, 2007.
CBMI’07. International Workshop on. IEEE, 2007, pp. 85–92.

[13] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer,
“Revision: Automated classification, analysis and redesign of chart
images,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM, 2011, pp. 393–402.

[14] M. Shao and R. Futrelle, “Graphics recognition in pdf documents,” in
Proc. of GREC, 2005.

[15] M. Shao and R. P. Futrelle, “Recognition and classification of figures in
pdf documents,” in Graphics Recognition. Ten Years Review and Future
Perspectives. Springer, 2006, pp. 231–242.

[16] C. Wolf and J.-M. Jolion, “Object count/area graphs for the evaluation
of object detection and segmentation algorithms,” International Journal
of Document Analysis and Recognition (IJDAR), vol. 8, no. 4, pp. 280–
296, 2006.

[17] S. Zhu and R. Zanibbi, “Label detection and recognition for uspto
images using convolutional k-means feature quantization and ada-
boost,” in Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on. IEEE, 2013, pp. 633–637.

