
9/8/12 Cross Correlation (1)

1/5

The Cross-Correlation package is available on github: https://github.com/keflavich/image_registration.

The goal is to determine the offset between two images with primarily extended structure.

In [1]:

Activating auto-logging. Current session state plus future input saved.
Filename : /Volumes/disk4/gbt/AGBT12B_221_01/ipython_log_2012-09-08.py
Mode : append
Output logging : True
Raw input log : False
Timestamping : False
State : active
 Logging to /Volumes/disk4/gbt/AGBT12B_221_01/ipython_log_2012-09-08.py

In [2]:

In [3]:

In [4]:

Standard Deviations: [0.00456276 0.00438376 0.00516853 0.00389744 0.
0.
 0.00429528 0.00413325]
Error Means: [0.00497512 0.00497512 0.12037047 0.11054405 0. 0.
 0.00423828 0.0046875]
emeans/stds: [1.09037575 1.13489906 23.28909224 28.36321925 nan
 nan 0.98673067 1.13409595]

import statement (with warnings silenced).
with warnings.catch_warnings():
 warnings.filterwarnings("ignore")
 import image_registration
errmsgs = np.seterr(all='ignore') # silence warning messages about div-by-zero

create a simulated image by randomly sampling from a power-law power spectrum with alpha=2
im1 = image_registration.tests.make_extended(100)
create an offset version corrupted by noise
im2 = image_registration.tests.make_offset_extended(im1, 4.76666, -12.33333333333333333333333
subplot(121); img1=imshow(im1)
subplot(122); img2=imshow(im2)

Run the registration methods 100 times each (and hide the output)
offsets_n1,eoffsets_n1 = image_registration.tests.compare_methods(im1,im2,noise=0.1)

plot the simulation data
(note that the "gaussian" approach is hidden; it was problematic)
image_registration.tests.plot_compare_methods(offsets_n1,eoffsets_n1,dx=4.76666666,dy
figure(2); ax=axis([4.7,4.85,-12.23,-12.43])
figure(1); ax=axis([4.7,4.85,-12.23,-12.43])
the outputs below show the x,y standard deviations (i.e., the "simulated error"),
the means of the reported errors (i.e., the measured errors)
and the ratio of the measured error to the simulated error - should be ~1 if correct
the black X is the correct answer

9/8/12 Cross Correlation (1)

2/5

In [5]:

Standard Deviations: [0.00456276 0.00438376 0.00516853 0.00389744 0.
0.
 0.00429528 0.00413325]
Error Means: [0.00497512 0.00497512 0.12037047 0.11054405 0. 0.
 0.00423828 0.0046875]
emeans/stds: [1.09037575 1.13489906 23.28909224 28.36321925 nan
 nan 0.98673067 1.13409595]

plot the simulation data but zoomed in more (same as above otherwise)
(note that the "gaussian" approach is hidden; it was problematic)
image_registration.tests.plot_compare_methods(offsets_n1,eoffsets_n1,dx=4.76666666,dy
figure(2); ax=axis([4.74,4.79,-12.32,-12.35])
figure(1); ax=axis([4.74,4.79,-12.32,-12.35])
the outputs below show the x,y standard deviations (i.e., the "simulated error"),
the means of the reported errors (i.e., the measured errors)
and the ratio of the measured error to the simulated error - should be ~1 if correct
the black X is the correct answer

9/8/12 Cross Correlation (1)

3/5

So how do these methods work? They all use the peak of the cross-correlation, which is most efficiently done via fourier
transforms, to determine the offset.

The "cross_correlation_shift" function selects the cross-correlation peak, then finds the sub-pixel shift using a second order
Taylor expansion.

The "register_images" function uses some linear algebra + fourier space tricks to upsample the image to determine sub-pixel
shifts.

The "chi2_shift" function uses the same trick, but "automatically" determines the upsampling factor based on the values.
The peak is identified, as is a region within (for 2 fitted parameters, , then the original image is magnified to include
only the region.
The errors are determined by marginalizing over the other fitted parameter, BUT it is possible to return the full image if you
are concerned with correlation.

In [6]:

In [7]:

In [8]:

Δχ2

1σ Δ < 2.3χ2

1σ
Δχ2

create a simulated image by randomly sampling from a power-law power spectrum with alpha=2
don't re-make random image... im1 = image_registration.tests.make_extended(100)
create an offset version corrupted by noise
im2noisy = image_registration.tests.make_offset_extended(im1, 4.76666, -12.33333333333333333333333
subplot(131); img1=imshow(im1)
subplot(132); img2=imshow(im2noisy)
subplot(133); img2=imshow(im2)

Run the registration methods 100 times each (and hide the output)
offsets_n5,eoffsets_n5 = image_registration.tests.compare_methods(im1,im2,noise=0.5)

plot the simulation data
(note that the "gaussian" approach is hidden; it was problematic)
image_registration.tests.plot_compare_methods(offsets_n5,eoffsets_n5,dx=4.76666666,dy
figure(2); ax=axis([4.5,5.05,-12.63,-12.03])
figure(1); ax=axis([4.5,5.05,-12.63,-12.03])
the outputs below show the x,y standard deviations (i.e., the "simulated error"),

9/8/12 Cross Correlation (1)

4/5

Standard Deviations: [0.02184051 0.02353286 0.0238039 0.01956646 0.
0.
 0.02186998 0.02339381]
Error Means: [0.00497512 0.00497512 0.13799409 0.12679361 0. 0.
 0.02845703 0.03056641]
emeans/stds: [0.22779339 0.21141177 5.79711994 6.48015051 nan
nan
 1.30119163 1.30660248]

In [9]:

Standard Deviations: [0.02184051 0.02353286 0.0238039 0.01956646 0.
0.
 0.02186998 0.02339381]
Error Means: [0.00497512 0.00497512 0.13799409 0.12679361 0. 0.
 0.02845703 0.03056641]
emeans/stds: [0.22779339 0.21141177 5.79711994 6.48015051 nan
nan
 1.30119163 1.30660248]

the means of the reported errors (i.e., the measured errors)
and the ratio of the measured error to the simulated error - should be ~1 if correct
the black X is the correct answer

plot the simulation data but zoomed in more (same as above otherwise)
(note that the "gaussian" approach is hidden; it was problematic)
image_registration.tests.plot_compare_methods(offsets_n5,eoffsets_n5,dx=4.76666666,dy
figure(2); ax=axis([4.74,4.79,-12.32,-12.35])
figure(1); ax=axis([4.74,4.79,-12.32,-12.35])
the outputs below show the x,y standard deviations (i.e., the "simulated error"),
the means of the reported errors (i.e., the measured errors)
and the ratio of the measured error to the simulated error - should be ~1 if correct
the black X is the correct answer

9/8/12 Cross Correlation (1)

5/5

In [9]:

