MecStasScript

Mads Bertelsen
June 17, 2019

1 Introduction

This document serves as the documentation for the McStasScript scripting language for python. Its
purpose is to generate McStas instrument files from python which is simply another way of writing
an instrument file. The main advantages is the possibility of using for-loops and that it can be used
directly from a python terminal. The simulation described by the instrument can be executed from
the scripting language and the data can be manipulated before plotting.

2 Installation and configuration

Download all files from github to a directory. The configuration file is called ”configuration.yaml”
and needs to be updated with the paths to the local McStas installation. It is also possible to set
a maximum number of characters per line used in terminal output. Below is an example of my
configuration file.
| —
> paths:
: # path to mcrun, example for OS X
mcrun_path: ”/Applications/McStas —2.5.app/Contents/Resources/mcstas/2.5/bin/”
path to mcstas directory , example for OS X
6 # the mcstas directory should contain the component folders , sources, optics,
7 mcstas_path: 7/ Applications/McStas —2.5.app/Contents/Resources/mcstas/2.5/”
s other:
9 # limit characters per line in terminal output
10 characters_per_line: 117

3 Importing the package

The code is structured as a python package where the classes and functions meant for the user is to be
imported to the python file. In order to import the package, the downloaded directory which contains
the package must be added to the path. The important classes and functions are contained in the
interface package, and are called instr, plotter and functions.

1 import sys

> sys.path.append(’/Users/madsbertelsen /PaNOSC/McStasScript) # Path to package

3 from mcstasscript.interface import instr, plotter , functions

N

4 Documentation
This section describes the classes and their methods.

class McStas_instr

Holds methods for creating a McStas instrument file

Initiating an instance of the class requires a name to be given as the first argument and two optional
keyword arguments currently supported, allowing information on the author an origin of the code. In
the table below the positional arguments are above the dotted line and the keyword arguments are
below.

input type explanation
first argument string name of the instrument
“author string name of the author
origin string origin of the work
mcrun_path string path to local mcrun (overwrites default from config file)

mcstas_path string path to mestas directory (overwrites default from config file)

Below an instance called detector will contain an instrument called ”LOKI_detector” while the instance
named example has a instrument named test with a specified author.

detector = instr.McStas_instr (?” LOKI_detector”)
example = instr.McStas_instr(” test” ,author="Mads Bertelsen”)

McStas_instr method add_parameter

Adds input parameter to instrument, uses class parameter_variable

input type explanation
first argument (optional) string variable type
second argument string name of the parameter
value any default value for the parameter
comment string comment that will be displayed with the variable

Here four different parameters are added to the instrument file using the different allowed keywords.

detector.add_parameter (” wavelength”)

detector.add_parameter (" double” ,” height”, value=1.0, comment="Height in [m]”)
detector.add_parameter (”string” ,”reflection _filename” , comment="Stored reflections”)
detector.add_parameter (”string” ,” data_filename” , value="\"data.dat\””, comment="Data”)

The two first variables called wavelength and height are of the default type because no type was given.
In McStas the default type is a double. The height variable was given a default value and a comment.
The refelction_filename and data_filename are both specified to be strings and the latter was given a
default value, note the \” needed to insert the quotation marks into strings.

McStas_instr method show_parameters

Shows currently defined parameters in the instrument

This method is useful when running the simulation to get an overview of the available instrument
parameters.

1 detector .show_parameters ()

2 wavelength

3 double Theight = 1.0 // Height in [m]

. string reflection_filename // Stored reflections
5 string data_filename = 7data.dat” // Data

McStas_instr method add_declare_var

Adds declared variable to the instrument file

input type explanation
first argument string variable type
second argument string name of the parameter
“value any value for the parameter (can be array)
array int length of array
comment string comment that will be displayed with the variable

Here four different variables are added to the instrument file using some of the different allowed
keywords.

1 detector.add_declare_var (”double”, 7energy”)

> detector.add_declare_var (7int”, 7 flag”)

3 detector.add_declare_var (”double”, ”tube_radius”, value=0.013)

. detector.add_declare_var (”double”, ”displacements”, array=7)

5 detector.add_declare_var (”double”, ”"t_array”, array=4, value=[0.65E—6, 0.65E—6, 1E—6])

When declaring an array the array keyword must be used even when setting the values. The values
are given as a python array as shown in the last example. The declared variables will appear in the
declare section of the instrument file.

McStas_instr method append initialize

Adds line of code to initialize section

This methods adds a line of text to the initialize section of the McStas file and has no keyword
arguments. A similar method called append_initialize_no_new _line exists for adding to the same line
with multiple calls.

1 detector.append_initialize (” energy=pow (2xPI/wavelength*K2V,2)*xVS2E;”)

McStas_instr method show_components

Shows currently available McStas components

Before adding components to our instrument, it is nice to get an overview of the available components.
The method show_components can be called without arguments, and will show the available categories
of McStas components such as sources, optics and samples.

input type explanation
first argument string mname of category to show components in

By specifying a category, the components in that category is shown.

1 detector.show_components(”samples”)

1 Here are all components in the samples category.

> Incoherent Phonon_simple Res_sample Single_crystal
Isotropic_Sqw Powderl Sans_spheres TOFRes_sample
1 Magnon_bcc PowderN SasView_model Tunneling_sample

McStas_instr method component_help

Shows parameters, their defaults and an explanation for given component

input type explanation
first argument string mname of component

The text is shown with some additional formatting highlighting which parameters are required and
optional, along with what the default values are. This information is loaded directly from the local
component file, and any component in the work directory will take priority over the standard version.

1 detector.component_help (” Phonon_simple”)

___ Help Phonon_simple ____________________ o _________
radius [m] // Outer radius of sample in (x,z) plane
yheight [m] // Height of sample in y direction
sigma_abs [barns| // Absorption cross section at 2200 m/s per atom
5 sigma_inc [barns] // Incoherent scattering cross section per atom
¢ a [AA] // fcc Lattice constant
7 b [fm] // Scattering length
M [a.u.] // Atomic mass
[IneV/AA(1)] // Velocity of sound
]

8

10 DW[// Debye—Waller factor
11 T [K] // Temperature
12 target.x = O [m] // position of target to focus at . Transverse coordinate
15 target_y = 0 [m] // position of target to focus at. Vertical coordinate
11 target_z = 0 [m|] // position of target to focus at. Straight ahead.
15 target_index = 0 [1] // relative index of component to focus at, e.g. next is +1
16 focus.r = 0 [m] // Radius of sphere containing target.
17 focus_xw = 0 [m] // horiz. dimension of a rectangular area
s focus.yh = 0 [m] // vert. dimension of a rectangular area
10 focus_aw = 0 [deg] // horiz. angular dimension of a rectangular area
20 focus_ah = 0 [deg] // vert. angular dimension of a rectangular area
gap = 0 [meV] // Bandgap energy (unphysical)

NN

1
22

McStas_instr method add_component

Method for adding a new component to the instrument file

A McStas component describes a part of the instrument including its position and rotation in space.
When adding a new component in McStasScript the name and type must be specified. The add_component
method returns the appropriate component object that can be manipulated directly, but it is also pos-
sible to manipulate through methods in McStas_Instr. Most commonly a component is added to the
end of an instrument file, but the keyword arguments before or after can be used to place the compo-
nent before/after a previously specified component. All component classes are dynamically generated
based on components in your local McStas installation and in the python work directory, and in this
way have all input parameters as class atributes.

N

input type explanation

first argument string name of the component instance

second argument string name of the component to use
AT foat Tist[3] position n (xyz) T TTTTTTTo

AT_RELATIVE string name of earlier component used as reference for position

ROTATED float list[3] rotation around (x,y,z)

ROTATED_RELATIVE string name of earlier component used as reference for rotation

RELATIVE string name of earlier component used as reference

before string name of component this component should be before

after string name of component this component should be after

WHEN string WHEN statement (McStas keyword)

EXTEND string EXTEND c¢ code (McStas keyword)

GROUP string GROUP name (McStas keyword)

JUMP string JUMP string (McStas keyword)

SPLIT int SPLIT value (McStas keyword)

comment string comment that will be displayed with the variable

A component in McStas needs a name, which is the first argument. The second argument select what
component should be used from the component library. Below are some examples of simple use.
detector.add_component (” Origin” ,” Arm”)

src = detector.add_component(”source”, ”Source_simple”, RELATIVE=" Origin”)

detector.add_component (” beam_extraction” , ” Guide_gravity” ,

AT=[0,0,2], RELATIVE="source”)

Here src would by a python object that can be modified to change the source. If one wishes to insert
another component between the source and beam_extraction it can be done with the before or after
keyword.

detector.add_component (” pre_guide_slit”, ”?Slit”, before="beam _extraction” ,
AT=[0,0,1], RELATIVE="source” , comment="Slit before the guide”)

McStas_instr method print_components

Method for printing current list of components to the terminal

To check that the components defined in the documentation so far are in the expected order, the
print_components method is demonstrated. Data on the rotation of components is normally included
but is omited here. This method has no arguments.

detector.print_components ()

Origin Arm AT [0, 0, O] ABSOLUTE
3 source Source_simple AT [0, 0, 0] RELATIVE Origin
pre_guide_slit Slit AT [0, 0, 1] RELATIVE Origin
5 beam_extraction Guide_gravity AT [0, 0, 2] RELATIVE source

McStas_instr method set_component_parameter

Method for setting parameters of a component using a dictionary

This methods sets the parameters of a defined component using a python dictionary.

input type explanation
first argument string name of the component instance to modify
second argument dict dictionary with parameter names and values

1

2)

1

It is possible to add several parameters in one call, and new calls add further parameters.

detector.set_component_parameter (”source”, {”xwidth” : 0.12, "E0” : 7energy”})
detector.set_component_parameter (”source”, {"yheight” : 0.12})

An error will occur if the given parameter name does not match a parameter in the component type.

McStas_instr method print_component

Method for printing information contained in defined component

This method takes the name of a component and prints the current information. We can check that
the parameters and position of a component has been registered correctly.

detector.print_component (”source”)

3 COMPONENT source = Source_simple

1

6

yheight = 0.12 [m]
xwidth = 0.12 [m]
E0 = energy [meV]

7 AT [0, 0, 0] RELATIVE Origin
s ROTATED [0, 0, 0] RELATIVE Origin

This is not intended for copy-pasting into McStas instruments as the syntax is not correct. Generation
of the instrument file is covered later in the documentation. The units are collected from the header
file of the component definition. If a required parameter has not yet been specified, the user will be
reminded when using this method.

McStas_instr method set_component AT
Method for updating position of a component

There are a range of methods for updating information on a component after it has been defined. The
syntax is similar to the original call for add_component in all cases.

input type explanation
first argument string name of component to modify
first argument float list[3] _positionin (xyy2) ______________________
RELATIVE string name of earlier component used as reference for position
detector .set_component AT (”source”, [0.01,0,0])

McStas_instr method set_component ROTATED

Method for updating rotation of a component

input type explanation
first argument string name of component to modify
first argument float list[3] rotation around (x,y,z)
"RELATIVE ~ string name of earlier component used as reference for rotation

detector .set_component ROTATED (” beam _extraction”, [0,2.0,0], RELATIVE=" Origin”)

McStas_instr method set_component RELATIVE
Method for updating RELATIVE reference for both position and rotation

This method will override both positional relative and rotational relative. It has no keyword argu-
ments.

detector .set_component RELATIVE (” beam _extraction”, ”"pre_guide_slit”)

After these updates the output from print_components is shown again to see the changes.

Origin Arm AT [0, 0, O] ABSOLUTE

source Source_simple AT [0.01, 0, 0] RELATIVE Origin
pre_guide_slit Slit AT [0, 0, 1] RELATIVE Origin
beam_extraction Guide_gravity AT [0, 0, 2] RELATIVE pre_guide_slit
Origin Arm ROTATED [0, 0, 0] ABSOLUTE

source Source_simple ROTATED [0, 0, 0] RELATIVE Origin
pre_guide_slit Slit ROTATED [0, 0, 0] RELATIVE Origin
beam_extraction Guide_gravity = ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit

McStas_instr method set_component WHEN
Method for setting WHEN condition on component

The input for this method is a string, which should be a ¢ logical expression involving variables defined
in declare and the state parameters of the neutron.

detector .set_component WHEN (” beam _extraction”, "vx > 07)

McStas_instr method append_component EXTEND

Method for adding a line to the extend section of a component

The EXTEND section adds additional code to a McStas component and its scope includes variables
declared in the instrument file and the component. The number of scattering events in a component
can for example be saved to an external parameter using the SCATTERED keyword. Two events are
subtracted since entering and leaving the guide counts as a scattering event.

detector .append_component EXTEND (” beam _extraction” , "n_scattering = SCATTERED — 27)

McStas_instr method set_component GROUP
Method for setting GROUP name of a component

The GROUP keyword is used to make a number of components parallel in the execution, however the
order still matters. Could for example be used if several guides were simulated after the source, and
each of these would be in the same group.

detector .set_component_GROUP (” beam_extraction”, ”guides”)

McStas_instr method set_component JUMP
Method for setting JUMP statement of a component
The JUMP keyword is an advanced feature of McStas that is similar to a goto. The string given to

the method should contain everything after JUMP in the McStas keyword line, so for example with
the syntax below. Here there is no point in iterating over a guide, and merely shows the syntax.

detector .set_component_ JUMP (” beam _extraction”, "myself iterate 3”)

McStas_instr method set_component SPLIT

7

Method for setting SPLIT value of a component

The McStas SPLIT keyword will split the ray going into a component into a given number of rays whos
total weight is equal to the initial weight. This is useful for example when a complex guide system
takes a lot of computation time and the sample has Monte Carlo choices. It is always important
that the component after the split has Monte Carlo choices, as the same ray will otherwise just be
simulated in an identical manner many times, ultimately achieving the same result with more time
spent.

1 detector .set_component SPLIT (” powder_sample” ; 300)

McStas_instr method set_component_comment

Method for updating the comment on a component
It is also possible to add a comment to a component after it was defined.

McStas_instr method set_component_comment

Method for updating the comment on a component

It is also possible to add a comment to a component after it was defined.

1 detector .set_component_comment (”beam _extraction” , ”Simulating severe misalignment”)
> detector.print_component (”beam _extraction”)

3 // Simulating severe misalignment

: COMPONENT beam_extraction = Guide_gravity

5 AT [0, 0, 2] RELATIVE pre_guide_slit

¢ ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit

McStas_instr method write_c_files

Methods for writing c files to folder named generated_includes

This method will write ¢ files describing the declare, initialize and trace sections of the generated
instrument.

1 detector. write_c_files ()

These can then be included in another McStas file. This is useful as this python tool is most often used
to generate large repeating part of an instrument that can then be included in a regular instrument
file. The instrument file can include them using the %include keyword from McStas as shown below.

1 DECLARE

2 %{

3 // include parameters declared from generate LOKI parts.py
t %include 7 generated_includes/LOKI_detector_-declare.c”

. %)

6

7 INITTALIZE

s %{

o // include initialization code from generate . LOKI_parts.py
10 %include 7 generated_includes/LOKI_detector_initialize.c”
1 %}
12
13 TRACE

14 // include components from generate . LOKI_parts.py
15 %include ”generated_includes/LOKI_detector_component_trace.c

w N

McStas_instr method write_full instrument

Writes the full instrument file with name defined in original McStas_instr call

This method instead writes the entire instrument file using the provided information.

detector. write_full instrument ()

McStas_instr method run_full instrument

Runs McStas simulation of defined instrument and returns array of McStasData objects

This methods runs the simulation using the mcrun commands of the system and returns the resulting
data as a array of McStasData objects. Normally an error will occur if the fodldername already exists,
but using the increment_folder_name keyword parameter the foldername can be updated automatically
to avoid this.

input type explanation
foldername string name of folder that will be created for data
' parameters dict Dictionary with input parameters and their values

ncount int Number of rays to simulate
mpi int Number of mpi threads to use for simulation
custom_flags string Custom mcstas flags added to mcrun launch command
mcrun_path string Absolute path to mcrun (overwrites path from config file)
increment_folder name bool If true, increments data folder name automatically
suppress_output bool If True, no text output will be shown

data = detector.run_full _instrument (foldername="datal” ,

parameters= {"wavelength”:5.1} |
ncount=1E7, mpi=2)

McStas_instr method show_instrument
Shows McStas instrument using mcdisplay

This method calls the mcdisplay command which will display a geometrical representation of the
instrument. The standard method will open a new tab in a browser with a 3D view of the instrument.

input type explanation

parameters dict Dictionary with input parameters and their values

format str "web-gl” provides 3D tab in browser, "window” opens window with 2D views
data = detector.show_instrument (format="window” , parameters={" height”: 0.8})

class McStasData
Holds a single McStas data set in either 1D or 2D

A class to handle data from McStas simulations in a transparent way which provides easy access to
manipulation of the data. The included data is located in the following variables

N

variable type explanation

Intensity float array Numpy array containing intensity

Error float array Numpy array containing error on intensity

Ncount int array Numpy array containing number of rays in each pixel
xaxis float array Numpy array of xaxis if data is one dimensional
metadata metadata class Contains necessary meta data

plot_options plot_options class Preferences for plotting the data

McStasData method set_xlabel
Sets the zlabel of a data set

Method for setting xlabel on a data set, similar methods exists for ylabel and title with same syntax.

data [0].set_xlabel (”custom xlabel [m]”)

McStasData method set_plot_options
Sets plotting preferences for data set

Plotting options are associated with the data set instead of being given during the plotting. All plot
options are given as a dictionary input. Currently the following are available.

name type explanation

log bool or int plot on logarithmic scale

orders_of mag float maximum orders of magnitude for colorscale
colormap string name of colormap to be used

cut_max float cut top of data, 1 is all data

cut_min float cut bottom of data, 1 is all data

left_lim float lower limit of plot

right_lim float higher limit of plot

top_lim float top limit (Only 2D)

bottom _lim float bottom limit (Only 2D)

x_axis_multiplier float Multiplier for xaxis, for example change unit
y_axis_multiplier float Multiplier for yaxis, for example change unit

data [0].set_plot_options (log=True, colormap="hot”)

It is often simpler to access the data using the name of the monitor rather than the index, which
can be done using the function name_search. The function will also find the data if the filename is
given instead of the component name.

PSD_sample = functions.name_search (”PSD_sample” , data)
PSD_sample. set_plot_options (log=True, colormap="hot”)

Since setting the plot options will be a very frequent operation, a function is provided for this particular
operation.

functions.name_plot_options (”PSD_sample”, data, log=True, colormap="hot”)

In most circumstances McStasData objects will be returned from simulations performed with Mec-
StasScript, but it is possible to load a data folder that contains a mccode.sim file and the associated
data. The returned data is a list of McStasData objects.

data = functions.load_data(” data_folder_name”)

10

class make_plot
plots single McStasData object or an array of these
Class for simple plotting of McStasData objects. Will be expanded over time to contain more control

over the resulting plots. Currently only the initialization is done so the returned object has no useful
methods.

input type explanation
first argument McStasData array data to be plotted

Here all data in the array data is plotted according to the preferences stored in the plot_options class
of each data set.

plot = plotter.make _plot(data)

class make_sub_plot
plots single McStasData object or an array of these as subplots
Class for simple plotting of McStasData objects in one window. Will be expanded over time to contain

more control over the resulting plots. Currently only the initialization is done so the returned object
has no useful methods.

input type explanation
first argument McStasData array data to be plotted

Here all data in the array data is plotted according to the preferences stored in the plot_options class
of each data set.

plot = plotter.make_sub_plot (data, log=[1,0,1], max_orders_of_ mag=[10,2,4])

4.1 Advanced use

The parts of the api covered by the documentation so far is the simplest way of using the API, but
some additional methods in the McStas_instr are useful for experienced python users that want more
direct access to the underlying classes.

McStas_instr method get_component

Returns the component class instance of a selected component

It is possible to get direct access to the component instances inside the McStas_instr instance for direct
manipulation. This can make the syntax a bit shorter in some cases.

guide_piece = detector.get_component(”beam _extraction”)
McStas_instr method get_last_ component
Returns the component class instance of the last component in the component sequence

Same as get_component but no argument is needed when returning the last component of the sequence.

guide_piece = detector.get_last_component ()

class component

Holds information on a component and methods for updates and writing to file

11

The component class is used as a superclass for each component type added to the instrument. The
subclass for a specific component type also includes attributes for each parameter of the component,
and these can be changed directly. The class is frozen after initialize so no new attributes can be
created, and in this way misspelled parameter names are caught on user input. Most of the methods
contain in the component class are just passed directly to the McStas_instr and thus does not require
further explanation, they are however listed here for completeness.

component method show_parameters

Equivalent to component_help in McStas_instr, also shows changed parameters

component method show_parameters_simple

Same information as show_parameters, but without use of ANSI colors

component method set_AT

Equivalent to set_component_AT in McStas_instr

component method set ROTATED
FEquivalent to set_component_ ROTATED in McStas_instr

component method set_ RELATIVE
FEquivalent to set_component_ RELATIVE in McStas_instr

component method set_parameters

FEquivalent to set_component_parameter in McStas_instr

component method set_comment

Equivalent to set_component_comment in McStas_instr

component method _freeze

Freezes the object, an error will occur if new attributes are added

component method _unfreeze

Unfreezes the object, new attributes can be added

component method write_component

Writes the component to file

input type explanation
first argument file identifier file identifier ready for writing

component method print_long

Prints information on the component to the terminal

5 Discussion

This section contains discussion on the python module.

12

5.1 Possible improvements / requests

Features that are still missing and should be added. Also keeps track of user requests.

5.1.1 Add code to trace

It should be possible to add code directly to trace, for example include statements. The position of
this code should be relative to components.

5.1.2 FINALLY

Should be possible to add code to the FINALLY section which is ignored so far.

5.1.3 Limits on parameters

Allow user to easily set limits on parameters and generate appropriate input sanitation for instrument
file with error message.

5.1.4 Methods for removing parameters / variables / components

When using the software from a terminal it could be useful to remove components. Might also be
useful to be able to move a component to another location in the sequence.

5.2 Jupyter notebook experience

It is entirely possible to write an instrument file from a jupyter notebook using this tool, but at this
point it behaves more like a script, and thus there is no inherent benefit. The main issue is that
rerunning a cell will cause errors because the same components are added again, and they recognize
the names are not unique. Should instead allow to update components when the same name is used,
but this adds a severe risk of users replacing an earlier component instead of creating a new.

Another issue is the lack of feedback beyond printing all added components. A simple improvement
would be to have a method that prints all changes since last print was executed, which would be a
natural end of each cell.

13

