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1 Introduction

This course is a thorough introduction to compiler design, focusing on more low-
level and systems aspects rather than high-level questions such as polymorphic
type inference or separate compilation. You will be building several complete end-
to-end compilers for successively more complex languages, culminating in a mildly
optimizing compiler for a safe variant of the C programming language to x86-64
assembly language. For the last project you will have the opportunity to optimize
more aggressively, to implement a garbage collector, or retarget the compiler to an
abstract machine.

In this overview we review the goals for this class and give a general description
of the structure of a compiler. Additional material can be found in the optional
textbook [App98, Chapter 1].

2 Goals

After this course you should know how a compiler works in some depth. In par-
ticular, you should understand the structure of a compiler, and how the source and
target languages influence various choices in its design. It will give you a new ap-
preciation for programming language features and the implementation challenges
they pose, as well as for the actual hardware architecture and the runtime system
in which your generated code executes. Understanding the details of typical com-
pilation models will also make you a more discerning programmer.

You will also understand some specific components of compiler technology,
such as lexical analysis, grammars and parsing, type-checking, intermediate rep-
resentations, static analysis, common optimizations, instruction selection, register
allocation, code generation, and runtime organization. The knowledge gained
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should be broad enough that if you are confronted with the task of contributing
to the implementation of a real compiler in the field, you should be able to do so
confidently and quickly.

For many of you, this will be the first time you have to write, maintain, and
evolve a complex piece of software. You will have to program for correctness,
while keeping an eye on efficiency, both for the compiler itself and for the code it
generates. Because you will have to rewrite the compiler from lab to lab, and also
because you will be collaborating with a partner, you will have to pay close atten-
tion to issues of modularity and interfaces. Developing these software engineering
and system building skills are an important goal of this class, although we will
rarely talk about them explicitly.

3 Compiler Requirements

As we will be implementing several compilers, it is important to understand which
requirement compilers should satisfy. We discuss in each case to what extent it is
relevant to this course.

Correctness. Correctness is absolutely paramount. A buggy compiler is next to
useless in practice. Since we cannot formally prove the correctness of your compil-
ers, we use extensive testing. This testing is end-to-end, verifying the correctness
of the generated code on sample inputs. We also verify that your compiler rejects
programs as expected when the input is not well-formed (lexically, syntactically,
or with respect to the static semantics), and that the generated code raises an ex-
ception as expected if the language specification prescribes this. We go so far as to
test that your generated code fails to terminate (with a time-out) when the source
program should diverge.

Emphasis on correctness means that we very carefully define the semantics of
the source language. The semantics of the target language is given by the GNU
assembler on the lab machines together with the semantics of the actualy machine.
Unlike C, we try to make sure that as little as possible about the source language
remains undefined. This is not just for testability, but also good language design
practice since an unambiguously defined language is portable. The only part we
do not fully define are precise resource constraints regarding the generated code
(for example, the amount of memory available).

Efficiency. In a production compiler, efficiency of the generated code and also
efficiency of the compiler itself are important considerations. In this course, we set
very lax targets for both, emphasizing correctness instead. In one of the later labs
in the course, you will have the opportunity to optimize the generated code.
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The early emphasis on correctness has consequences for your approach to the
design of the implementation. Modularity and simplicity of the code are important
for two reasons: first, your code is much more likely to be correct, and, second, you
will be able to respond to changes in the source language specification from lab to
lab much more easily.

Interoperability. Programs do not run in isolation, but are linked with library
code before they are executed, or will be called as a library from other code. This
puts some additional requirements on the compiler, which must respect certain
interface specifications.

Your generated code will be required to execute correctly in the environment
on the lab machines. This means that you will have to respect calling conventions
early on (for example, properly save callee-save registers) and data layout con-
ventions later, when your code will be calling library functions. You will have to
carefully study the ABI specification [MHJM09] as it applies to C and our target
architecture.

Usability. A compiler interacts with the programmer primarily when there are
errors in the program. As such, it should give helpful error messages. Also, com-
pilers may be instructed to generate debug information together with executable
code in order help users debug runtime errors in their program.

In this course, we will not formally evaluate the quality or detail of your error
messages, although you should strive to achieve at least a minimum standard so
that you can use your own compiler effectively.

Retargetability. At the outset, we think of a compiler of going from one source
language to one target language. In practice, compilers may be required to generate
more than one target from a given source (for example, x86-64 and ARM code),
sometimes at very different levels of abstraction (for example, x86-64 assembly or
LLVM intermediate code).

In this course we will deemphasize retargetability, although if you structure
your compiler following the general outline presented in the next section, it should
not be too difficult to retrofit another code generator. One of the options for the
last lab in this course is to retarget your compiler to produce code in a low-level
virtual machine (LLVM). Using LLVM tools this means you will be able to produce
efficient binaries for a variety of concrete machine architectures.

4 The Structure of a Compiler

Certain general common structures have arisen over decades of development of
compilers. Many of these are based on experience and sound engineering princi-
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ples rather than any formal theory, although some parts, such as parsers, are very
well understood from the theoretical side. The overall structure of a typical com-
piler is shown in Figure 1.

Figure 1: Structure of a typical compiler2

In this course, we will begin by giving you the front and middle ends of a simple
compiler for a very small language, and you have to write the back end, that is,
perform instruction selection and register allocation. Consequently, Lectures 2 and
3 will be concerned with instruction selection and register allocation, respectively,
so that you can write your own.

We then turn to the front end and follow through the phases of a compiler in
order to complete the picture, while incrementally complicating the language fea-
tures you have to compile. Roughly, we will proceed as follows, subject to adjust-
ment throughout the course:

1. A simple expression language

2. Loops and conditionals

3. Functions

4. Structs and arrays
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5. Memory safety and basic optimizations

The last lab is somewhat open-ended and allows either to implement further opti-
mizations, a garbage collector, or a new back end which uses the low-level virtual
machine (LLVM)1.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[MHJM09] Michael Matz, Jan Hubic̆ka, Andreas Jaeger, and Mark Mitchell. Sys-
tem V application binary interface, AMD64 architecture processor sup-
plement. Available at http://www.x86-64.org/documentation/abi.
pdf, May 2009. Draft 0.99.

1See http://llvm.org
2Thanks to David Koes for this diagram.
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1 Introduction

In this lecture we discuss the process of instruction selection, which typcially turns
some form of intermediate code into a pseudo-assembly language in which we
assume to have infinitely many registers called “temps”. We next apply register
allocation to the result to assign machine registers and stack slots to the temps be-
fore emitting the actual assembly code. Additional material regarding instruction
selection can be found in the textbook [App98, Chapter 9].

2 A Simple Source Language

We use a very simple source language where a program is just a sequence of assign-
ments terminated by a return statement. The right-hand side of each assignment is
a simple arithmetic expression. Later in the course we describe how the input text
is parsed and translated into some intermediate form. Here we assume we have
arrived at an intermediate representation where expressions are still in the form of
trees and we have to generate instructions in pseudo-assembly. We call this form
IR Trees (for “Intermediate Representation Trees”).

We describe the possible IR trees in a kind of pseudo-grammar, which should
not be read as a description of the concrete syntax, but the recursive structure of
the data.
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Programs ~s ::= s1, . . . , sn sequence of statements

Statements s ::= t = e assignment
| return e return, always last

Expressions e ::= c integer constant
| t temp (variable)
| e1 ⊕ e2 binary operation

Binops ⊕ ::= + | − | ∗ | / | . . .

3 Abstract Assembly Target Code

For our very simple source, we use an equally simple target. Our target language
has fixed registers and also arbitrary temps, which it shares with the IR trees.

Programs ~i ::= i1, . . . , in

Instructions i ::= d← s
| d← s1 ⊕ s2

Operands d, s ::= r register
| c immediate (integer constant)
| t temp (variable)

We use d to denote operands of instructions that are destinations of operations
and s for sources of operations. There are some restrictions. In particular, immediate
operands cannot be destinations. More restrictions arise when memory references
are introduced. For example, it may not be possible for more than one operand to
be a memory reference.

4 Maximal Munch

The simplest algorithm for instruction selection proceeds top-down, traversing the
input tree and recursively converting subtrees to instruction sequences. For this to
work properly, we either need to pass down or return a way to refer to the result
computed by an instruction sequence. In lecture, it was suggest to pass down a
destination for the result of an operation. We therefore have to implement a function

cogen(d, e) a sequence of instructions implementing e,
putting the result into destination d.
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e cogen(d, e) proviso
c d← c

t d← t

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 new)

If our target language has more specialized instructions we can easily extend
this translation by matching against more specialized patterns and matching against
them first. For example: if we want to implement multiplication by the constant 2
with a left shift, we would add one or two patterns for that.

e cogen(d, e) proviso
c d← c

t d← t

2 ∗ e cogen(t, e), d← t << 1 (t new)
e ∗ 2 cogen(t, e), d← t << 1 (t new)

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 new)

Since ∗ is a binary operation (that is, ⊕ can be ∗), the patterns for e now need
to be matched in order to avoid ambiguity and to obtain the intended more effi-
cient implementation. If we always match the deepest pattern first at the root of
the expression, this algorithm is called maximal munch. This is also a first indica-
tion where the built-in pattern matching capabilities of functional programming
languages can be useful for implementing compilers.

Now the translation of statements is straightforward. We write cogen(s) for
the sequence of instructions implementing statement s. We assume that there is a
special return register rret so that a return instruction is translated to a move into
the return register.

s cogen(s)

t = e cogen(t, e)

return e cogen(rret, e)

Now a sequence of statements constituting a program is just translated by ap-
pending the sequences of instructions resulting from their translations. Maximal
munch is easy to implement (especially in a language with pattern matching) and
gives acceptable results in practice.

5 Optimal Instruction Selection

If we have a good cost model for instructions, we can often find better translations
if we apply dynamic programming techniques to construct instruction sequences
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of minimal cost, from the bottom of the tree upwards. In fact, one can show that
we get “optimal” instruction selection in this way if we start with tree expressions.

On modern architectures it is very difficult to come up with realistic cost mod-
els for the time of individual instructions. Moreover, these costs are not additive
due to features of modern processors such as pipelining, out-of-order execution,
branch predication, hyperthreading, etc. Therefore, optimal instruction selection is
more relevant when we optimize code size, because then the size of instructions is
not only unambiguous but also additive. Since we do not consider code-size opti-
mizations in this course, we will not further discuss optimal instruction selection.

6 x86-64 Considerations

Assembly code on the x86 or x86-64 architectures is not as simple as the assump-
tions we have made here, even if we are only trying to compile straight-line code.
One difference is that the x86 family of processors has two-address instructions,
where one operand will function as a source as well as destination of an instruction,
rather than three-address instructions as we have assumed above. Another is that
some operations are tied to specific registers, such as integer division, modulus,
and some shift operations. We briefly show how to address such idiosyncracies.

To implement a three-address instruction we replace it by a move and a two-
address instruction. For example:

3-address form 2-address form x86-64 assembly
d← s1 + s2 d← s1 MOVL s1, d

d← d+ s2 ADDL s2, d

Here we use the GNU assembly language conventions where the destination of
an operation comes last, rather than the Intel assembly language format where it
comes first.

In order to deal with operations tied to particular registers we have to make
similar transformations. It is important to keep the live range of these registers
short, so they interfere with other registers as little as possible, as explained in Lec-
ture 3 on register allocation. As an example, we consider integer division. On the
left is the simple three-address form. In the middle is a reasonable approximation
in two-address form. On the right is the actual x86 assembly.

3-address form 2-address form (approx.) x86-64 assembly
d← s1 / s2 %eax← s1 MOVL s1, %eax

CLTD

%eax← %eax / s2 IDIVL s2
|| %edx← %eax % s2
d← %eax MOVL %eax, d
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Here, CLTD sign-extends %eax into %edx. In the Intel Instruction Set Reference, this
instruction is called CDQ. This is one of relatively few places where the Intel and
GNU assembler names of instructions differ. The IDIVL s2 instruction divides the
64-bit number represented by [%edx, %eax] by s2, storing the quotient in %eax and
the remainder in %edx. Note that the IDIVL instruction will raise a division by zero
exception when s2 is 0, or if there is an overflow (if we divide the smallest 32 bit
integer in two’s complement representation, −231, by −1).

7 Extensions

In general, there will be interdependencies of instruction selection and register al-
location. The register allocation depends on which instructions are executed, es-
pecially for special instructions on x86-64. Also some of the analysis needed for
register allocation may depend on the selected instructions. Conversely, however,
optimal instructions may depend on the register assignment. For these and similar
reasons, recent advanced compilers, especially those following the so-called SSA
intermediate representation combine register allocation and code generation into a
joint phase.

Questions

1. How can you implement the data structures for an intermediate representa-
tion as defined in this lecture?

2. What are the advantages of working with a 3-address intermediate represen-
tation compared to a 2-address representation and vice versa?

3. What is the advantage and disadvantage of using macro expansion for in-
struction selection, i.e., to associate exactly one instruction sequence to each
individual piece of the intermediate language?

4. Why do many CPUs provide such an asymmetric set of instructions? Why
do they not just provide us with all useful instructions and no special register
requirements?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.
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1 Introduction

In this lecture we discuss register allocation, which is one of the last steps in a com-
piler before code emission. Its task is to map the potentially unbounded numbers of
variables or “temps” in pseudo-assembly to the actually available registers on the
target machine. If not enough registers are available, some values must be saved to
and restored from the stack, which is much less efficient than operating directly on
registers. Register allocation is therefore of crucial importance in a compiler and
has been the subject of much research. Register allocation is also covered thor-
ougly in the textbook [App98, Chapter 11], but the algorithms described there are
complicated and difficult to implement. We present here a simpler algorithm for
register allocation based on chordal graph coloring due to Hack [Hac07] and Pereira
and Palsberg [PP05]. Pereira and Palsberg have demonstrated that this algorithm
performs well on typical programs even when the interference graph is not chordal.
The fact that we target the x86-64 family of processors also helps, because it has 16
general registers so register allocation is less “crowded” than for the x86 with only
8 registers (ignoring floating-point and other special purpose registers).

Most of the material below is based on Pereira and Palsberg [PP05]1, where
further background, references, details, empirical evaluation, and examples can be
found.

2 Building the Interference Graph

Two variables need to be assigned to two different registers if they need to hold
two different values at some point in the program. This question is undecidable in

1Available at http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf
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general for programs with loops, so in the context of compilers we reduce this to
liveness. A variable is said to be live at a given program point if it will be used in
the remainder of the computation. Again, we will not be able to able to accurately
predict at compile time whether this will be the case, but we can approximate live-
ness through a particular form of dataflow analysis discussed in the next lecture. If
we have (correctly) approximated liveness information for variables then two vari-
ables cannot be in the same register wherever their live ranges overlap, because
they may both be then used at the same time.

In our simple straight-line expression language, this is particularly easy. We
traverse the program backwards, starting at the last line. We note that the return
register, %eax, is live after the last instruction. If a variable is live on one line, it is
live on the preceding line unless it is assigned to on that line. And a variable that
is used on the right-hand side of an instruction is live for that instruction.2

As an example, we consider the simple straight-line computation of the fifth
Fibonacci number, in our pseudo-assembly language. We list with each instruction
the variables that are live before the line is executed. These are called the variables
live-in to the instruction.x

live-in

f1 ← 1 ·
f2 ← 1 f1
f3 ← f2 + f1 f2, f1
f4 ← f3 + f2 f3, f2
f5 ← f4 + f3 f4, f3
%eax ← f5 f5
return %eax return register

The nodes of the interference graph are the variables and registers of the program.
There is an (undirected) edge between two nodes if the corresponding variables
interfere and should be assigned to different registers. There are never edges from
a node to itself, because, at any particular use, variable x is put in the same register
as variable x. We distinguish the two forms of instructions.

• For an t← s1 ⊕ s2 instruction we create an edge between t and any different
variable ti 6= t live after this line, i.e., live-in at the successor. t and ti should
be assigned to different registers, because otherwise the assignment to t could
destroy the proper contents of ti.

• For a t← s instruction (move) we create an edge between t and any variable
ti live after this line different from t and s. We omit the potential edge between

2Note that we do not always have to put the same variable in the same register at all places,
but could possibly choose different registers for the same variables at different instructions (given
suitable copying back and forth). But SSA already takes care of this issue as we will see later.
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t and s because if they happen to be assigned to the same register, they still
hold the same value after this (now redundant) move. Of course, there may
be other occurrences of t and s which force them to be assigned to different
registers.

For the above example, we obtain the following interference graph.

f1 f2 f3 f4 f5 %eax

Here, the register %eax is special, because, as a register, it is already predefined
and cannot be arbitrarily assigned to another register. Special care must be taken
with predefined registers during register allocation; see some additional remarks
in Section 9.

3 Register Allocation via Graph Coloring

Once we have constructed the interference graph, we can pose the register allo-
cation problem as follows: construct an assignment of K colors (representing K
registers) to the nodes of the graph (representing variables) such that no two con-
nected nodes are of the same color. If no such coloring exists, then we have to save
some variables on the stack which is called spilling.

Unfortunately, the problem whether an arbitrary graph is K-colorable is NP-
complete for K ≥ 3. Chaitin [Cha82] has proved that register allocation is also
NP-complete by showing that for any graph G there exists some program which
has G as its interference graph. In other words, one cannot hope for a theoreti-
cally optimal and efficient register allocation algorithm that works on all machine
programs.

Fortunately, in practice the situation is not so dire. One particularly important
intermediate form is static single assignment (SSA). Hack [Hac07] observed that for
programs in SSA form, the interference graph always has a specific form called
chordal. Coloring for chordal graphs can be accomplished in time O(|V | + |E|)
(hence at most quadratic in size) and is quite efficient in practice. Better yet, Pereira
and Palsberg [PP05] noted that as much as 95% of the programs occurring in prac-
tice have chordal interference graphs anyhow. Moreover, using the algorithms de-
signed for chordal graphs behaves well in practice even if the graph is not quite
chordal, which will just lead to unnecessary spilling, not incorrectness. Finally, the
algorithms needed for coloring chordal graphs are quite easy to implement com-
pared, for example, to the complex algorithm in the textbook. You are, of course,
free to choose any algorithm for register allocation you like, but we would suggest
one based on chordal graphs explained in the remainder of this lecture.
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4 Chordal Graphs

An undirected graph is chordal if every cycle with 4 or more nodes has a chord, that
is, an edge not part of the cycle connecting two nodes on the cycle. Consider the
following three examples:

a b

d c

a b

d c

a b

e

d c

a b

d c
not chordal chordal not chordal chordal

Only the second and fourth are chordal (how many cycles need to be checked for
chords?). In the other two, the cycle abcd does not have a chord. In particular, the
effect of the non-chordality is that a and c as well as b and d, respectively, can safely
use the same color, unlike in the chordal case.

On chordal graphs, optimal coloring can be done in two phases, where optimal
means using the minimum number of colors. In the first phase we determine a
particular ordering of the nodes in which we proceed when coloring the nodes.
This order is called simplicial elimination ordering. In the second phase we apply
greedy coloring based on this order. These are explained in the next two sections.

5 Simplicial Elimination Ordering

A node v in a graph is simplicial if its neighborhood forms a clique, that is, all
neighbors of v are connected to each other, hence all need different colors. An
ordering v1, . . . , vn of the nodes in a graph is called a simplicial elimination ordering
if every node vi is simplicial in the subgraph v1, . . . , vi. Interestingly, a graph has
a simplicial elimination ordering if and only if it is chordal. That is, we will not be
making a suboptimal decision on those graphs by pretending that all previously
occurring neighbors need to be assigned different colors. Furthermore, the number
of colors needed for a chordal graph is at most the size of its largest clique.

We can find a simplicial elimination ordering using maximum cardinality search,
which can be implemented to run in O(|V | + |E|) time (so at most quadratic in
the size of the program). The algorithm associates a weight wt(v) with each vertex
which is initialized to 0 updated by the algorithm. The weight w(v) represents
how many neighbors of v have been chosen earlier during the search. We write
N(v) for the neighborhood of v, that is, the set of all adjacent nodes.

If the graph is not chordal, the algorithm will still return some ordering al-
though it will not be simplicial. Such an ordering from a non-chordal graph can
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still be used correctly in the coloring phase, but does not guarantee that only the
minimal numbers of colors will be used. Essentially, for non-chordal graphs, gen-
erating an elimination ordering in the way described here amounts to pretending
that all nodes of the neighborhood are in conflict, which is conservative but sub-
optimal. For chordal graphs the assumption is actually justified and the correctly
allocated registers are also optimal.

Algorithm: Maximum cardinality search
Input: G = (V,E) with |V | = n
Output: A simplicial elimination ordering v1, . . . , vn
For all v ∈ V set wt(v)← 0
Let W ← V
For i← 1 to n do

Let v be a node of maximal weight in W
Set vi ← v
For all u ∈W ∩N(v) set wt(u)← wt(u) + 1
Set W ←W \ {v}

In our example,

f1 f2 f3 f4 f5 %eax

if we pick f1 first, the weight of f2 will become 1 and has to be picked second,
followed by f3 and f4. Only f5 is left and will come last, ignoring here the node
%eax which is already colored into a special register. It is easy to see that this is
indeed a simplicial elimination ordering.

In contrast, f2, f4, f3, . . . is not, because the neighborhood of f3 in the subgraph
f2, f4, f3 does not form a clique. Indeed, when giving arbitrary (let’s say different)
colors to f2 and f4 in this order, they would require f3 to assume a third color,
which is suboptimal.

6 Greedy Coloring

Given an ordering, we can apply greedy coloring by simply assigning colors to the
vertices in this order, always using the lowest available color. Initially, no colors
are assigned to nodes in V . We write ∆(G) for the maximum out-degree of a node
in G. The algorithm will always assign at most ∆(G) + 1 colors. If the ordering is a
simplicial elimination ordering, the result is furthermore guaranteed to be optimal,
i.e., use the fewest possible colors.
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Algorithm: Greedy coloring
Input: G = (V,E) and ordered sequence v1, . . . , vn of nodes.
Output: Assignment col : V → {0, . . . ,∆(G)}.
For i← 1 to n do

Let c be the lowest color not used in N(vi)
Set col(vi)← c

In our example, we would just alternate color assigments:

0 1 0 1 0

f1 f2 f3 f4 f5 %eax

Of course, %eax is represented by one of the colors. Assuming this color is 0 and
%edx is the name of register 1, we obtain the following program:

%eax ← 1
%edx ← 1
%eax ← %edx + %eax

%edx ← %eax + %edx

%eax ← %edx + %eax

%eax ← %eax // redundant self move

It should be apparent that some optimizations are possible. Some are imme-
diate, such as the redundant move of a register to itself. We discuss another one
called register coalescing in Section 8.

7 Register Spilling

So consider that we have applied the above coloring algorithm and it turns out
that there are more colors needed than registers available. In that case we need to
save some temporary values. In our runtime architecture, the stack is the obvious
place. One convenient way to achieve this is to simply assign stack slots instead
of registers to some of the colors. The choice of which colors to spill can have a
drastic impact on the running time. Pereira and Palsberg suggest two heuristics:
(i) spill the least-used color, and (ii) spill the highest color assigned by the greedy
algorithm. For programs with loops and nested loops, it may also be significant
where in the programs the variables or certain colors are used: keeping variables
used frequently in inner loops in registers may be crucial for certain programs.

Once we have assigned stack slots to colors, it is easy to rewrite the code using
temps that are spilled if we reserve a register in advance for moves to and from the
stack when necessary. For example, if %r11 on the x86-64 is reserved to implement
save and restore when necessary, then
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t ← t + s

where t is assigned to stack offset 8 and s to %eax can be rewritten to

%r11 ← 8(%rsp)
%r11 ← %r11 + %eax

8(%rsp) ← %r11

Sometimes, this is unnecessary because some operations can be carried out di-
rectly with memory references. So the assembly code for the above could be shorter

ADDL %eax, 8(%rsp)

although it is not clear whether and how much more efficient this might be than a
3-instruction sequence

MOVL 8(%rsp), %r11

ADDL %eax, %r11

MOVL %r11, 8(%rsp)

We recommend generating the simplest uniform instruction sequences for spill
code.

Extensions Heuristic factors that are used for register allocation especially for
breaking ties in deciding which temps to spill into the memory include

• values that rematerialize easily, i.e., that can be recomputed easily (say with 1
or 2 instructions) from other registers or at least loaded from or recomputed
easily from few memory accesses. When rematerializing from memory, the
placement of the instruction needs to be scheduled appropriately for cache
and pipeline efficiency reasons.

• values that (approximately) will not be used quickly again when following
the (likely) control flow, counting loop bodies as “closer” than loop exits.

• values that interfere with many others.

Especially on SSA programs, deciding on register spilling can sometimes be more
efficient before final register allocation, which can help the interplay with instruc-
tion selection. On SSA programs, register allocation can be done without explicitly
constructing the interference graph (based on a postfix order of the dominance
tree). The reason is that the central SSA relation called dominance tree defines a
simplicial elimination order by doing a prefix traversal order of the dominance
tree, such that register allocation is immediate. It, thus, makes sense to reconsider
register allocation and interference graph construction for possible simplifications
in case you later choose to implement SSA.
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8 Register Coalescing

After register allocation, a common further optimization is used to eliminate register-
to-register moves called register coalescing. Algorithms for register coalescing are
usually tightly integrated with register allocation. In contrast, Pereira and Palsberg
describe a relatively straightforward method that is performed entirely after graph
coloring called greedy coalescing.

Greedy coalescing follows the principle

1. Consider each move between variables t ← s occurring in the program in
turn.

2. If t and s are the same color, the move can be eliminated without further
action.

3. If there is an edge between them, that is, they interfere, they cannot be coa-
lesced.

4. Otherwise, if there is a color c which is not used in the neighborhoods of t
and s, i.e., c 6∈ N(t)∪N(s), and which is smaller than the number of available
registers, then the variables t and s are coalesced into a single new variable
u with color c. Then create edges from u to any vertex in N(t) ∪ N(s) and
remove t and s from the graph.

Because of the tested condition, the resulting graph is still K-colored, where K is
the number of available registers. Of course, we also need to eventually rewrite the
program appropriately to maintain a correspondence with the graph.

This simple greedy coalescing will eliminate the redundant self move in the ex-
ample above. Optimal register coalescing can be done using a reduction to integer
linear programming, which can be too slow.

9 Precolored Nodes

Some instructions on the x86-64, such as integer division IDIV, require their argu-
ments to be passed in specific registers and return their results also in specific reg-
isters. There are also call and ret instructions that use specific registers and must
respect caller-save and callee-save register conventions. We will return to the issue
of calling conventions later in the course. When generating code for a straight-line
program as in the first lab, some care must be taken to save and restore callee-save
registers in case they are needed.

First, for code generation, the live range of the fixed registers should be limited
to avoid possible correctness issues and simplify register allocation.

Second, for register allocation, we can construct an elimination ordering as if
all precolored nodes were listed first. This amounts to the initial weights of the
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ordinary vertices being set to the number of neighbors that are precolored before
the maximum cardinality search algorithm starts. The resulting list may or may not
be a simplicial elimination ordering, but we can nevertheless proceed with greedy
coloring as before.

10 Summary

Register allocation is an important phase in a compiler. It uses liveness information
on variables to map unboundedly many variables to a finite number of registers,
spilling temporaries onto stack slots if necessary. The algorithm described here
is due to Hack [Hac07] and Pereira and Palsberg [PP05]. It is simpler than the
one in the textbook and appears to perform comparably. It proceeds through the
following passes:

1. Build the interference graph from the liveness information.

2. Order the nodes using maximum cardinality search.

3. Color the graph greedily according to the elimination ordering.

4. Spill if more colors are needed than registers available.

5∗ Coalesce non-interfering move-related nodes greedily.

The last step, coalescing, is an optimization which is not required to generate cor-
rect code. Variants such as a separate spilling pass before coloring are described in
the references above can further improve the efficiency of the generated code.

On chordal graphs, which come from SSA programs and often arise directly,
register allocations is polynomial and efficient in practice. Optimal register coa-
lescing and optimal spilling, however, are still NP-complete. Even when using
heuristics, register allocation may consume the most time during a compiler run.

Questions

1. Why does register allocation take such a long time? It is polynomial isn’t it?

2. Is it safe to restrict the interference graph definition for the instruction t ←
s1 ⊕ s2 to the case where t is live after that line?

3. What is the advantage of working with the intuition “overlapping live ranges”
compared to the construction given in Section 2?

4. Does it make a difference where we start our register allocation, i.e., where
we start the construction of a simplicial order?
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5. Is register allocation for programs with mixed data types more difficult than
for programs with uniform types? Why or why not?

6. Why is chordality of a graph interesting for register allocation?

7. Why should one worry about allocating half registers of lower data width?
Isn’t accessing words out of double words etc. inefficient? Is accessing bytes
out of words inefficient?

8. Will register coalescing work better on 2-address or 3-address instruction
forms?
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1 Introduction

We will see different kinds of program analyses in the course, most of them for
the purpose of program optimization. The first one, liveness analysis, is required
for register allocation. A variable is live at a given program point if it will be used
during the remainder of the computation, starting at this point. We use this infor-
mation to decide if two variables could safely be mapped to the same register, as
detailed in the last lecture.

Is liveness decidable? Like many other properties of programs, liveness is un-
decidable if the language we are analyzing is Turing-complete. The approximation
we describe here is standard, although its presentation is not. Chapter 10 of the
textbook [App98] has a classical presentation.

2 Liveness by Backward Propagation

Consider a 3-address instruction applying a binary operator ⊕:

x ← y ⊕ z

There are two reasons a variable may be live at this instruction, by which we mean
live just before the instruction is executed. The first is immediate: if a variable (here:
y and z) is used at an instruction, it is used in the computation starting from here.
The second is slightly more subtle: since we execute the following instruction next,
anything we determine is live at the next instruction is also live here. There is one
exception to this second rule: because we assign to x, the value of x coming into
this instruction does not matter (unless it is y or z), even if it is live at the next
instruction. In summary,
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1. y and z are live at an instruction x← y ⊕ z.

2. u is live at x← y ⊕ z if u is live at the next instruction and u 6= x.

Similarly, for an instruction x← c with a constant c, we find that u is live at this
instruction if u is live at the next instruction and u 6= x.

As a last example, x is live at a return instruction return x, and nothing else is
live there.

If we have a straight-line program, it is easy to compute liveness information
by going through the program backwards, starting from the return instruction at
the end. In that case, it is also precise rather than an approximation. As an exam-
ple, one can construct the set of live variables at each line in this simple program
bottom-up, using the two rules above.x

Instructions Live-in Variables
x1 ← 1 ·
x2 ← x1 + x1 x1
x3 ← x2 + x1 x1, x2
y2 ← x1 + x2 x1, x2, x3
y3 ← y2 + x3 y2, x3
return y3 y3

For example, looking at the 4th line, we see that x1 and x2 are live because of the
first rule (they are used) and x3 is live because it is live at the next instructions and
different from y2.

3 Liveness Analysis in Logical Form

Before we generalize to a more complex language of instructions, we try to specify
the rules for liveness analysis in a symbolic form to make them more concise and
to avoid any potential ambiguity. For this we give each instruction in a program a
line number or label. If an instruction has label l, we write l + 1 for the label of the
next instruction.

We also introduce the predicate live(l, x) which should be true when variable
x is live at line l. We then turn the rules stated informally in English into logical
rules.

l : x← y ⊕ z

live(l, y)
live(l, z)

L1

l : x← y ⊕ z
live(l + 1, u)
x 6= u

live(l, u)
L2
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Here, the formulas above the line are premises of the inference rule and the
formulas below the line are the conclusions. If all premises are true, we know all
conclusions must be true. To the right of the line we write the name of the inference
rule. For example, we can read rule L1 as: “If line l has the form x ← y ⊕ z then y is
live at l and z is live at l.”

This is somewhat more abstract than the backward propagation algorithm be-
cause it does not specify in which order to apply these rules. We can now add more
rules for different kinds of instructions.

l : return x

live(l, x)
L3

l : x← c
live(l + 1, u)
x 6= u

live(l, u)
L4

If we only have binary operators, moves of constants into variables, and return
instructions, then these four rules constitute a complete specification of when a
variable should be live at any point in a program.1

This specification also gives rise to an immediate, yet somewhat nondeterminis-
tic implementation. We start with a database of facts, consisting only of the original
program, with each line properly labeled. Then we apply rules in an arbitrary or-
der — whenever the premises are all in the database we add the conclusion to the
database. Applying one rule may enable the application of another rule and so on,
but eventually this process will not gain us any more information. At this point,
we can still apply rules but all conclusions are already in the database of facts. We
say that the database is saturated. Since the rules are a complete specification of our
liveness analysis, by definition a variable x is deemed lived at line l if and only if
the fact live(l, x) is in the saturated database.

This may seem like an unreasonable expensive way to compute liveness, but in
fact it can be quite efficient, both in theory and practice.

In theory, we can look at the rules and determine their theoretical complexity
by (a) counting so-called prefix firings of each rule, and (b) bounding the size of the
completed database. We will return to prefix firings, a notion due to McAllester [McA02],
in a later lecture. Bounding the size of the completed database is easy. We can infer
at most L·V distinct facts of the form live(l, x), where L is the number of lines and V
is the number of variables in the program. Counting prefix firings does not change
anything here, and we get a theoretical complexity of O(L · V ) for the analysis so
far.

In practice, there are a number of ways logical rules and saturation can be
implementation efficiently. One uses Binary Decision Diagrams (BDD’s). Wha-
ley, Avots, Carbin, and Lam [WACL05] have shown scalability of global program

1As pointed out in lecture, we should really also have a pure move instruction x← y. We leave it
to the reader to write out the additional rules.
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analyses using inference rules, transliterated into so-called Datalog programs. See
Smaragdakis and Bravenboer’s work on Doop [SB10] for a different technique. Un-
fortunately, there is no Datalog library that we can easily tie into our compilers, so
while we specify and analyze the structure of our program analyses via the use
of inference rules, we generally do not implement them in this manner. Instead,
we use other implementations that follow the ideas that are identified precisely
and concisely by the logical rules. Because our logical rules identify the funda-
mental principles, this presentation makes it easier to understand what the impor-
tant things of liveness analysis are. This also helps capturing the implementation-
independent commonality among different styles of implementation. We will see
throughout this whole course, that logical rules can capture many other important
concepts in a similarly simple way.

4 Loops and Conditionals

The nature of liveness analysis changes significantly when the language permits
loops. This will also be the case for most other program analyses.

Here, we add two new forms of instructions, and unconditional jump l : goto l′,
and a conditional branch l : if (x ? c) goto l′, where “?” is a relational operator such
as equality or inequality.

We now discuss how liveness analysis should be extended for these two forms
of instructions. A variable u is live at l : goto l′ if it is live at l′. We capture this with
the following inference rule, which is the only rule pertaining to goto

l : goto l′

live(l′, u)

live(l, u)
L5

When executing a conditional branch l : if (x ? c) goto l′ we have two potential
successor instructions: we may go to the next l + 1 if the condition is false or to l′

if the condition is true. In general, we will not be able to predict at compile time
whether the condition will be true or false and usually it will sometimes be true
and sometimes be false during the execution of the program. Therefore we have to
consider a variable live at l if it is live at the possible successor l + 1 or it is live at
the possible successor l′. Also, the instruction uses x, so x is live. Summarizing this
as rules we obtain

l : if (x ? c) goto l′

live(l, x)
L6

l : if (x ? c) goto l′

live(l + 1, u)

live(l, u)
L7

l : if (x ? c) goto l′

live(l′, u)

live(l, u)
L8

These rules are straightforward enough, but if we have backwards branches
we will not be able to analyze in a single backwards pass. As an example to illus-
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trate this point, we will use a simple program for calculating the greatest common
divisor of two positive integers. We assume that at the first statement labeled 1,
variables x1 and x2 hold the input, and we are supposed to calculate and return
gcd(x1, x2). x

Live variables,
Instructions initially

1 : if (x2 = 0) goto 8
2 : q ← x1/x2
3 : t← q ∗ x2
4 : r ← x1 − t
5 : x1 ← x2
6 : x2 ← r
7 : goto 1
8 : return x1

If we start at line 8 we see x1 is live there, but we can conclude nothing (yet) to
be live at line 7 because nothing is known to be live at line 1, the target of the jump.
After one pass through the program, listing all variables we know to be live so far
we arrive at: x

Live variables,
Instructions after pass 1

1 : if (x2 = 0) goto 8 x1, x2
2 : q ← x1/x2 x1, x2
3 : t← q ∗ x2 x1, x2, q
4 : r ← x1 − t x1, x2, t
5 : x1 ← x2 x2, r
6 : x2 ← r r
7 : goto 1 ·
8 : return x1 x1

At this point, we can apply the rule for goto to line 7, once with variable x1 and
once with x2, both of which are now known to be live at line 1. We list the variables
that are now further to the right, and make another pass through the program,
applying more rules.
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x

Live-in variables,
Instructions after pass 1 after pass 2 saturate

1 : if (x2 = 0) goto 8 x1, x2
2 : q ← x1/x2 x1, x2
3 : t← q ∗ x2 x1, x2, q
4 : r ← x1 − t x1, x2, t
5 : x1 ← x2 x2, r
6 : x2 ← r r x1
7 : goto 1 · x1, x2 (from 1)
8 : return x1 x1

At this point our rules have saturated and we have identified all the live vari-
ables at all program points. From this we can now build the interference graph and
from that proceed with register allocation.

The algorithm which saturates the inference rules implies that a variable is des-
ignated live at a given line only if we have definitive reason to believe it might be
live. Consider the program

1 : u1 ← 1
2 : y ← y ∗ x
3 : z ← y + y (z not used, redundant)
4 : x← x− u1
5 : if (x > 0) goto 2
6 : return y

which has a redundant assignment to z in line 3. Since z is never used, z is not
found to be live anywhere in this program. Nevertheless, unless we eliminate line
3 altogether, we have to be careful to note that z interferes with x, u1, and y because
those variables are live on line 4. If not, z might be assigned the same register as x,
y, or u1 and the assignment to z would overwrite one of their values.

In the slightly different program

1 : u1 ← 1
2 : y ← y ∗ x
3 : z ← z + z (z live but never needed)
4 : x← x− u1
5 : if (x > 0) goto 2
6 : return y

the variable z will actually be inferred to be live at lines 1 through 5. This is because
it is used at line 3, although the resulting value is eventually ignored. To capture
redundancy of this kind is the goal of dead code elimination which requires neededness
analysis rather than liveness analysis. We will present this in a later lecture.
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5 Refactoring Liveness

Figure 1 has a summary of the rules specifying liveness analysis.

l : x← y ⊕ z

live(l, y)
live(l, z)

L1

l : x← y ⊕ z
live(l + 1, u)
x 6= u

live(l, u)
L2

l : return x

live(l, x)
L3

l : x← c
live(l + 1, u)
x 6= u

live(l, u)
L4

l : goto l′

live(l′, u)

live(l, u)
L5

l : if (x ? c) goto l′

live(l, x)
L6

l : if (x ? c) goto l′

live(l + 1, u)

live(l, u)
L7

l : if (x ? c) goto l′

live(l′, u)

live(l, u)
L8

Figure 1: Summary: Rules specifying liveness analysis (non-refactored)

This style of specification is precise and implementable, but it is rather repet-
itive. For example, L2 and L4 are similar rules, propagating liveness information
from l+1 to l, and L1, L3 and L6 are similar rules recording the usage of a variable.
If we had specified liveness procedurally, we would try to abstract common pat-
terns by creating new auxiliary procedures. But what is the analogue of this kind
of restructuring when we look at specifications via inference rules? The idea is to
identify common concepts and distill them into new predicates, thereby abstract-
ing away from the individual forms of instructions.

Here, we arrive at three new predicates.

1. use(l, x): the instruction at l uses variable x.

2. def(l, x): the instruction at l defines (that is, writes to) variable x.

3. succ(l, l′): the instruction executed after l may be l′.

Now we split the set of rules into two. The first set analyzes the program and
generates the use, def and succ facts. We run this first set of rules to saturation.
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Afterwards, the second set of rules employs these predicates to derive facts about
liveness. It does not refer to the program instructions directly—we have abstracted
away from them.

We write the second program first. It translates the following two, informally
stated rules into logical language:

1. If a variable is used at l it is live at l.

2. If a variable is live at a possible next instruction and it is not defined at the
current instruction, then it is live at the current instruction.

use(l, x)

live(l, x)
K1

live(l′, u)
succ(l, l′)
¬def(l, u)

live(l, u)
K2

Here, we use ¬ to stand for negation, which is an operator that deserves more at-
tention when using saturation via logic rules. For this to be well-defined we need to
know that def does not depend on live. Any implementation must first saturate the
facts about def before applying any rules concerning liveness, because the absence
of a fact of the form def(l,−) does not imply that such a fact might not be discov-
ered in a future inference—unless we first saturate the def predicate. Here, we can
easily first apply all rules that could possibly conclude facts of the form def(l, u)
exhaustively until saturation. If, after saturation with those rules (J1 . . . J5 below),
def(l, u) has not been concluded, then we know¬def(l, u), because we have exhaus-
tively applied all rules that could ever conclude it. Thus, after having saturated all
rules for def(l, u), we can saturate all rules for live(l, u). This simple saturation in
stages would break down if there were a rule concluding def(l, u) that depends on
a premise of the form live(l′, v), which is not the case.

We return to the first set of rules. It must examine each instruction and extract
the use, def, and succ predicates. We could write several subsets of rules: one subset
to generate def, one to generate use, etc. Instead, we have just one rule for each
instruction with multiple conclusions for all required predicates.

l : x← y ⊕ z

def(l, x)
use(l, y)
use(l, z)
succ(l, l + 1)

J1
l : return x

use(l, x)
J2

l : x← c

def(l, x)
succ(l, l + 1)

J3

l : goto l′

succ(l, l′)
J4

l : if (x ? c) goto l′

use(l, x)
succ(l, l′)
succ(l, l + 1)

J5
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It is easy to see that even with any number of new instructions, this specification
can be extended modularly. The main definition of liveness analysis in rules K1

and K2 will remain unchanged and captures the essence of liveness analysis.
The theoretical complexity does not change, because the size of the database

after each phase is still O(L · V ). The only point to observe is that even though
the successor relation looks to be bounded by O(L · L), there can be at most two
successors to any line l so it is only O(L).

6 Control Flow

Properties of the control flow of a program are embodied in the succ relation intro-
duced in the previous section. The control flow graph is the graph whose vertices are
the lines of the program and with an edge between l and l′ whenever succ(l, l′). It
captures the possible flows of control without regard to the actual values that are
passed.

The textbook [App98] recommends an explicit representation of the control
flow graph, together with the use of basic blocks to speed up analysis. A basic block
is a simple fragment of straight-line code that is always entered at the beginning
and exited at the end. That is

• the first statement may have a label,

• the last statement terminates the control flow of the current block (with a
goto, conditional branch, or a return), and

• all other statements in between have no labels (entry points) and no gotos or
conditional branches (exit points).

From a logical perspective, basic blocks do not change anything, because they just
accumulate a series of simple statements into one compound code block. Hence, it
is not clear if a logical approach to liveness and other program analyses would
actually benefit from basic block representations. But depending on the actual
implementation technique, basic blocks can help surprisingly much, because the
number of nodes that need to be considered in each analysis is reduced somewhat.
Basic blocks basically remove trivial control flow edges and assimilate them into a
single basic block, exposing only more nontrivial control flow edges. Basic blocks
are an example of an engineering decision that looks like a no-op, but can still pay
off. They are also quite useful for SSA intermediate language representations and
LLVM code generation.

Control flow information can be made more precise if we analyze the possible
values that variables may take. Since control flow critically influences other anal-
yses in a similar way to liveness analysis, it is almost universally important. Our
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current analysis is not sensitive to the actual values of variables. Even if we write

l : x← 0
l + 1 : if (x < 0) goto l + 3
l + 2 : return y
l + 3 : return z (unreachable in this program due to values)

we deduce that both y and z may be live at l + 1 even though only return y can
actually be reached. This and similar patterns may seem unlikely, but in fact they
arise in practice in at least two ways: as a result of other optimizations and during
array bounds checking. We may address this issue in a later lecture.

7 Summary

Liveness analysis is a necessary component of register allocation. It can be specified
in two logical rules which depend on the control flow graph, succ(l, l′), as well as
information about the variables used, use(l, x), and defined, def(l, x), at each pro-
gram point. These rules can be run to saturation in an arbitrary order to discover all
live variables. On straight-line programs, liveness analysis can be implemented in
a single backwards pass, on programs with jumps and conditional branches some
iteration is required until no further facts about liveness remain to be discovered.
Liveness analysis is an example of a backward dataflow analysis; we will see more
analyses with similar styles of specifications throughout the course.

Questions

1. Can liveness analysis be faster if we execute it out of order, i.e., not strictly
backwards?

2. Is there a program where liveness analysis gives imperfect information?

3. Is there a class of programs where this does not happen? What is the biggest
such class?
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1 Introduction

In this lecture we first extend liveness analysis to handle memory references and
then consider neededness analysis which is similar to liveness and used to discover
dead code. Both liveness and neededness are backwards dataflow analyses. We then
describe reaching definitions, a forwards dataflow analysis which is an important
component of optimizations such as constant propagation or copy propagation.

2 Memory References

Recall the rules specifying liveness analysis from the previous lecture.

use(l, x)

live(l, x)
K1

live(l′, u)
succ(l, l′)
¬def(l, u)

live(l, u)
K2

We do not repeat the rules for extracting def, use, and succ from the program. They
represent the following:

• use(l, x): the instruction at l uses variable x.

• def(l, x): the instruction at l defines (that is, writes to) variable x.

• succ(l, l′): the instruction executed after l may be l′.

In order to model the store in our abstract assembly language, we add two new
forms of instructions
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• Load: y ←M [x].

• Store: M [x]← y.

All that is needed to extend the liveness analysis is to specify the def, use, and succ
properties of these two instructions.

l : x←M [y]

def(l, x)
use(l, y)
succ(l, l + 1)

J6
l : M [y]← x

use(l, x)
use(l, y)
succ(l, l + 1)

J7

The rule J7 for storing register contents to memory does not define any value, be-
cause liveness analysis does not track memory, only variables which then turn into
registers. Tracking memory is indeed a difficult task and subject of a number of
analyses of which alias analysis is the most prominent. We will consider this in a
later language.

The two rules for liveness itself do not need to change! This is an indication
that we refactored the original specification in a good way.

3 Dead Code Elimination

An important optimization in a compiler is dead code elimination which removes un-
needed instructions from the program. Even if the original source code does not
contain unnecessary code, after translation to a low-level language dead code often
arises either just as an artefact of the translation itself or as the result of optimiza-
tions. We will see an example of these phenomena in Section 5; here we just use a
small example.

In this code, we compute the factorial x! of x. The variable x is live at the first
line. This would typically be the case of an input variable to a program.x

Instructions Live variables
1 : p← 1 x
2 : p← p ∗ x p, x
3 : z ← p+ 1 p, x (z not live⇒ dead code?)
4 : x← x− 1 p, x
5 : if (x > 0) goto 2 p, x
6 : return p p

The only unusual part of the loop is the unnecessary computation of p+ 1.
We may suspect that line 3 is dead code, and we should be able to eliminate

it, say, by replacing it with some nop instruction which has no effect, or perhaps
eliminate it entirely when we finally emit the code. The reason to suspect that line
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3 is dead code is that z is not live at the point where we define it. While this may
be sufficient reason to eliminate the assignment here, this is not true in general. For
example, we may have an assignment such as z ← p/x which is required to raise
an exception if x = 0, or if an overflow occurs, because the result is too large to fit
into the allotted bits on the target architecture (division by -1). Another example
is a memory reference such as z ← M [x] which is required to raise an exception
if the address x has actually not been allocated or is not readable by the executing
process. We will come back to these exceptions in the next section. First, we discuss
another phenomenon exhibited in the following small modification of the program
above. x

Instructions Live variables
1 : p← 1 x, z
2 : p← p ∗ x p, x, z
3 : z ← z + 1 p, x, z (live but not needed)
4 : x← x− 1 p, x, z
5 : if (x > 0) goto 2 p, x, z
6 : return p p

Here we see that z is live in the loop (and before it) even though the value of z does
not influence the final value returned. To see this yourself, note that in the first
backwards pass we find z to be used at line 3. After computing p, x, and z to be
live at line 2, we have to reconsider line 5, since 2 is one of its successors, and add
z as live to lines 5, 4, and 3.

This example shows that liveness is not precise enough to eliminate even simple
redundant instructions such as the one in line 3 above.

4 Neededness

In order to recognize that assignments as in the previous example program are
indeed redundant, we need a different property we call neededness. We will struc-
ture the specification in the same way as we did for liveness: we analyze each
instruction and extract the properties that are necessary for neededness to proceed
without further reference to the program instructions themselves.

The crucial first idea is that the some variables are needed because an instruc-
tion they are involved in may have an effect. Let’s call such variable necessary. For-
mally, we write nec(l, x) to say that x is necessary at instruction l. We use the
notation � for a binary operator which may raise an exception, such as division or
the modulo operator. For our set of instructions considered so far, the following
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are places where variables are necessary because of the possiblity of effects.

l : x← y � z

nec(l, y)
nec(l, z)

E1

l : if (x ? c) goto l′

nec(l, x)
E2

l : return x

nec(l, x)
E3

l : y ←M [x]

nec(l, x)
E4

l : M [x]← y

nec(l, x)
nec(l, y)

E5

Here, x is flagged as necessary at a return statement because that is the final value
returned, and a conditional branch because it is necessary to test the condition. The
effect here is either the jump, or the lack of a jump.

A side remark: on many architectures including the x86 and x86-64, appar-
ently innocuous instructions such as x← x+ y have an effect because they set the
condition code registers. This makes optimizing unstructured machine code quite
difficult. However, in compiler design we have a secret weapon: we only have to
optimize the code that we generate! For example, if we make sure that when we
compile conditionals, the condition codes are set immediately before the branch-
ing instruction examines them, then the implicit effects of other instructions that
are part of code generation are benign and can be ignored. However, such “benign
effects” may be lurking in unexpected places and may perhaps not be so benign
after all, so it is important to reconsider them especially as optimizations become
more aggressive. Possible downsides of such convention choices can partially be
optimized away in the post optimization phase that we will discuss later.

Now that we have extracted when variables are immediately necessary at any
given line, we have to exploit this information to compute neededness. We write
needed(l, x) if x is needed at l. The first rule captures the motivation for designing
the rules for necessary variables.

nec(l, x)

needed(l, x)
N1

This seeds the neededness relation and we need to consider how to propagate it.
Our second rule is an exact analogue of the way we propagate liveness.

needed(l′, u)
succ(l, l′)
¬def(l, u)

needed(l, u)
N2

The crucial rule is the last one. In an assignment x ← y ⊕ z the variables y and z
are needed if x is needed in the remaining computation. If x cannot be shown to
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be needed, then y and z are not needed if ⊕ is an effect free operation. Abstracting
away from the particular instruction, we get the following:

use(l, y)
def(l, x)
succ(l, l′)
needed(l′, x)

needed(l, y)
N3

We see that neededness analysis is slightly more complex than liveness analysis:
it requires three rules instead of two, and we need the new concept of a variable
necessary for an instruction due to effects. We can restructure the program slightly
and could unify the formulas nec(l, x) and needed(l, x). This is mostly a matter of
taste and modularity. Personally, I prefer to separate local properties of instructions
from those that are propagated during the analysis, because local properties are
more easily re-used. The specification of neededness is actually an example of that:
it re-uses use(l, x) in rule N3 which we first introduced for liveness analysis. If we
had structured liveness analysis so that the rules for instructions generate live(l, x)
directly, it would not have worked as well here.

We can now perform neededness analysis on our example program. We have
indexed each variable with the numbers of all rules that can be used to infer that
they are needed (N1, N2, or N3).x

Instructions Needed variables
1 : p← 1 x2

2 : p← p ∗ x p3, x2,3

3 : z ← z + 1 p2, x2

4 : x← x− 1 p2, x3

5 : if (x > 0) goto 2 p2, x1,2

6 : return p p1

At the crucial line 3, z is defined but not needed on line 4, and consequently it is
not needed at line 3 either.

Since the right-hand side of z ← z + 1 does not have an effect, and z is not
needed at any successor line, this statement is dead code and can be optimized
away.

5 Optimization Example

The natural direction for both liveness analysis and neededness analysis is to tra-
verse the program backwards. In this section we present another important anal-
ysis whose natural traversal directions is forward. As motivating example for this
kind of analysis we use an array access with bounds checks.
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In our source language C0 we will have an assignment x = A[0] where A is an
array. We also assume there are (assembly language) variables n with the number
of elements in array A, variable s with the size of the array elements, and a with the
base address of the array. We might then translate the assignment to the following
code:

1 : i← 0
2 : if (i < 0) goto error
3 : if (i ≥ n) goto error
4 : t← i ∗ s
5 : u← a+ t
6 : x←M [u]
7 : return x

The last line is just to create a live variable x. We notice that line 2 is redundant be-
cause the test will always be false. Computationally, we can figure this out in two
steps. First we apply constant propagation to replace (i < 0) by (0 < 0) and then ap-
ply constant folding to evaluate the comparison to 0 (representing falsehood). Line
3 is necessary unless we know that n > 0. Line 4 performs a redundant multiplica-
tion: because i is 0 we know t must also be 0. This is an example of an arithmetic
optimization similar to constant folding. And now line 5 is a redundant addition
of 0 and can be turned into a move u← a, again a simplification of modular arith-
metic.

At this point the program has become

1 : i← 0
2 : nop
3 : if (i ≥ n) goto error
4 : t← 0
5 : u← a
6 : x←M [u]
7 : return x

Now we notice that line 4 is dead code because t is not needed. We can also apply
copy propagation to replace M [u] by M [a], which now makes u not needed so we can
apply dead code elimination to line 4. Finally, we can again apply constant propagation
to replace the only remaining occurrence of i in line 3 by 0 followed by dead code
elimination for line 1 to obtain

1 : nop
2 : nop
3 : if (0 ≥ n) goto error
4 : nop
5 : nop
6 : x←M [a]
7 : return x
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which can be quite a bit more efficient than the first piece of code. Of course, when
emitting machine code we can delete the nop operations to reduce code size.

One important lesson from this example is that many different kinds of opti-
mizations have to work in concert in order to produce efficient code in the end.
What we are interested in for this lecture is what properties we need for the code
to ensure that the optimization are indeed applicable.

We return to the very first optimization of constant propagation. We replaced
the test (i < 0) with (0 < 0). This looks straightforward, but what happens if some
other control flow path can reach the test? For example, we can insert an increment
and a conditional to call this optimization into question.

1 : i← 0 1 : i← 0
2 : if (i < 0) goto error 2 : if (i < 0) goto error
3 : if (i ≥ n) goto error 3 : if (i ≥ n) goto error
4 : t← i ∗ s 4 : t← i ∗ s
5 : u← a+ t 5 : u← a+ t
6 : x←M [u] 6 : x←M [u]
7 : return x 7 : i← i+ 1

8 : if (i < n) goto 2
9 : return x

Even though lines 1–6 have not changed, suddenly we can no longer replace (i < 0)
with (0 < 0) because the second time line 2 is reached, i is 1. With arithmetic
reasoning we may be able to recover the fact that line 2 is redundant, but pure
constant propagation and constant folding is no longer sufficient.

What we need to know for copy propagation is that the definition of i in line 1
is the only definition of i that can reach line 2. This is true in the program on the
left, but not on the right since the definition of i at line 7 can also reach line 2 if the
condition at line 9 is true.

6 Reaching Definitions

We say a definition l : x← . . . reaches a line l′ if there is a path of control flow from
l to l′ during which x is not redefined. In logical language:

• reaches(l, x, l′) if the definition of x at l reaches l′ (especially x has not been
redefined since).

We only need two inference rules to define this analysis. The first states that a
variable definition reaches any immediate successor. The second expresses that we
can propagate a reaching definition of x to all successors of a line l′ we have already
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reached, unless this line also defines x.

def(l, x)
succ(l, l′)

reaches(l, x, l′)
R1

reaches(l, x, l′)
succ(l′, l′′)
¬def(l′, x)

reaches(l, x, l′′)
R2

Analyzing the original program on the left, we see that the definition of i at line
1 reaches lines 2–7, and this is (obviously) the only definition of i reching lines 2
and 4. We can therefore apply the optimizations sketched above.

In the program on the right hand side, the definition of i at line 7 also reaches
lines 2–8 so neither optimization can be applied.

Inspection of rule R2 confirms the intuition that reaching definitions are propa-
gated forward along the control flow edges. Consequently, a good implementation
strategy starts at the beginning of a program and computes reaching definitions in
the forward direction. Of course, saturation in the presence of backward branches
means that we may have to reconsider earlier lines, just as in the backwards analy-
sis.

A word on complexity: we can bound the size of the saturated database for
reaching definitions by L2, where L is the number of lines in the program. This is
because each line defines at most one variable (or, in realistic machine code, a small
constant number). Counting prefix firings (which we have not yet discussed) does
not change this estimate, and we obtain a complexity of O(L2). This is not quite as
efficient as liveness or neededness analysis (which are O(L · V )), so we may need
to be somewhat circumspect in computing reaching definitions.

7 Summary

We have extended the ideas behind liveness analysis to neededness analysis which
enables more aggressive dead code elimination. Neededness is another example of
a program analysis proceeding naturally backward through the program, iterating
through loops.

We have also seen reaching definitions, which is a forward dataflow analysis
necessary for a number of important optimizations such as constant propagation
or copy propagation. Reaching definitions can be specified in two rules and do
not require any new primitive concepts beyond variable definitions (def(x, l)) and
the control flow graph (succ(l, l′)), both of which we already needed for liveness
analysis.

Another important observation from the need for dataflow analysis informa-
tion during optimization is that dataflow analysis may have to be rerun after an
optimization transformed the program. Rerunning all analysis exhaustively all
the time after each optimization may be time-consuming. Adapting the dataflow
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analysis information during optimization transformations is sometimes possible
as well, but correctness is less obvious. SSA alleviates this problem somewhat, be-
cause some (but not all) dataflow analysis informations are readily read off from
SSA.

For an alternative approach to dataflow analysis via dataflow equations, see the
textbook [App98], Chapters 10.1 and 17.1–3. Notes on implementation of dataflow
analyses are in Chapter 10.1–2 and 17.4. Generally speaking, a simple iterative im-
plementation with a library data structure for sets which traverses the program in
the natural direction should be efficient enough for our purposes. We would ad-
vise against using bitvectors for sets. Not only are the sets relatively sparse, but
bitvectors are more time-consuming to implement. An interesting alternative to
iterating over the program, maintaining sets, is to do the analysis one variable at
a time (see the remark on page 216 of the textbook). The implementation via a
saturating engine for Datalog is also interesting, yet a bit more difficult to tie into
the infrastructure of a complete compiler. The efficiency gain noted by Whaley et
al. [WACL05] becomes only critical for interprocedural and whole program analy-
ses rather than for the intraprocedural analyses we have presented so far.

Questions

1. Why does or liveness analysis not track memory? Should it?

2. Why is neededness different from liveness? Could we reuse part of one anal-
ysis for the other? Should we?

3. Why should it be a problem if a single dataflow analysis is slow? We only
run it once, don’t we?

4. How can the def/use/succ information be made accessible conveniently in a
programming language? Does it improve the structure of the code if we do
that?

5. Should our intermediate representation have an explicit representation of the
control flow graph? What are the benefits and downsides?

6. Why should we care about dead code elimination? Nobody writes dead code
down anyways, because that’d be a waste of time.

7. Where do the arithmetic optimizations alluded to in this lecture play a role in
compiling? When are they important?

8. Suppose x = y/z is computed but x never used later. That would make the
statement not needed and dead code if it wasn’t for the fact that the division
could have side effects. So it is needed. But what would liveness analysis
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do about it? How does this impact register allocation? What is the interplay
with the special register requirements of integer division?
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Lecture Notes on
Static Single Assignment Form

15-411: Compiler Design
Frank Pfenning

Lecture 6
September 12, 2013

1 Introduction

In abstract machine code of the kind we have discussed so far, a variable of a given
name can refer to different values even in straight-line code. For example, in a code
fragment such as

1 : i← 0
. . .
k : if (i < 0) goto error

we can apply constant propagation of 0 to the condition only if we know that the
definition of i in line 1 is the only one that reaches line k. It is possible that i is
redefined either in the region from 1 to k, or somewhere in the rest of the program
followed by a backwards jump. It was the purpose of the reaching definitions analy-
sis in Lecture 5 to determine whether this is the case.

An alternative is to relabel variables in the code so that each variable is defined
only once in the program text. If the program has this form, called static single
assignment (SSA), then we can perform constant propagation immediately in the
example above without further checks. There are other program analyses and op-
timizations for which it is convenient to have this property, so it has become a de
facto standard intermediate form in many compilers and compiler tools such as the
LLVM.

In this lecture we develop SSA, first for straight-line code and then for code
containing loops and conditionals. Our approach to SSA is not entirely standard
although the results are the same on control flow graphs that can arise from source
programs in the language we compile.
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2 Basic Blocks

A basic block is a sequence of instructions with one entry point and one exit point.
In particular, from nowhere in the program do we jump into the middle of the
basic block, nor do we exit the block from the middle. In our language, the last
instruction in a basic block should therefore be a return, goto, or if, where we accept
the pattern

if (x ? c) goto l1
goto l2

at the end of a basic block. On the inside of a basic block we have what is called
straight-line code, namely, a sequence of moves or binary operations.

It is easy to put basic blocks into SSA form. For each variable, we keep a genera-
tion counter to track which definition of a variable is currently in effect. We initialize
this to 0 for any variable live at the beginning of a block. Then we traverse the block
forward, replacing every use of a variable with its current generation. When we see
a redefinition of variable we increment its generation and proceed.

As an example, we consider the following C0 program on the left and its trans-
lation on the right.

int dist(int x, int y) { dist(x,y):

x = x * x; x <- x * x

y = y * y; y <- y * y

return isqrt(x+y); t0 <- x + y

} t1 <- isqrt(t0)

return t1

Here isqrt is an integer square root function previously defined. We have as-
sumed a new form of instruction

d← f(s1, . . . , sn)

where each of the sources si is a constant or variable, and the destination d is an-
other variable. We have also marked the beginning of the function with a parame-
terized label that tracks the variables that may be live in the body of the function.

The parameters x and y start at generation 0. They are defined implicitly because
they obtain a value from the arguments to the call of dist.

dist(x0,y0):

------------- x/0, y/0

x <- x * x

y <- y * y

t0 <- x + y

t1 <- isqrt(t0)

return t1
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We mark where we are in the traversal with a line, and indicate there the current
generation of each variable. The next line uses x, which becomes x0, but is also
defines x, which therefore becomes the next generation of x, namely x1.

dist(x0,y0):

x1 <- x0 * x0

------------- x/1, y/0

y <- y * y

t0 <- x + y

t1 <- isqrt(t0)

return t1

The next line is processed the same way.

dist(x0,y0):

x1 <- x0 * x0

y1 <- y0 * y0

------------- x/1, y/1

t0 <- x + y

t1 <- isqrt(t0)

return t1

At the following line, t0 is a new temp. The way we create instructions, temps are
defined only once. We therefore do not have to create a new generation for them.
If we did, it would of course not change the outcome of the conversion. Skipping
ahead now, we finally obtain

dist(x0,y0):

x1 <- x0 * x0

y1 <- y0 * y0

t0 <- x1 + y1

t1 <- isqrt(t0)

return t1

We see that, indeed, each variable is defined (assigned) only once, where the pa-
rameters x0 and y0 are implicitly defined when the function is called and the others
explicity in the body of the function. It is easy to see that the original program and
its SSA form will behave identically.

3 Loops

To appreciate the difficulty and solution of how to handle more complex programs,
we consider the example of the exponential function, where pow(b, e) = be for e ≥
0.
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int pow(int b, int e)

//@requires e >= 0;

{

int r = 1;

while (e > 0)

//@loop_invariant e >= 0;

// r*b^e remains invariant

{

r = r * b;

e = e - 1;

}

return r;

}

We translate this to the following abstract machine code.

pow(b,e):

r <- 1

loop:

if (e <= 0) goto done

r <- r * b

e <- e - 1

goto loop

done:

return r

We can transform this into basic blocks, except that we take a small shortcut with
the conditional branch by not following it with an explicit goto to save on space.

pow(b,e):

r <- 1

goto loop

loop:

if (e <= 0) goto done

r <- r * b

e <- e - 1

goto loop

done:

return r

Now we note that there are two ways to reach the label loop: when we first enter the
loop, or from the end of the loop body. This means the variable e in the conditional
branch really could refer to either the procedure argument, or the value of e after
the decrement operation in the loop body. Therefore, our straightforward idea for
SSA conversion of straight line code no longer works.
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The key idea is to parameterize labels (the jump targets) with the variables
that are live in the block that follows.1 Labels l occuring as targets in goto l or
if (−) goto l are then given matching arguments.

pow(b,e):

r <- 1

goto loop(b,e)

loop(b,e,r):

if (e <= 0) goto done(r)

r <- r * b

e <- e - 1

goto loop(b,e,r)

done(r):

return r

Next, we convert each block into SSA form with the previous algorithm, but us-
ing a global generation counter throughout. An occurrence in a label in a jump
goto l(. . . , x, . . .) is seen as a use of x, while an occurrence of a variable in in a jump
target l(. . . , x, . . .) is seen as a definition of x. Applying this to the first block we
obtain

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

-------------------- b/0, e/0, r/0

loop(b,e,r):

if (e <= 0) goto done(r)

r <- r * b

e <- e - 1

goto loop(b,e,r)

done(r):

return r

Since we encounter a new definition of b, e, and r we advance all three generations
and proceed with the next block.

1One can also safely, but redundantly approximate this by using all variables.
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pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done(r1)

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)

-------------------- b/1, e/2, r/2

done(r):

return r

Completing the conversion with the last block, we obtain:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done(r1)

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)

done(r3):

return r3

First, we verify that this code does indeed have the SSA property: each variable
is assigned at most once, even counting implicit definitions at the parameterized
labels pow(b0, e0), loop(b1, e1, r1), and done(r3). The operational reading of this pro-
gram should be evident. For example, if we reach goto loop(b0, e0, r0) we pass
the current values of b0, e0 and r0 and move them into variables b1, e1, and r1.
That fact that labeled jumps correspond to moving values from arguments to la-
bel parameters will be the essence of how to generate assembly code from the SSA
intermediate form in Section 7.

4 SSA and Functional Programs

We can notice that at this point the program above can be easily interpreted as a
functional program if we read assignments as bindings and labeled jumps as function
calls. We show the functional program below on the right in ML-like form.
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pow(b0,e0): fun pow(b0,e0) =

r0 <- 1 let r0 = 1

goto loop(b0,e0,r0) in loop(b0,e0,r0)

loop(b1,e1,r1): and loop(b1,e1,r1) =

if (e1 <= 0) goto done(r1) if e1 <= 0 then done(r1)

r2 <- r1 * b1 else let r2 = r1 * b1

e2 <- e1 - 1 and e2 = e1 - 1

goto loop(b1,e2,r2) in loop(b1,e2,r2)

done(r3): and done(r3) =

return r3 r3

There are several reasons this works in general. First, in SSA form each variable is
defined only once, which means it can be modeled by a let binding in a functional
language. Second, each goto is at the end of a block, which translates into a tail
call in the functional language. Third, because all jumps become tail calls, a return
instruction can be modeled simply be returning the corresponding value.

We conclude that translation into SSA form is just translating abstract machine
code to a functional program! Because our language does not have first-class func-
tions, the target of this translation also does not have higher-order functions. Inter-
estingly, this observation also works in reverse: a (first-order) functional program
with tail calls can be translated into abstract machine code where tail calls become
jumps.

While this is clearly an interesting observation, it does not directly help our
compiler construction effort (although it might if we were interested in compiling
a functional language).

5 Optimization and Minimal SSA Form

At this point we have constructed clean and simple abstract machine code with
parameterized labels. But are all the parameters really necessary? Let’s reconsider:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done(r1)

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)
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done(r3):

return r3

For example, done(r3) is only targeted from one location, with a goto done(r1).
There is no need to pass r1 and assign its value to r3. We can instead remove this
argument from the label done and substitute r1 for r3. This yields:

pow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done()

r2 <- r1 * b1

e2 <- e1 - 1

goto loop(b1,e2,r2)

done():

return r1

We see this is still in SSA form. Next we can ask if all the arguments to loop are
really necessary. We have two gotos and one definition:

goto loop(b0,e0,r0)

goto loop(b1,e3,r2)

loop(b1,e1,r1):

Let’s consider the first argument. In the first call it is b0 and in the second b1. Since
we have SSA form, we know that the b1 will always hold the same value. In fact,
the only call with a different value is with b0, so b1 will in fact always have the
value b0. This means the first argument to loop is not needed and we can erase it,
substituting b0 for b1. This yields:

pow(b0,e0):

r0 <- 1

goto loop(e0,r0)

loop(e1,r1):

if (e1 <= 0) goto done()

r2 <- r1 * b0

e2 <- e1 - 1

goto loop(e2,r2)

done():

return r1
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It is easy to check this is still in SSA form. The remaining arguments to loop are all
different, however (e0 and e3 for e1 and r0 and r2 for r1), so we cannot optimize
further.

This code is now in minimal SSA form in the sense that we cannot remove any
label arguments by purely syntactic considerations.

The general case for this optimization is as follows: assume we have a param-
eterized label l(. . . , xi, . . .) : where all gotos have the form goto l(. . . , xi, . . .) (for
the same generation i) or goto l(. . . , xk, . . .) (all at the same generation k). Then
the x argument to l is redundant, and xi can be replaced by xk everywhere in the
program.

6 Extended Basic Blocks and Conditionals

As a special case of the rule at the end of the last section, we see that if a label is
the target of exactly one jump, then this condition is automatically satisfied for all
of its parameters. This was the case for the label ’done’ in our example. In such a
case, all parameters of this label can be removed.

We can then go a step further and not generate parameters to labels that are
targeted only once. An extended basic block is a collection of basic blocks with one
label at the beginning (that may be the target of multiple jumps) and internal labels,
each of which is the target of only one internal jump and no external jumps.

When converting to SSA form, we can treat extended basic blocks as a single
unit, since we do not have to create fresh parameterized labels within them. We
have already applied this idea tacitly, because in our exponential function, strictly
speaking, the loop should be decomposed into basic blocks as

loop:

if (e <= 0) goto done

goto body

body:

r <- r * b

e <- e - 1

goto loop

However, the label ’body’ is targeted only by one jump, so we contracted the two
instructions. The optimization discussed above is a post-hoc justification for this.

Next we consider conditionals as a new language feature. We change our pro-
gram to a “fast” power function which exploits the equations b2e = (b ∗ b)e and
b2e+1 = b ∗ (b ∗ b)e. The C0 program is on the left, its abstract assembly form on the
right.
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int fastpow(int b, int e) fastpow(b,e):

//@requires e >= 0; r <- 1

{ goto loop

int r = 1; loop:

while (e > 0) if (e <= 0) goto done

//@loop_invariant e >= 0; t0 <- e % 2

// r * b^e remains invariant if (t0 == 0) goto next

{ r <- r * b

if (e % 2 != 0) goto next

r = r * b; next:

b = b * b; b <- b * b

e = e / 2; e <- e / 2

} goto loop

return r; done:

} return r

We see that the compiling the conditional creates another situation where we have
one label (next) is the target of two jumps. This is often the case for conditionals,
because the control flow graph has edges from each branch of the conditional to
the statement following the conditional.

Next, we parameterize labels that are the target of more than one jump with the
variables live at that program point.

fastpow(b,e):

r <- 1

goto loop(b,e,r)

loop(b,e,r):

if (e <= 0) goto done

t0 <- e % 2

if (t0 == 0) goto next(b,e,r)

r <- r * b

goto next(b,e,r)

next(b,e,r):

b <- b * b

e <- e / 2

goto loop(b,e,r)

done:

return r

Now we convert to SSA form by generating multiple generations of variables, as
in the previous example. Make sure you understand the process on this code.
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fastpow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done

t0 <- e1 % 2

if (t0 == 0) goto next(b1,e1,r1)

r2 <- r1 * b1

goto next(b1,e1,r2)

next(b2,e2,r3):

b3 <- b2 * b2

e3 <- e2 / 2

goto loop(b3,e3,r3)

done:

return r1

Next we minimize. We see the following parameterized labels and labeled jumps:

loop(b1,e1,r1):

goto loop(b0,e0,r1)

goto loop(b3,e3,r3)

next(b2,e2,r3):

goto next(b1,e1,r1)

goto next(b1,e1,r2)

We see that all arguments to loop are necessary, but that the b and e arguments in
the calls to next are the same and can be eliminated (substituting b1 for b2 and e1 for
e2). This yields the SSA at the top of the next page.

If we want a minimal SSA (which we should), we now need to re-examine the
calls to loop, because it is possible that the substitution of b1 for b2 and e1 for e2
has unified arguments that were previously distinct. That might in turn render
other parameters redundant. Here, we observe that we have already reached the
minimal SSA form.
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fastpow(b0,e0):

r0 <- 1

goto loop(b0,e0,r0)

loop(b1,e1,r1):

if (e1 <= 0) goto done

t0 <- e1 % 2

if (t0 == 0) goto next(r1)

r2 <- r1 * b1

goto next(r2)

next(r3):

b3 <- b1 * b1

e3 <- e1 / 2

goto loop(b3,e3,r3)

done:

return r1

7 Assembly Code Generation from SSA Form

Of course, actual assembly code does not allow parametrized labels. To recover
lower level code, we need to implement labeled jumps by moves followed by plain
jumps. We show this again on the first example, with SSA and the left and the
de-SSA form on the right.

pow(b0,e0): pow(b0,e0):

r0 <- 1 r0 <- 1

goto loop(e0,r0) e1 <- e0

r1 <- r0

goto loop

loop(e1,r1): loop:

if (e1 <= 0) goto done() if (e1 <= 0) goto done

r2 <- r1 * b0 r2 <- r1 * b0

e2 <- e1 - 1 e2 <- e1 - 1

goto loop(e2,r2) e1 <- e2

r1 <- r2

goto loop

done(): done:

return r1 return r1
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In some cases of conditional jumps, there may be no natural place for the additional
move instructions and we may have to introduce a new jump target. This is illus-
trated in the next example, which continues fastpow from above. All the variable
to variable moves in this program arise from resolving the labeled jump shown on
their left.

fastpow(b0,e0): fastpow(b0,e0):

r0 <- 1 r0 <- 1

goto loop(b0,e0,r0) b1 <- b0

e1 <- e0

r1 <- r0

loop(b1,e1,r1): loop:

if (e1 <= 0) goto done if (e1 <= 0) goto done

t0 <- e1 % 2 t0 <- e1 % 2

if (t0 == 0) goto next(r1) if (t0 == 0) goto next0

r2 <- r1 * b1 r2 <- r1 * b1

goto next(r2) r3 <- r2

goto next

next0:

r3 <- r1

goto next

next(r3): next:

b3 <- b1 * b1 b3 <- b1 * b1

e3 <- e1 / 2 e3 <- e1 / 2

goto loop(b3,e3,r3) b1 <- b3

e1 <- e3

r1 <- r3

goto loop

done: done:

return r1 return r1

Either way, we retain here the parameters at the function boundary; we will
talk about how the implementation of function calls in a later lecture.

The new form on the right is of course no longer in SSA form. Therefore one
cannot apply any SSA-based optimization. Conversion out of SSA should therefore
be one of the last steps before code emission. At this point register allocation, pos-
sibly with register coalescing, can do a good job of eliminating redundant moves.
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8 Φ Functions

Our presentation of SSA using parameterized labels is not standard in the litera-
ture. Instead, the standard representation of SSA form uses so-called Φ functions.
A Φ function is not actually a function, but represents the assignment of the label
parameter from all the jumps that target it. In order for this to be precise, we in-
dicate for each jump which number of argument in the Φ function this particular
jump represents. This perhaps best seen in the fastpow example, with the parame-
terized label form on the left and Φ functions on the right.

fastpow(b0,e0): fastpow(b0,e0):

r0 <- 1 r0 <- 1

goto loop(b0,e0,r0) goto loop/0

loop(b1,e1,r1): loop:

b1 <- phi(b0,b3)

e1 <- phi(e0,e3)

r1 <- phi(r0,r3)

if (e1 <= 0) goto done if (e1 <= 0) goto done

t0 <- e1 % 2 t0 <- e1 % 2

if (t0 == 0) goto next(r1) if (t0 == 0) goto next/0

r2 <- r1 * b1 r2 <- r1 * b1

goto next(r2) goto next/1

next(r3): next:

r3 <- phi(r1,r2)

b3 <- b1 * b1 b3 <- b1 * b1

e3 <- e1 / 2 e3 <- e1 / 2

goto loop(b3,e3,r3) goto loop/1

done: done:

return r1 return r1

Φ functions only make sense at the beginning of blocks, and they should al-
ways have exactly as many arguments as jumps targeting the beginning of the
block. Sometimes, the argument number indicators are omitted from from jumps,
in which case the textual representation of the abstract assembly code does not
have enough information to unambiguously determine its meaning. Then we need
a global convention, such as the textually first jump supplies the first argument to
the Φ functions, the second jump the second, etc.
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9 Graphical Representation

A control flow graph is often represented visually as a graph where the nodes are
basic blocks and the directed edges are jump (whether conditional or not). For
example, the fastpow function might be drawn as:

r	
  ←	
  1	
  

if	
  (e	
  ≤	
  0)	
   return	
  r	
  	
  

t0	
  ←	
  e	
  %	
  2	
  
if	
  (t0	
  ==	
  0)	
  

b	
  ←	
  b	
  *	
  b	
  
e	
  ←	
  e	
  /	
  2	
  

r	
  ←	
  r	
  *	
  b	
  

fastpow(b,e):	
  

y	
  

y	
  

n	
  

n	
  

Although not commonly used, SSA form with parameterized labels might look
like this:
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r0	
  ←	
  1	
  

loop(b1,e1,r1):	
  
if	
  (e1	
  ≤	
  0)	
  

return	
  r1	
  	
  

t0	
  ←	
  e1	
  %	
  2	
  
if	
  (t0	
  ==	
  0)	
  
next(r1)	
  

next(r3):	
  
b3	
  ←	
  b1	
  *	
  b1	
  
e3	
  ←	
  e1	
  /	
  2	
  
loop(b3,e3,r3)	
  

r2	
  ←	
  r1	
  *	
  b1	
  
next(r2)	
  

fastpow(b0,e0):	
  

y	
  

y	
  

n	
  

n	
  

If we use Φ-functions instead, they would be inserted at the beginning basic
blocks.

r0	
  ←	
  1	
  

b1	
  =	
  Φ(b0,b3)	
  
e1	
  =	
  Φ(e0,e3)	
  
r1	
  =	
  Φ(r0,r3)	
  
if	
  (e1	
  ≤	
  0)	
  

return	
  r1	
  	
  

t0	
  ←	
  e1	
  %	
  2	
  
if	
  (t0	
  ==	
  0)	
  

r3	
  =	
  Φ(r1,r2)	
  
b3	
  ←	
  b1	
  *	
  b1	
  
e3	
  ←	
  e1	
  /	
  2	
  

r2	
  ←	
  r1	
  *	
  b1	
  
next(r2)	
  

fastpow(b0,e0):	
  

y	
  

y	
  

n	
  

n	
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When we de-SSA, the necessary register moves are added along the edges going
into each node which starts with Φ-functions.

b1	
  ←	
  b0	
  
e1	
  ←	
  e0	
  
r1	
  ←	
  r0	
  

r0	
  ←	
  1	
  

if	
  (e1	
  ≤	
  0)	
   return	
  r1	
  	
  

t0	
  ←	
  e1	
  %	
  2	
  
if	
  (t0	
  ==	
  0)	
  

b3	
  ←	
  b1	
  *	
  b1	
  
e3	
  ←	
  e1	
  /	
  2	
  

r2	
  ←	
  r1	
  *	
  b1	
  

fastpow(b0,e0):	
  

y	
  

y	
  

n	
  
b1	
  ←	
  b3	
  
e1	
  ←	
  e3	
  
r1	
  ←	
  r3	
   r3	
  ←	
  r1	
   r3	
  ←	
  r2	
  

n	
  

10 Conclusion

Static Single Assignment (SSA) form is a quasi-functional form of abstract machine
code, where variable assignments are variable bindings, and jumps are tail calls.
It was devised by Cytron et al. [CFR+89] and simplifies many program analyses
and optimization. Of course, you have to make sure that program transforma-
tions maintain the property. The particular algorithm for conversion into SSA form
we describe here is to due Aycock and Horspool [AH00]. Hack has shown that
programs in SSA form generate chordal interference graphs which means register
allocation by graph coloring is particularly efficient [Hac07]. For further reading
and some different algorithms related to SSA, you can also consult the Chapter 19
of the textbook [App98].

Questions

1. Can you think of an example of minimal SSA that nevertheless has redundant
label arguments?

2. Can you think of situations where the control flow graph for a conditional
does not have a subsequent basic block with two incoming control flow edges?
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1 Introduction

Lexical analysis is the first phase of a compiler. Its job is to turn a raw byte or char-
acter input stream coming from the source file into a token stream by chopping
the input into pieces and skipping over irrelevant details. The primary benefits of
doing so include significantly simplified jobs for the subsequent syntactical analy-
sis, which would otherwise have to expect whitespace and comments all over the
place. The job of the lexical analysis is also to classify input tokens into types like
INTEGER or IDENTIFIER or WHILE-keyword or OPENINGBRACKET. Another benefit of
the lexing phase is that it greatly compresses the input by about 80%. A lexer is
essentially taking care of the first layer of a regular language view on the input lan-
guage. We follow a presentation similar to a recent book [WSH12, Ch. 2]. Further
presentations can be found in [WM95, Ch. 7] and [App98, Ch. 2].

2 Lexer Specification

We fix an alphabet Σ, i.e., a finite set of input symbols, e.g., the set of all letters a-z
and digits 0-9 and brackets and operators +,- and so on.1 The the set Σ∗ of words
or strings is defined as the set of all finite sequences of elements of Σ. For instance,
ifah5+xy-+ is a string, but not necessarily a very interesting one, from a grammat-
ical perspective (which is what lexers will not have to know about, because that’s
the parser’s job). The empty string with no characters is denoted by ε, but you will

∗Fall 2013 lecture given by Sri Raghavan
1Real lexers also have to deal with capital letters, but we simply pretend to be ignorant about

capitalization in these lecture notes to make things easier.
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sometimes also find the name λ for it, which we don’t use here in order to not get
confused with Church’s λ-calculus.

A lexer specification has to say what kind of input it accepts and which token
type it will associate with a particular input. For example, the fragment 15411
of the input string should be tokenized as an INTEGER. For reasons of represen-
tational efficiency, it is a very good idea to specify the input that a lexer accepts
by regular expressions. On a side note, regular expressions and their extensions
[Sal66, Koz97, HKT00, Pla12] actually turn out to be very useful for many pur-
poses.

Regular expressions r, s are expressions that are recursively built of the follow-
ing form:

regex matches
a matches the specific character a from the input alphabet
[a− z] matches a character in the specified range of letters a to z
ε matches the empty string
r|s matches a string that matches r or one that matches s
rs matches a string that can somehow be split into two parts,

the first matching r, the second matching s
r∗ matches a string that consists of n parts where each

part matches r, for any natural number n ≥ 0

For instance, the set of strings over the alphabet {a, b}with no two or more con-
secutive a’s is described by the regular expression b∗(abb∗)∗(a|ε). Other common
regular expressions are

regex defined matches
r+ rr∗ matches a string that consists of n parts where each

part matches r, for any natural number n ≥ 1
r? r|ε optionally matches r, i.e., matches the empty string

or a string matching r
To specify a lexical analyzer we can use a sequence of regular expressions along

with the token type that they recognize (the last one, LPAREN, for instance, recog-
nizes a single opening parenthesis, whose occurrence on the right hand side we
need to quote to distinguish it from brackets used to describe the regular expres-
sion, likewise for space):

IF ≡ i f
GOTO ≡ g o t o
FOR ≡ f o r
IDENTIFIER ≡ [a− z]([a− z]|[0− 9])∗

INT ≡ [0− 9][0− 9]∗

REAL ≡ ([0− 9][0− 9]∗.[0− 9]∗)|(.[0− 9][0− 9]∗)
LPAREN ≡ "("

ASSIGN ≡ "="

SKIP ≡ " "∗
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In addition, we would say that tokens matching the SKIP whitespace recognizer
are to be skipped and filtered away from the input, because the parser does not
want to see whitespace. Likewise with comments. Note, however, that whitespaces
and comments are still significant for the lexer because they separate tokens. For
example, if xyz gives IF IDENTIFIER, while ifxyz gives IDENTIFIER, even if the
SKIP token in between is never shown to the parser.

Regular expressions themselves are not unambiguous for splitting an input
stream into a token sequence. The input goto5 could be tokenized as IDENTIFIER
or as the sequence GOTO INT. The input sequence if 5 could be tokenized as IF

INT or as IDENTIFIER INT.
As disambiguation rule we will use the principle of the longest possible match.

The longest possible match from the beginning of the input stream will be matched
as a token. And if there are still multiple regular expression rules that match the
same length, then the first rule with longest match takes precedence over others.

Why do we choose the longest possible match as a disambiguation rule instead
of the shortest? The shortest would be easier to implement. But with the shortest
match, ifo = ford trimotor would be tokenized as IF IDENTIFIER ASSIGN FOR

IDENTIFIER and not as IDENTIFIER ASSIGN IDENTIFIER. And, of course, the latter is
what one would have meant by assigning the identifier for the 1925 Ford Trimotor
aircraft “Tin Goose” to the identified flying object (ifo).

3 Lexer Implementation

Lexers are specified by regular expressions. Classically, however, they are imple-
mented by finite automata.

Definition 1 A finite automaton for a finite alphabet Σ consists of

• a finite set Q of states,

• a set ∆ ⊆ Q × Σ × Q of edges from states to states that are labelled by letters from
the input alphabet Σ. We also allow ε as a label on an edge, which then means that
(q, ε, q′) is a spontaneous transition from q to q′ that consumes no input.

• an initial state q0 ∈ Q

• a set of accepting states F ⊆ Q.

The finite automaton accepts an input string w = a1a2 . . . ak ∈ Σ∗ iff there is an n ∈ N
and a sequence of states q0, q1, q2, . . . , qn ∈ Q where q0 is the initial state and qn ∈ F is an
accepting state such that (qi−1, ai, qi) ∈ ∆ for all i = 1, . . . , n.

In pictures, this condition corresponds to the existence of a set of edges in the au-
tomaton labelled by the appropriate input:

q0
a1→ q1

a2→ q2
a3→ q3

a4→ · · · an−1→ qn−1
an→ qn ∈ F
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As an abbreviation for this situation, we also write (q0, w)→∗ (qn, ε). We also write
(qi−1, aiwi)→ (qi, wi) when (qi−1, ai, qi) ∈ ∆. By that we mean that the automaton,
when starting in state q0 can consume all input of word w with a series of transi-
tions and end up in state qn with no remaining input to read (ε). For instance, an
automaton for accepting REAL numbers is

0start

1 2

3 4

0−
9

.

0-9

.
0-9

0-9
0-9

REAL

Of course, when we use this finite automaton to recognize the number 3.1415926
in the input stream 3.1415926-3+x;if, then we do not only want to know that a
token of type REAL has been recognized and that the remaining input is -3+x;if.
We also want to know what the value of the token of type REAL has been, so we
store it’s value along with the token type.

The above automaton is a deterministic finite automaton (DFA). At every state
and every input there is at most one edge enabling a transition. But in general,
finite automata can be nondeterministic finite automata (NFA). That is, for the same
input, one path may lead to an accepting state while another attempt fails. That can
happen when for the same input letter there are multiple transitions from the same
state. In particular, in order to be able to work with the longest possible match
principle, we have to keep track of the last accepting state and reset back there if
the string cannot be accepted anymore. Consider, for instance, the nondeterminis-
tic automaton that accepts both REAL and INT and starts of by a nondeterministic
choice between the two lexical rules.
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0

1 2

3 4

0−
9

.

0-9

.
0-9

0-9
0-9

REAL

q p
0− 9

0-9

INT

q0start
ε

ε
In the beginning, this poor NFA needs to guess which way the future input that
he hasn’t seen yet will end up. That’s hard. But NFAs are quite convenient for
specification purposes (just like regular expressions), because the user does not
need to worry about these choices.

4 Regular Expressions Nondeterministic Finite Automata

Regular expressions are very nice for representing what a lexer is supposed to read.
Fortunately, the regular expressions can be converted into a finite automaton (and
also backwards, which we will not need here).

For converting a regular expression r into a nondeterministic finite automaton
(NFA), we define a recursive procedure. We start with an extended NFA that still
has regular expressions as input labels on the edges.

q0start qf
r

Then we successively transform edges that still have regular expressions as im-
proper input labels by their defining automata patterns. That is, whenever we find
a regular expression on an edge that is not just a single letter from the input alpha-
bet then we use the transformation rule to get rid of it
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q p
r|s  q p

r

s

q prs  q q1 pr s

q pr∗  q q1 p1 pε
r

ε

ε

ε

When applying the rule we match on the pattern on the left in the current candidate
for an NFA and replace it by the right, introducing new states q1, q2 as necessary.

5 Nondeterministic Finite Automata Deterministic Finite
Automata

The conversion from regular expressions to NFAs is quite simple. NFAs are con-
venient for specification purposes, but bad for implementation. It is easy to im-
plement a DFA, however. We just store the current state in a program variable,
initialized to q0, and depending on the next input character, we transition to the
next state according to the transition table ∆. Whenever there is an accepting state,
we notice that this would be a token that we recognized. But in order to find the
longest possible match, we still keep going. If we ultimately find an input charac-
ter that is not recognized or accepted, then we just backtrack to the last possible
match that we have remembered (and unconsume the input characters we have
read from the input stream so far). But how would we implement an NFA? There
are so many choices that we do not know which one to choose. There is no canoni-
cal last accepting choice in an NFA even.

What we could do to implement an NFA is to follow the input like in a DFA im-
plementation, but whenever there is a choice, we follow all options at once. That
will branch quickly and will require us to do a lot of work at once, which is ineffi-
cient. Nevertheless, it gives us the right intuition about what has to be done. We
just need to turn it around and follow the same principle in a precomputation step
instead of at runtime. We follow all options and keep the set of choices of where
we could be around.

This is the principle behind the powerset construction that turns an NFA into a
DFA by following all options at once. That is, instead of a single state, we now
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consider the set of states in which we could be. We, of course, want to start in
the initial powerset state {q0} that only consists of the single initial state q0. But,
first we have to follow all possible ε-transitions that lead us from q0 to other states.
When S ⊆ Q is a set of states, we define Clε(S) to be the ε-closure of S, i.e., the set
of states we can go to by following arbitrarily many ε-transitions from states of S,
which do not consume any input.

Clε(S) :=
⋃
q∈S
{q′ : (q, ε)→∗ (q′, ε)}

Now from a set of states S ⊆ Q we make a transition, say with input letter a and
figure out the set of all states to which we could get to by following a-transitions
from any of the S states, again following ε-transitions:

N(S, a) := Clε({q′ ∈ Q : (q, a)→ (q′, ε) and q ∈ S})

The condition (q, a) → (q′, ε) is equivalent to (q, a, q′) ∈ ∆. We can summarize all
these transitions by just a single a-transition from S to successorN(S, a). Repeating
this process results in a DFA that accepts exactly the same language as the original
NFA. The complexity of the algorithm could be exponential, though, because there
are exponentially many states in the powerset that we could end up using during
the DFA construction.

Definition 2 (NFA DFA) Given an NFA finite automaton (Q,∆, q0, F ), the corre-
sponding DFA (Q′,∆′, q′0, F

′) accepting the same language is defined by

• Q′ is a subset of the sets of all subsets of Q, i.e., a part of the powerset Q′ ⊆ 2Q

• ∆′ := {(S, a,N(S, a)) : a ∈ Σ}.

• q′0 := Clε(q0)

• F ′ := {S ⊆ Q : S ∩ F 6= ∅}

After turning the NFA into a DFA, we can directly implement it to recognize
tokens from the input stream.

It should be noted that there are direct ways of obtaining DFAs from regular
expressions, without going through the construction of NFAs. Those techniques
are very algebraic and elegant using Brzozowski derivatives [Brz64].

6 Minimizing Deterministic Finite Automata

Another operation that is often done by lexer generator tools is to minimize the
resulting DFA by merging states and reducing the number of states and transitions
in the automaton. This is an optimization and we will not pursue it any further.
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7 Regular Expression Deterministic Finite Automata

It turns out that there is a very elegant and purely algebraic way of directly translat-
ing regular expressions into DFAs without having to go through explicit automata
construction, determinization, and possibly minimization. This algebraic approach
uses Brzozowski derivatives [Brz64] and Antimirov’s partial derivatives [Ant96]. For
this, we identify regular expressions by the set of words that they match. So instead
of saying that regular expression r matches the wordw, we simply writew ∈ r. The
derivative, Da(r) of a regular expression r by alphabet letter a is defined as

Da(r) = {w : aw ∈ r}

The derivative represents the set of continuations after letter a that the regular ex-
pression r can match. The derivative of a regular expression can be computed
syntactically in a very similar way as the usual derivatives of functions. The result
is a regular expression.

Da(∅) = ∅
Da(ε) = ∅
Da(a) = ε

Da(b) = ∅ (b 6= a)

Da(r|s) = Da(r) | Da(s)

Da(rs) = Da(r)s | δ(r)Da(s)

Da(r
∗) = Da(r)r

∗

If we tilt our head a little bit and pretend | was addition (+) and pretend that rs
would be multiplication, this looks very much like a standard derivative of func-
tions with ε playing the role of 1 and ∅ playing the role of 0. The primary difference
is the occurrence of operator δ(r) in Da(rs), which we still need to define. The op-
erator δ(r) is supposed to detect whether r matches the empty word ε. Thus, δ(r)
is defined as follows

δ(r) =

{
ε if ε ∈ r
∅ otherwise

This operator can be computed entirely syntactically as well

δ(∅) = ∅
δ(ε) = ε

δ(a) = ∅
δ(r|s) = δ(r) | δ(s)
δ(rs) = δ(r)δ(s)

δ(r∗) = ε
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For ordinary functions, higher derivatives can be defined by deriving multiple
times. The same thing makes sense for derivatives of regular expressions where
we define Dw(r) for a word w by a simple inductive definition on w in which we
derive successively by the next letter:

Dε(r) = r

Dwa(r) = Da(Dw(r))

A number of very interesting theoretical and practical results can be proved about
Brzozowski derivatives and their extensions. Here we only show how an automa-
ton can be constructed systematically using successive derivatives. It can be shown
that this process terminates.

The idea is that Da(r) represents the “remainder” regular expression of r after
input a has been read. Thus, there is a transition with input a from the state r to the
state Da(r). We simply use regular expressions as the states of an automaton (not
as their actions like in Section 4).

As an example, consider the regular expression r = 1(0|1)∗0. Thus, we con-
struct a DFA for it by starting from a state Dε(r) = r and successively following all
letters a1 to states Da1(r) and then on following all letters a2 to states Da1a2(r) and
so on. The states where the regular expression matches the empty word ε are the
ones that are final states. State s is a final state iff δ(s) = ε. In fact, it can be shown
that w ∈ r iff δ(Dw(r)) = ε.

Dε

r
start

D1

(0|1)∗0

D10

(0|1)∗0|ε

D0

∅

1

0

1

0
0

0,1

1

In this automaton graph, we use the notation
Dw

s
to say that Dw(r) = s. It can also

be shown that every regular expression can be written in the following linear form

r = δ(r) +
∑
a∈Σ

aDa(r)
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8 Summary

Lexical analysis reduces the complexity of subsequent syntactical analysis by first
dividing the raw input stream up into a shorter sequence of tokens, each classi-
fied by its type (INT, IDENTIFIER, REAL, IF, ...). The lexer also filters out irrelevant
whitespace and comments from the input stream so that the parser does not have
to deal with that anymore. The steps for generating a lexer are

1. Specify the token types to be recognized from the input stream by a sequence
of regular expressions

2. Bear in mind that the longest possible match rule applies and the first pro-
duction that matches longest takes precedence.

3. Lexical analysis is implemented by DFA.

4. Convert the regular expressions into NFAs (or directly into DFAs using deriva-
tives).

5. Join them into a master NFA that chooses between the NFAs for each regular
expression by a spontaneous ε-transition

6. Determinize the NFA into a DFA

7. Optional: minimize the DFA for space

8. Implement the DFA for a recognizer. Respect the longest possible match rule
by storing the last accepted token and backtracking the input to this one if
the DFA run cannot otherwise complete.

Questions

1. Why do compilers have a lexing phase? Why not just do without it?

2. Should a lexer return whitespaces and comments?

3. Why do we categorize tokens into token classes, instead of just working with
the particular piece of the input string they represent?

4. Why are there programming languages that do not accept inputs like x----y?

5. What aspects of the programming language does a lexer not know about?

6. Do lexer tools work with regular expressions or automata internally? Should
they?
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7. Why can lexers not work with nondeterministic finite automata? They are so
useful for description purposes.

8. Should a reserved keyword of a programming language be a token class of
its own? What are the benefits and downsides?
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1 Introduction

Grammars and parsing have a long history in linguistics. Computer science built
on the accumulated knowledge when starting to design programming languages
and compilers. There are, however, some important differences which can be at-
tributed to two main factors. One is that programming languages are designed,
while human languages evolve, so grammars serve as a means of specification (in
the case of programming languages), while they serve as a means of description (in
the case of human languages). The other is the difference in the use of grammars
and parsing. In programming languages the meaning of a program should be un-
ambiguously determined so it will execute in a predictable way. Clearly, this then
also applies to the result of parsing a well-formed expression: it should be unique.
In natural language we are condemned to live with its inherent ambiguities, as can
be seen from famous examples such as “Time flies like an arrow”.

In this lecture we review an important class of grammars, called context-free
grammars (Chomsky-2 in the Chomsky hierarchy [Cho59]) and the associated prob-
lem of parsing. They end up to be too awkward for direct use in a compiler, mostly
due to the problem of ambiguity, but also due to potential inefficiency of parsing.
Alternative presentations of the material in this lecture can be found in the text-
book [App98, Chapter 3] and in a seminal paper by Shieber et al. [SSP95]. In the
next lecture we will consider more restricted forms of grammars, whose definition,
however, is much less natural.

∗With edit by André Platzer
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2 Context-Free Grammars

Grammars are designed to describe languages, where in our context a language
is just a set of strings. Abstractly, we think of strings as a sequence of so-called
terminal symbols. Inside a compiler, these terminal symbols are most likely lexical
tokens, produced from a bare character string by lexical analysis that already groups
substrings into tokens of appropriate type and skips over whitespace.

A context-free grammar consists of a set of productions of the form X −→ γ,
where X is a non-terminal symbol and γ is a potentially mixed sequence of termi-
nal and non-terminal symbols. It is also sometimes convenient to distinguish a
start symbol traditionally named S, for sentence. We will use the word string to re-
fer to any sequence of terminal and non-terminal symbols. We denote strings by
α, β, γ, . . .. non-terminals are generally denoted by X,Y, Z and terminals by a, b, c

For example, the following grammar generates all strings consisting of match-
ing parentheses.

S −→
S −→ [S]
S −→ S S

The first rule looks somewhat strange, because the right-hand side is the empty
string. To make this more readable, we usually write the empty string as ε.

A derivation of a sentence w from start symbol S is a sequence S = α0 −→
α1 −→ αn = w, where w consists only of terminal symbols. In each step we choose
exactly one occurrence of a non-terminal X in αi and one production X −→ γ and
replace this occurrence of X in αi by γ.

We usually label the productions in the grammar so that we can refer to them
by name. In the example above we might write

[emp] S −→
[pars] S −→ [S]
[dup] S −→ S S

Then the following is a derivation of the string [[][]], where each transition is
labeled with the production that has been applied.

S −→ [S] [pars]
−→ [SS] [dup]
−→ [[S]S] [pars]
−→ [[]S] [emp]
−→ [[][S]] [pars]
−→ [[][]] [emp]

We have labeled each derivation step with the corresponding grammar production
that was used.
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Derivations are clearly not unique, because when there is more than one non-
terminal, then we can replace it in any order in the string. In order to avoid this
kind of harmless ambiguity in rule order, we like to construct a parse tree in which
the nodes represents the non-terminals in a string, with the root being S. In the
example above we obtain the following tree:

pars

dup

pars pars

emp emp

While the parse tree removes some ambiguity, it turns out the sample grammar
is ambiguous in another way. In fact, there are infinitely many parse trees of every
string in the above language. This can be seen by considering the cycle

S −→ SS −→ S

where the first step is dup and the second is emp, applied either to the first or second
occurrence of S. We can get arbitrarily long parse trees for the same string with this.

Whether a grammar is ambiguous in the sense that there are sentences permit-
ting multiple different parse trees is an important question for the use of grammars
for the specification of programming languages. The basic problem is that it be-
comes ambiguous in which grammatical function a specific terminal occurs in the
source program. This could lead to misinterpretations. We will see an example
shortly.

3 Parse Trees are Deduction Trees

We now present a formal definition of when a terminal string w matches a string γ.
We write:

[r]X −→ γ production r maps non-terminal X to string γ
w : γ terminal string w matches string γ
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The second judgment is defined by the following four simple rules. Here we
use string concatenation, denoted by juxtaposing to strings. Note that the empty
string ε satisfies γ ε = ε γ = γ and that concatenation is associative (mathematically
speaking, strings form a monoid, which is like a group that does not have inverse
elements).

ε : ε
P1

w1 : γ1 w2 : γ2

w1w2 : γ1 γ2
P2

a : a
P3

[r]X −→ γ
w : γ

w : X
P4(r)

We have labeled the fourth rule by the name of the grammar production, while
the others remain unlabeled. This allows us to omit the actual grammar rule from
the premises since it can be looked up in the grammar directly by its name. Then
the earlier derivation of [[][]] becomes the following deduction.

[ : [
P3

[ : [
P3

ε : ε
P1

ε : S
P4(emp)

] : ]
P3

[] : [S ]
P 2
2

[] : S
P4(pars)

...
[] : S

[][] : S S
P2

[][] : S
P4(dup)

] : ]
P3

[[][]] : [S ]
P 2
2

[[][]] : S
P4(pars)

The one omitted subdeduction (marked
... ) is identical to its sibling on the left.

We observe that the labels have the same structure as the parse tree, except that it
is written upside-down. Parse trees are therefore just deduction trees.

4 CYK Parsing

The rules above that formally define when a terminal string matches an arbitrary
string can be used to immediately give an algorithm for parsing.

Assume we are given a grammar with start symbol S and a terminal string
w0. Start with a databased of assertions ε : ε and a : a for any terminal symbol
occurring in w0. Now arbitrarily apply the given rules in the following way: if
the premises of the rules can be matched against the database, and the conclusion
w : γ is such that w is a substring of the input w0 and γ is a string occurring in the
grammar, then add w : γ to the database. The side conditions are used to focus
the parsing process to the facts that may matter during the parsing (i.e., that talk
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about the actual input string w0 being parsed and that fit to the actual grammatical
productions in the grammar).

We repeat this process until we reach saturation: any further application of any
rule leads to conclusion are already in the database. We stop at this point and check
if we see w0 : S in the database. If we see w0 : S, we succeed parsing w0; if not we
fail.

This process must always terminate, since there are only a fixed number of
substrings of the grammar, and only a fixed number of substrings of the query
string w0. In fact, only O(n2) terms can ever be derived if the grammar is fixed and
n = |w|. Using a meta-complexity result by Ganzinger and McAllester [McA02,
GM02] we can obtain the complexity of this algorithm as the maximum of the size
of the saturated database (which is O(n2)) and the number of so-called prefix firings
of the rule. We count this by bounding the number of ways the premises of each
rule can be instantiated, when working from left to right. The crucial rule is the
splitting rule

w1 : γ1 w2 : γ2
w1w2 : γ1 γ2

P2

There are O(n2) substrings, so there are O(n2) ways to match the first premise
against the database. Since w1w2 is also constrained to be a substring of w0, there
are only O(n) ways to instantiate the second premise, since the left end of w2 in
the input string is determined, but not its right end. This yields a complexity of
O(n2 ∗ n) = O(n3).

The algorithm we have just presented is an abstract form of the Cocke-Younger-
Kasami (CYK) parsing algorithm invented in the 1960s. It originally assumes the
grammar is in a normal form, and represents substring by their indices in the input
rather than directly as strings. However, its general running time is still O(n3).

As an example, we apply this algorithm using an n-ary concatenation rule as
a short-hand. We try to parse [[][]] with our grammar of matching parentheses.
We start with three facts that derive from rules P1 and P3. When working forward
it is important to keep in mind that we only infer facts w : γ where w is a substring
of w0 = [[][]] and γ is a substring of the grammar.

1 [ : [

2 ] : ]

3 ε : ε

4 ε : S P4(emp) 3
5 [] : [S ] P 2

2 1, 4, 2
6 [] : S P4(pars) 5
7 [][] : S S P2 6, 6
8 [][] : S P4(dup) 7
9 [[][]] : [ S ] P 2

2 1, 8, 2
10 [[][]] : S P4(pars) 9
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A few more redundant facts might have been generated, such as [] : S S, but
otherwise parsing is remarkably focused in this case. From the justifications in the
right-hand column is it easy to generate the same parse tree we saw earlier.

5 Recursive Descent Parsing

For use in a programming language parser, the cubic complexity of the CYK al-
gorithm is unfortunately unacceptable. It is also not so easy to discover potential
ambiguities in a grammar (except for a particular input) or give good error mes-
sages when parsing fails. What we would like an algorithm that scans the input
left-to-right (because that’s usually how we design our languages!) and works in
one pass through the input.

Unfortunately, some languages that have context-free grammars cannot be spec-
ified in the form of a grammar satisfying the above specification. So now we turn
the problem around: considering the kind of parsing algorithms we would like
to have, can we define classes of grammars that can be parsed with this kind of
algorithm? The other property we would like is that we can look at a grammar
and decide if it is ambiguous in the sense that there are some strings admitting
more than one parse tree. Such grammars should be rejected as specifications for
programming languages. Fortunately, the goal of efficient parsing and the goal of
detecting ambiguity in a grammar work hand-in-hand: generally speaking, unam-
biguous grammars are easier to parse.

We now rewrite our rules for parsing to work exclusively from left-to-right
instead of being symmetric. This means we do not use general concatenation of
strings that are split arbitrarily. Instead, we just consider the left-most terminal or
left-most non-terminal. We just prepend a single non-terminal to the beginning of
a string. This left non-terminal is then the only part where we allow expansion by
a production. We also have to change the nature of the rule for non-terminals so it
can handle a non-terminal at the left end of the string.

ε : ε
R1

w : γ

aw : a γ
R2

[r]X −→ β
w : β γ

w : X γ
R3(r)

Rule R2 compares the first terminal a of the actual input string aw with the first
terminal a of the currently parsed expression aγ. For grammar production [r]X →
β, ruleR3(r) generates or expands the righthand side β for the left-most non-terminal
X in the currently parsed expressionXγ. RuleR3(r) uses the grammar production
forward to produce the result β. Of course, ultimately, the parse derivation will
only be successful if the compare rule R2 can also match the ultimately generated
terminals in the input and the generated parse expression.
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At this point the rules are entirely linear (each rule has zero or one premises,
note that we count the static grammar productions [r]X → β as part of the rule
R3(r) here) and decompose the string left-to-right (we only proceed by stripping
away a terminal symbol a).

Rather than blindly using these rules from the premises to the conclusions
(which wouldn’t be analyzing the string from left to right), couldn’t we use them
the other way around from the desired conclusions to the premisses? After all, we
know what we are trying to get at. Recall that we are starting with a given goal,
namely to derive w0 : S, if possible, or explicitly fail otherwise. Now could we use
the rules in a goal-directed way? The first two rules certainly do not present a prob-
lem. Using the compare rulesR1 andR2 from conclusions to premisses just succes-
sively simplifies the strings by consuming the first token (or ε). But the expansion
rule R3 presents a problem, since we may not be able to determine which produc-
tion we should use if there are multiple productions for a given non-terminal X .

The difficulty then lies in the third rule: how can we decide which production
to use? Guessing which expansion β of X in R3 will enable us to parse w as βγ
could be difficult. Yet, we can turn the question around: for which grammars can
we always decide which grammar expansion r to use for R3(r)?

We return to an example to explore this question. We use a simple grammar for
an expression language similar one to the one used in Lab 1. We use id and num to
stand for identifier and number tokens produced by the lexer.

[assign] S −→ id = E ; S
[return] S −→ return E

[plus] E −→ E + E
[times] E −→ E * E
[ident] E −→ id
[number] E −→ num
[parens] E −→ ( E )

As an example string, consider

x = 3; return x;

id("x") = num(3) ; return id("x")

After lexing, x and 3 are replaced by tokens id("x") and num(3) as indicated in the
second line. We write just write those tokens as id and num , for short.

If we always guess right, we would construct the following deduction from the
bottom to the top. That is, we start with the last line, either determine or guess which
rule to apply to get the previous line, etc. until we reach ε : ε (successful parse) or
get stuck (syntax error, or wrong guess).
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x

ε : ε
; : ;

id ; : id ;

id ; : E ; [ident]
return id ; : return E ;

return id ; : S [return]
; return id ; : ; S

num ; return id ; : num ; S
num ; return id ; : E ; S [number]

= num ; return id ; : = E ; S
id = num ; return id ; : id = E ; S
id = num ; return id ; : S [assign]

This parser (assuming all the guesses are made correctly) evidently traverses
the input string from left to right. It also produces a left-most derivation (always
expand the left-most nonterminal first), which we can read off from this deduction
by reading the right-hand side from the bottom to top.

We have labeled the inference that potentially involved a choice with the chosen
name of the chosen grammar production. If we restrict ourselves to look only at
the first token in the input string on the left, which ones could we have predicted
correctly? Which grammar production choices could we predict by looking ahead
at the first input token?

In the last line (the first guess we have to make) we are trying to parse an S
and the first input token is id . There is only one production that would allow this,
namely [assign]. So we do not have to guess but just choose deterministically based
on the first token id .

In the fourth-to-last line (our second potential choice point), the first token is
num and we are trying to parse an E. It is tempting to say that this must be the
production [number]. But this is wrong! For example, the string num + id also starts
with token num , but we must use production [plus] to parse it correctly. This is bad
news, because we cannot decide which production rule to use based on the first
token.

In fact, no input token can disambiguate expression productions for us here.
The problem is that the rules [plus] and [times] are left-recursive, that is, the right-
hand side of the production starts with the non-terminal on the left-hand side. But
this non-terminal could produce a lot of different strings. We can never decide by a
finite token look-ahead which rule to choose, because any token which can start an
expression E could arise via the [plus] and [times] productions. We cannot decide if
we will need the [plus] or [times] production just based on the first token before we
have fully understood what the first E is. Yet E could have unbounded length.

The only thing we can do at our current state of knowledge is to parse the
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input with a recursive descent parser, guess our choices, and backtrack to different
choices whenever things don’t work out.

In the next lecture we develop some techniques for analyzing the grammar to
determine if we can parse its language by searching for a deduction without back-
tracking, if we are permitted some lookahead to make the right choice. This will
also be the key for parser generation, the process of compiling a grammar specifica-
tion to a specialized efficient parser.

Questions

1. What is the benefit of using a lexer before a parser?

2. Why do compilers have a parsing phase? Why not just work without it?

3. Is there a difference between a parse tree and an abstract syntax tree? Should
there be a difference?

4. What aspects of a programming language does a parser not know about?
Should it know about it?

5. For which programming languages and for which programs is recursive de-
scent parsing slow?

6. What are all the benefits of reading the input from left to right? Are there
downsides?

7. Is there a language that CYK can parse but recursive descent cannot parse?

8. What are all the difficulties with rule P2? What are all the difficulties with
rule P4(r)?
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1 Introduction

In this lecture we discuss two parsing algorithms, both of which traverse the in-
put string from left to right. The first, LL(1), makes a decision on which grammar
production to use based on the first character of the input string. If that were am-
biguous, the grammar would have to be rewritten to fall into this class, which is
not always possible. The second, LR(1), can postpone the decision at first by push-
ing input characters onto a stack and then deciding on the production later, taking
into account both the first input character and the stack. It is variations on the latter
which are typically used in modern parser generation tools.

Alternative presentations of the material in this lecture can be found in the text-
book [App98, Chapter 3] and a paper by Shieber et al. [SSP95].

2 LL(1) Parsing

We have seen in the previous section, that the general idea of recursive descent
parsing without restrictions forces us to non-deterministically choose between sev-
eral productions which might be applied and potentially backtrack if parsing gets
stuck after a choice, or even loop (if the grammar is left-recursive). Backtracking is
not only potentially very inefficient, but it makes it difficult to produce good error
messages in case the string is not grammatically well-formed. Say we try three dif-
ferent ways to parse a given term and all fail. How could we say which of these is
the source of the error? This is compounded because nested choices multiply the

∗with contributions by André Platzer
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number of possibilities. We therefore have to look for ways to disambiguate the
choices.

One way is to require of the grammar that at each potential choice point we can
look at the next input token and based on that token decide which production to
take. This is called 1 token lookahead, and grammars that satisfy this restriction are
called LL(1) grammars. Here, the first L stands for Left-to-right; the second L stands
for Leftmost parse (which a recursive descent parser generates) and 1 stands for 1
token lookahead. Potentially, we could also define LL(2), LL(3), etc., but these are of
limited practical utility.

Since we are restricting ourselves to parsing by a left-to-right traversal of the
input string, we will consider only tails, or postfixes of the input strings, and also
of the strings in the grammar, when we restrict our inference rules. For short, we
will say γ is a postfix substring of the grammar, or w is a postfix substring of the
input string w0. For example, in the grammar

[emp] S −→
[pars] S −→ [S ]

[dup] S −→ S S

the only postfix substrings are ε, [S ], S ], ], S, and S S, but not [S.
We begin be defining two kinds of predicates (later we will have occasion to

add a third), where β is either a non-terminal or postfix substring of the grammar.

first(β, a) Token a can be first in string β
null(β) String β can produce the empty string ε

These predicates must be computed entirely statically, by an analysis of the
grammar before any concrete string is ever parsed. This is because we want to be
able to tell if the parser can do its work properly with 1 token look-ahead regardless
of the string it has to parse.

We define the relation first(β, a) by the following rules.

first(aβ, a)
F1

This rule seeds the first predicate. Then is it propagated to other strings appearing
in the grammar by the following three rules.

first(X, a)

first(X β, a)
F2

null(X) first(β, a)

first(X β, a)
F3

[r]X −→ γ
first(γ, a)

first(X, a)
F4(r)

Even though εmay be technically a postfix substring of every grammar, it can never
arise in the first argument of the first predicate. The auxiliary predicate null is also
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easily defined.

null(ε)
N1

null(X) null(γ)

null(X γ)
N2

[r]X −→ γ
null(γ)

null(X)
N3

We can run these rules to saturation because there are only O(|G|) possible
strings in the first argument to both of these predicates, and at most the number of
possible terminal symbols in the grammar, O(|Σ|), in the second argument. Naive
counting the number of prefix firings (see [GM02]) gives a complexity bound of
O(|G| × |Ξ| × |Σ|) where |Ξ| is the number of non-terminals in the grammar. Since
usually the number of symbols is a small constant, this is roughly equivalent to
O(|G|) and so is reasonably efficient. Moreover, it only happens once, before any
parsing takes place.

Next, we modify the rules for recursive descent parsing from the last lecture to
take these restrictions into account. The first two stay the same.

ε : ε
R1

w : γ

aw : a γ
R2

The third,
[r]X −→ β
w : β γ

w : X γ
R3(r)

is split into two, each of which has an additional precondition.

[r]X −→ β
first(β, a)
aw : β γ

aw : X γ
R′3

[r]X −→ β
null(β)
w : β γ

w : X γ
R′′3?

We would like to say that a grammer is LL(1) if the additional preconditions in
these last two rules make all choices unambiguous when an arbitrary non-terminal
X is matched against a string starting with an arbitrary terminal a. Unfortunately,
this does not quite work yet in the presence non-terminals that can rewrite to ε,
because the second rule above does not even look at the input string.

To further refine this we need one additional predicate, again on postfix strings
in the grammar and non-terminals.

follow(β, a) Token a can follow string β in a valid string
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We seed this relation with the rules

X γ postfix
first(γ, a)

follow(X, a)
W1

Here, X γ postfix means that the string X γ appears as a postfix substring on the
right-hand side of a production. We then propagate this information applying the
following rules from premises to conclusion until saturation is reached.

follow(b γ, a)

follow(γ, a)
W2

follow(X γ, a)

follow(γ, a)
W3

follow(X γ, a)
null(γ)

follow(X, a)
W4

[r]X −→ γ
follow(X, a)

follow(γ, a)
W5

The first argument here should remain a non-empty postfix or a non-terminal. Now
we can refine the proposed R′′3 rule from above into one which is much less likely
to be ambiguous.

[r]X −→ β
first(β, a)
aw : β γ

aw : X γ
R′3

[r]X −→ β
null(β)
follow(X, a)
aw : β γ

aw : X γ
R′′3

We avoid creating an explicit rule to treat the empty input string by appending
a special $ symbol at the end before starting the parsing process. We repeat the
remaining rules for completeness.

ε : ε
R1

w : γ

aw : a γ
R2

These rules are interpreted as a parser by proof search, applying them from the
conclusion to the premise. We say the grammar is LL(1) if for any goal w : γ at
most one rule applies. If X cannot derive ε, this amounts to checking that there is
at most one production X −→ β such that first(β, a). For nullable non-terminals
the condition is slightly more complicated, but can still easily be read off from the
rules.

We now use a very simple grammar to illustrate these rules. We have trans-
formed it in the way indicated above, by assuming a special token $ to indicate the
end of the input string.

[start] S −→ S′ $
[emp] S′ −→ ε
[pars] S′ −→ [S′ ]
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This generates all string starting with an arbitrary number of opening parentheses
followed by the same number of closing parentheses and an end-of-string marker.

We have:
null(ε) N1

null(S′) N3

first([S′ ], [) F1

first(], ]) F1

first(S′ ], ]) F3

first(S′, [) F4 [pars]
first(S′ ], [) F2

first($, $) F1

first(S′ $, $) F3

first(S′ $, [) F2

first(S, $) F4 [start]
first(S, [) F4 [start]

follow(S′, $) W1

follow(S′, ]) W1

follow([S′ ], $) W5

follow([S′ ], ]) W5

follow(S′ ], $) W3

follow(S′ ], ]) W3

follow(], $) W4

follow(], ]) W4

3 Parser Generation

Parser generation is now a very simple process. Once we have computed the null,
first, and follow predicates by saturation from a given grammar, we specialize the in-
ference rules R′3(r) and R′′3(r) by matching the first two and three premises against
grammar productions and saturated database. In this case, this leads to the follow-
ing specialized rules (repeating once again the two initial rules).

ε : ε
R1

w : γ

aw : a γ
R2

[w : S′ $ γ

[w : S γ
R′3(start)

$w : S′ $ γ

$w : S γ
R′3(start)

[w : [S′ ] γ

[w : S′ γ
R′3(pars)

]w : γ

]w : S′ γ
R′′3(emp)

$w : γ

$w : S′ γ
R′′3(emp)
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Recall that these rules are applied from the bottom-up, starting with the goal
w0 $ : S, where w0 is the input string. It is easy to observe by pattern matching
that each of these rules are mutually exclusive: if one of the applies, none of the
other rules applies. Moreover, each rule except for R1 (which accepts) has exactly
one premise, so the input string is traversed linearly from left-to-right, without
backtracking. When none of the rules applies, then the input string is not in the
language defined by the grammar. This proves that our simple language (n )n is
LL(1).

Besides efficiency, an effect of this approach to parser generation is that it sup-
ports good error messages in the case of failure. For example, if we see the parsing
goal (w : ) γ we can state: Found ’(’ while expecting ’)’., and similarly for other
cases that match none of the conclusions of the rules.

4 Removing Ambiguities

One standard way to deal with ambiguities in grammars is to rewrite them, but un-
der the constraint that they accept the same strings. When designing our own pro-
gramming language, we sometimes have the immense luxury to actually change
the syntax to make it easier to parse (and, hopefully, also easier to read and under-
stand).

As an example, we use the following simple grammar for expressions.

[plus] E −→ E + E
[times] E −→ E * E
[ident] E −→ id
[number] E −→ num
[parens] E −→ ( E )

If we see a simple expression such as 3 + 4 * 5 (which becomes the token stream
num + num * num), we cannot predict when we see the + symbol which production
to use because of the inherent ambiguity of the grammar.

In order the rewrite it to make the parse tree unambiguous we have to analyze
how to rule out the unintended parse tree. In the expression 3 + 4 * 5 we have to
all the parse equivalent to 3 + (4 * 5) but we have to rule out the parse equivalent
to (3 + 4) * 5. In other words, the left-hand side of a product is not allowed to be
a sum (unless it is explicitly parenthesized).

Backing up one step, how about 3 + 4 + 5? We want addition to be left asso-
ciative, so this should parse as (3 + 4) + 5. In other words, we have to rule out the
parse 3 + (4 + 5). Instead of

E −→ E + E

we want
E −→ E + P
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where P is a new nonterminal that does not allow a sum. Continuing the above
thought, P is allowed to be a product, so we proceed

P −→ P * A

Since multiplication is also left-associative, we have made up a new symbol A
which cannot be a product. In fact, in our language A can only be an identifier,
a number, or a parenthesized (arbitrary) expression.

[plus] E −→ E + P
[times] P −→ P * A
[ident] A −→ id
[number] A −→ num
[parens] A −→ ( E )

This is not yet complete, because it is in fact empty: it claims an expression must
always be a sum. But it could also just be a product. Similarly, products P may just
consist of an atom A. This yields:

[plus] E −→ E + P
[e/p] E −→ P
[times] P −→ P * A
[p/a] P −→ A
[ident] A −→ id
[number] A −→ num
[parens] A −→ ( E )

You should convince yourself that this grammar is now unambiguous. Unfortu-
nately, it is not LL(1): from the first token we cannot tell which grammar produc-
tion to choose. In fact any token can start any production!

5 LR(1) Parsing

One difficulty with LL(1) parsing is that it is often difficult or impossible to rewrite
a grammar so that 1 token look-ahead during a left-to-right traversal becomes un-
ambiguous. The example in the previous section illustrate this: it was relatively
easy to rewrite the grammar to be unambiguous, but we need much more work to
make it LL(1).

We can react by rewriting the grammar, at significant expense of readability, or
we could just specify that (a) addition and multiplication are left-associative, and
(b) multiplication has higher precedence than addition, + < *. Obviously, the latter
is more convenient, but how can we make it work?

The idea is to put off the decision on which productions to use and just shift the
input symbols onto a stack until we can make the decision! We write
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γ | w parse input w under stack γ

where, as generally in predictive parsing, the rules are interpreted as transitions
from the conclusion to the premises. The parsing attempt succeeds if we can con-
sume all of w and and produce the start symbol S on the left-hand side. That is, the
deduction representing a successful parse of terminal string w0 has the form

S | ε
R1

...
ε | w0

Parsing is defined by the following rules:

S | ε
R1(= accept)

γ a | w

γ | aw
R2(= shift)

[r]X −→ β
γ X | w

γ β | w
R3(r)(= reduce(r))

We resume the example above, parsing num + num * num . After one step (reading
this bottom-up)

num | + num * num ?
ε | num + num * num shift

we already have to make a decision: should we shift + or should we reduce num
using rule [number]. In this case the action to reduce is forced, because we will
never get another chance to see this num as an E.

E | + num * num ?
num | + num * num reduce(number)

ε | num + num * num shift

At this point we need to shift +; no other action is possible. We take a few steps and
arrive at

E + E | * num
E +num | * num reduce(number)

E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift
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At this point, we have a real conflict. We can either reduce, viewing E + E as a
subexpression, or shift and later consider E * E as a subexpression. Since the * has
higher precedence than +, we need to shift.

E | ε accept
E + E | ε reduce(plus)

E + E * E | ε reduce(times)
E + E * num | ε reduce(number)

E + E * | num shift
E + E | * num shift

E +num | * num reduce(number)
E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift

Since E was the start symbol in this example, this concludes the deduction. If
we now read the lines from the top to the bottom, ignoring the separator, we see
that it represents a rightmost derivation of the input string. So we have parsed
analyzing the string from left to right, constructing a rightmost derivation. This
type of parsing algorithms is called LR-parsing, where the L stands for left-to-right
and the R stands for rightmost.

The decisions above are based on the postfix of the stack on the left-hand side
and the first token on the right-hand side. Here, the postfix of the stack on the left-
hand side must be a prefix substring of a grammar production. If not, it would be
impossible to complete it in such a way that a future grammar production can be
applied in a reduction step: the parse attempt is doomed to failure.

6 LR(1) Parsing Tables

We could now define again a slightly different version of follow(γ, a), where γ is a
prefix substring of the grammar or a non-terminal, and then specialize the rules.
An alternative, often used to describe parser generators, is to construct a parsing
table. For an LR(1) grammar, this table contains an entry for every prefix substring
of the grammar and token seen on the input. An entry describes whether to shift,
reduce (and by which rule), or to signal an error. If the action is ambiguous, the
given grammar is not LR(1), and either an error message is issued, or some default
rule comes into effect that chooses between the options.

We now construct the parsing table, assuming + < *, that is, multiplication
binds more tightly than addition. Moreover, we specify that both addition and
multiplication are left associative so that, for example, 3 + 4 + 5 should be parsed
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as (3 + 4) + 5. We have removed id since it behaves identically to num .

[plus] E −→ E + E
[times] E −→ E * E
[number] E −→ num
[parens] E −→ ( E )

As before, we assume that a special end-of-file token $ has been added to the end
of the input string. When the parsing goal has the form γ β | aw where β is a prefix
substring of the grammar, we look up β in the left-most column and a in the top
row to find the action to take. The non-terminal εE in the last line is a special case
in that E must be the only thing on the stack. In that case we can accept if the next
token is $ because we know that $ can only be the last token of the input string.

β \ a + * num ( ) $

E + E reduce(plus) shift error error reduce(plus) reduce(plus)
(+ left assoc.) (+ < *)

E * E reduce(times) reduce(times) error error reduce(times) reduce(times)
(+ < *) (* left assoc.)

num reduce(number) reduce(number) error error reduce(number) reduce(number)
( E ) reduce(parens) reduce(parens) error error reduce(parens) reduce(parens)
E + error error shift shift error error
E * error error shift shift error error
( E shift shift error error shift error

( error error shift shift error error
ε error error shift shift error error

ε E shift shift error error error accept(E)

We can see that the bare grammar has four shift/reduce conflicts, while all
other actions (including errors) are uniquely determined. These conficts arise when
E + E or E * E is on the stack and either + or * is the first character in the remain-
ing input string. It is called a shift/reduce conflict, because either a shift action or
a reduce action could lead to a valid parse. Here, we have decided to resolve the
conflicts by giving a precedence to the operators and declaring both of them to be
left-associative.

It is also possible to have reduce/reduce conflicts, if more than one reduction
could be applied in a given situation, but it does not happen in this grammar.

Parser generators will generally issue an error or warning when they detect a
shift/reduce or reduce/reduce conflict. For many parser generators, the default
behavior of a shift/reduce conflict is to shift, and for a reduce/reduce conflict to
apply the textually first production in the grammar. Particularly the latter is rarely
what is desired, so we strongly recommend rewriting the grammar to eliminate
any conflicts in an LR(1) parser.
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One interesting special case is the situation in a language where the else-clause
of a conditional is optional. For example, one might write (among other produc-
tions)

E −→ if E then E
E −→ if E then E else E

Now a statement

if b then if c then x else y

is ambiguous because it would be read as

if b then (if c then x) else y

or

if b then (if c then x else y)

In a shift/reduce parser, typically the default action for a shift/reduce conflict is to
shift to extend the current parse as much as possible. This means that the above
grammar in a tool such as ML-Yacc will parse the ambiguous statement into the
second form, that is, the else is match with the most recent unmatched if. This is
consistent with language such as C (or C0, the language used in this course), so we
can tolerate the above shift/reduce conflict, if you wish, instead of rewriting the
grammar to make it unambiguous.

We can also think about how to rewrite the grammar so it is unambiguous.
What we have to so is rule out the parse

if b then (if c then x) else y

In other words, the then clause of a conditional should be balanced in terms of
if-then-else and not have something that is just an if-then without an else clause.

E −→ if E then E
E −→ if E then E′ else E

E′ −→ if E then E′ else E′

E′ −→ . . .

We would also have to repeat all the other clauses for E, or refactor the grammar
so the other productions of E can be shared with E′.
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Questions

1. What happens if we remove the ε from the last entry in the LR parser table?
Aren’t ε’s irrelevant and can always be removed?

2. What makes x*y; difficult to parse in C and C0? Discuss some possible solu-
tions, once you have identified a problem?

3. Give a very simple example of a grammar with a shift/reduce conflict.

4. Give an example of a grammar with a shift/reduce conflict that occurs in
programming language parsing and is not easily resolved using associativity
or precedence of arithmetic operators.

5. Give a very simple example of a grammar with a reduce/reduce conflict.

6. Give an example of a grammar with a reduce/reduce conflict that occurs in
programming language parsing and is not easily resolved.

7. In the reduce rule, we have used a number of symbols on the top of the stack
and the lookahead to decide what to do. But isn’t a stack something where
we can only read one symbol off of the top? Does it make a difference in
expressive power if we allow decisions to depend on 1 or on 10 symbols on
the top of the stack? Does it make a difference in expressive power if we allow
1 or arbitrarily many symbols from the top of the stack for the decision?

8. What’s wrong with this grammar that was meant to define a program P as a
sequence of statements S by P → S | P ;P
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1 Introduction

In this lecture we discuss the “middle end” of the compiler. After the source has
been parsed and elaborated we obtain an abstract syntax tree, on which we carry
out various static analyses to see if the program is well-formed. In the L2 language,
this consists of type-checking (which is rather straightforward), checking that every
finite control flow path ends in a return statement, that every variable is initialized
before its use along every control flow path. For more specific information you
may refer to the Lab 2 specification.

After we have constructed and checked the abstract syntax tree, we transform
the program through several forms of intermediate representation on the way to
abstract symbolic assembly and finally actual x86-64 assembly form. How many
intermediate representations and their precise form depends on the context: the
complexity and form of the language, to what extent the compiler is engineered
to be retargetable to different machine architectures, and what kinds of optimiza-
tions are important for the implementation. Some of the most well-understood
intermediate forms are intermediate representation trees (IR trees), static single-
assignment form (SSA), quads and triples. Quads (that is, three-address instruc-
tions) and triples (two-address instructions) are closer to the back end of the com-
piler and you will probably want to use one of them, maybe both. In this lecture
we focus on IR trees.

∗with contributions by André Platzer
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2 Abstract Syntax Trees

We describe abstract syntax trees in a BNF form (Backus-Naur Form) which was
originally designed for describing grammars. An abstract syntax tree is the output
of parsing and is formed by removing immaterial information from the parse tree
(e.g., tokens that are not important in the tree structure) and transforming into a
more canonical form. Here we use BNF to describe the recursive structure of the
abstract syntax trees.

Expressions e ::= n | x | e1 ⊕ e2 | e1 � e2 | f(e1, . . . , en)
| e1 ? e2 | !e | e1 && e2 | e1 || e2

Statements s ::= assign(x, e) | if(e, s1, s2) | while(e, s)
| return(e) | nop | seq(s1, s2)

We use n for constants, x for variables, ⊕ for effect-free operators, � for poten-
tially effectful operators (such as division, which could raise an exception), ’?’ for
comparison operators returning a boolean, !, &&, and || for logical negation, con-
junction, and disjunction, respectively. The latter have the meaning as in C, always
returning either 0 or 1, and short-circuiting evaluation if the left-hand side is false
(for &&) or true (for ||).

3 IR Trees

In the translation to IR trees we want to achieve several goals. One is to isolate po-
tentially effectful expressions, making their order of execution explicit. This sim-
plifies instruction selection and also means that the remaining pure expressions
can be optimized much more effectively. Another goal is to make the control flow
explicit in the form of conditional or unconditional branches, which is closer to
the assembly language target and allows us to apply standard program analyses
based on an explicit control flow graph. The treatment in the textbook achieves
this [App98, Chapters 7 and 8] but it does so in a somewhat complicated manner
using tree transformations that would not be motivated for our language.

We describe the IR through pure expressions p and commands c. Programs r are
just sequences of commands; typically these would be the bodies of function def-
initions. An empty sequence of commands is denoted by ’·’, and we write r1 ; r2
for the concatenation of two sequences of commands.
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Pure Expressions p ::= n | x | p1 ⊕ p2

Commands c ::= x← p
| x← p1 � p2
| x← f(p1, . . . , pn)
| if (p1 ? p2) goto l
| goto l
| l :
| return(p)

Programs r ::= c1 ; . . . ; cn

Pure expressions are a subset of all expressions that do not have any side ef-
fects. We choose an IR tree representation in which potentially effectful operations
and function calls can only appear at the top-level of assignments. The logical op-
erators are no longer present and must be eliminated in the translation in favor
of conditionals. These transformations help optimizations and analysis. Function
calls only take pure arguments, which guarantees the left-to-right evaluation order
prescribed in the C0 language semantics. Since function calls may have effects, we
also lift function calls to the command level rather than embedding them inside
expression evaluation.

4 Translating Expressions

The first idea may be to translate abstract syntax expressions to pure expressions,
but this does not quite work because potentially effectful expressions have to be
turned into commands, and commands are not permitted inside pure expressions.
Returning just a command, or sequence of commands, is also insufficient because
we somehow need to refer to the result of the translation as a pure expression so
we can use it, for example, in a conditional jump or return command.

A solution is to translate from an expression e to a pair consisting of a sequence
of instructions r and a pure expression p. After executing r, the value of p will the
value of e (assuming the computation does not abort). We write

tr(e) = 〈ě, ê〉

where ě is a sequence of commands r that we need to write down to compute the
effects of e and ê is a pure expression p that we can use to compute the value of e
back up. Here are the first three clauses in the definition of tr(e):

tr(n) = 〈·, n〉
tr(x) = 〈·, x〉
tr(e1 ⊕ e2) = 〈(ě1 ; ě2), ê1 ⊕ ê2〉
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Constants and variables translate to themselves. If we have a pure operation e1⊕e2
it is possible that the subexpressions have effects, so we concatenate the command
sequences for these to expressions ě1 and ě2. Now ê1 and ê2 are pure expressions
referring to the values of e1 and e2, respectively, so we can combine them with a
pure operation to get a pure expression representing the result.

We can see that the translation of any pure expression p yields an empty se-
quence of commands followed by the same pure expression p, that is, tr(p) = 〈·, p〉.
Effectful operations and function calls require us to introduce some commands and
a fresh temporary variable to refer to the value resulting from the operation or call.

tr(e1 � e2) = 〈(ě1 ; ě2 ; t← ê1 � ê2), t〉 (t new)
tr(f(e1, . . . , en)) = 〈(ě1 ; . . . ; ěn ; t← f(ê1, . . . , ên)), t〉 (t new)

We postpone the translation of boolean expressions e1 ? e2, !e, e1 && e2 and
e1 || e2 to Section 6.

5 Translating Statements

Translating statements is in some ways simpler, because we only need to return a
sequence of instructions. It is slightly more complicated in other ways, since we
have to manage control flow via jumps and conditional branches. So the statement
translation takes three arguments: the statement to translate, and two optional la-
bels. We elide these labels for simplicity: they are absent on the top-level and
passed down in recursive calls and change when entering a while loop. We write
tr(s) = š, where š is a sequence of commands r.

Assigments and conditionals are simple, given the translation of expression
from the previous section, as are return, nop and seq.

tr(assign(x, e)) = ě ; x← ê

tr(return(e)) = ě ; return(ê)

tr(nop) = ·

tr(seq(s1, s2)) = š1 ; š2

Conditionals require labels and jumps. Below is a first attempt We combine
labels with the following statement (where there is one) to make it easier to read.

tr(if(e, s1, s2)) = ě ;
if (ê == 0) goto l2 ;

l1 : š1 ;
goto l3 ;

l2 : š2
l3 : (l1, l2, l3 new)
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We can unify the presentation a bit more by inserting a redundant jump (assuming
it will be optimized away late in the compilation) and combining a few commands
involving control on the same line.

tr(if(e, s1, s2)) = ě ;
if (ê == 0) goto l2 ; goto l1 ;

l1 : š1 ; goto l3 ;
l2 : š2 ; goto l3 ;
l3 : (l1, l2, l3 new)

The remaining awkwardness in this code comes from having to compute e to a
boolean value and then checking this against 0. While this is correct, it does not lead
to particularly efficient machine code. We will present an improved translation in
the next section.

Here is a similarly straightforward translation for while.

tr(while(e, s)) = l1 : ě;
if (ê == 0) goto l3 ; goto l2 ;

l2 : š ; goto l1;
l3 : (l1, l2, l3 new)

For the kind of processor we are compiling for, it is advantageous for branch
prediction if the conditional jump in the is backwards. We can rotate the loop by
replicating the loop guard (often small) before entry into the loop body.

tr(while(e, s)) = ě;
if (ê == 0) goto l3 ; goto l1 ;

l1 : š ;
ě ;
if (ê) goto l1 ; goto l3 ;

l3 :

6 Translating Boolean Expressions

As indicated above, the code with the translations above does not take advantage
of the way conditional branches work in x86 and x86-64, where we can compare
two values and then branch based on the outcome of the comparison by testing
condition flags. So we may look for ways to translation conditionals (if(e, s1, s2))
and loops (while(e, s)) into simpler code.

One insight is that we use booleans mostly so we can branch on them. So we
define a new function

cp(b, l, l′) = r
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where b is a boolean expression. The resulting command sequence r should jump
to l if b is true and jump to l′ if b is false. Boolean expressions here are compar-
isons, negation, logical and, and logical or. They can also be function calls returning
booleans or constants 0 for false and 1 for true.

We define

cp(e1 ? e2, l, l
′) = ě1 ; ě2 ;

if (ê1 ? ê2) goto l ; goto l′

cp(!e, l, l′) = cp(e, l′, l)
cp(e1 && e2, l, l

′) = cp(e1, l2, l
′) ;

= l2 : cp(e2, l, l
′) (l2 new)

cp(e1 || e2, l, l
′) = left to the reader

cp(0, l, l′) = goto l
cp(1, l, l′) = goto l′

cp(e, l, l′) = ě ;
if (ê != 0) goto l ; goto l′ (e = f(e1, . . . , en))

This is then used in the translation of statements in a straightforward way

tr(if(b, s1, s2)) = cp(b, l1, l2)
l1 : tr(s1) ; goto l3
l2 : tr(s2) ; goto l3
l3 : (l1, l2, l3 new)

We leave while loops using the cp translation to the reader.
We still have to define how to compile an expression that happens to be boolean

(for example, as part of return statement).

tr(e) = 〈 cp(e, l1, l2) ;
l1 : t← 1 ; goto l3
l2 : t← 0 ; goto l3
l3 :

, t 〉 (l1, l2, l3, t new)

7 Ambiguity in Language Specification

The C standard explicity leaves the order of evaluation of expressions unspeci-
fied [KR88, p. 200]:

The precedence and associativity of operators is fully specified, but the order
of evaluation of expressions is, with certain exceptions, undefined, even if the
subexpressions involve side effects.
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At first, this may seem like a virtue: by leaving evaluation order unspecified, the
compiler can freely optimize expressions without running afoul the specification.
The flip side of this coin is that programs are almost by definition not portable.
They may check and execute just fine with a certain compiler, but subtly or catas-
trophically break when a compiler is updated, or the program is compiled with a
different compiler.

A possible reply to this argument is that a program whose proper execution
depends on the order of evaluation is simply wrong, and the programmer should
not be surprised if it breaks. The flaw in this argument is that dependence on
evaluation order may be a very subtle property, and neither language definition
nor compiler give much help in identifying such flaws in a program. No amount
of testing with a single compiler can uncover such problems, because often the code
will execute correctly under the decision made for this compiler. It may even be that
all available compilers at the time the code is written may agree, say, evaluating
expressions from left to right, but the code could break in a future version.

Therefore I strongly believe that language specifications should be entirely un-
ambiguous. In this course, this is also important because we want to hold all com-
pilers to the same standard of correctness. This is also why the behavior of division
by 0 and division overflow, namely an exception, is fully specified. It is not accept-
able for an expression such as (1/0)*0 to be “optimized” to 0. Instead, it must raise
an exception.

The translation to intermediate code presented here therefore must make sure
that any potentially effectful expressions are indeed evaluated from left to right.
Careful inspection of the translation will reveal this to be the case. On the resulting
pure expressions, many valid optimizations can still be applied which would oth-
erwise be impossible, such as commutativity, associativity, or distributivity, all of
which hold for modular arithmetic.

8 Translating C0 to C

At this point in time, the cc0 compiler for C0 performs lexing, parsing, and static
semantic checks and then generates corresponsing C code. This translation has to
take care of protecting the C0 code against the undefined or unspecified behavior
of certain expressions in C. We list here some of them and the compiler’s approach
to accomodating them.

• Undefined behavior of certain divisions, shifts, and memory accesses. These
are handled by protecting the corresponding operations in C with tests and
reliably raising the required exceptions.

• Undefined behavior of overflow of signed integer arithmetic. This is cur-
rently handled using the -fwrapv flag for gcc which requires two’s comple-
ment integer arithmetic for signed quantities. It was previously handled by
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declaring C variables as unsigned (for which modular arithmetic is specified)
and casting them to corresponding signed quantities before comparisons.

• Unspecified evaluation order. This is handled by a similar translation as
shown this lecture, isolating potentially effectful expressions in sequences of
assignment statements. This fixes evaluation order since evaluation order of
a sequence statements is guaranteed in C even if it is not for expressions.

• Unspecified size of int and related integral types. This is currently handled
by checking, before invoking the generated binary, that int does indeed have
32 bits. At a previous point in time it was handled more portably by translat-
ing C0’s int type to C’s int32_t.

Questions

1. In the section on abstract syntax trees it looks like we have defined a language
instead of an abstract syntax tree. What is the difference? Why is there a
difference? What can be represented in the language but not the AST? What
can be represented in the AST but not the language?

2. Which choices of i, j, k, l ∈ {1, 2}make the following translation valid?

tr(e1 + e2) = 〈(ěi; ěj), êk + êl〉

3. You can make your translation more uniform by requiring all translations to
put their results into temp variables using commands, as we did in the lecture
on instruction selection. Discuss the difference.

4. Extend the translations to hand break and continue for while loops under their
C semantics.

5. Does each basic block in the intermediate representation for C0 have at most
2 predecessors?
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15-411: Compiler Design
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Lecture 11
October 1, 2013

1 Introduction

In Lab 3 you will be adding functions to the arithmetic language with loops and
conditionals. Compiling functions creates some new issues in the front end and
the back end of the compiler. In the front end, we need to make sure functions are
called with the right number of arguments, and arguments of the right type. In the
back end, we need to create assembly code that respects the calling conventions of
the machine architecture. Strict adherence to the calling conventions is crucial so
that your code can interoperate with library routines, and the environment can call
functions that you define.

Calling conventions are rather machine-specific and often quite arcane. You
must carefully read the Section 3.2 of the AMD64 ABI [MHJM09]1. Examples and
additional information is provided in Section 6 of a handout on x86-64 Machine-
Level Programming by Bryant & O’Hallaron.

2 IR Trees

We have already seen in Lecture 10 that function calls should take pure arguments
in order to easily guarantee the left-to-right evaluation order prescribed by our
language semantics. Moreover, they should be lifted to the level of commands
rather than remain embedded inside expressions because functions may have side-
effects.

1Available at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
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3 Low-Level Intermediate Language

In the low level intermediate language of quads that we have used so far in this
course, it is convenient to add a new form of instruction

d← f(s1, . . . , sn)

where each si is a source operand and d is a destination operand.
The generic def(l, x), use(l, x) and succ(l, l′) predicates are easily defined, as-

suming for simplicity that source and destinations are all temps.

l : d← f(s1, . . . , sn)

def(l, d)
use(l, si) (1 ≤ i ≤ n)
succ(l, l + 1)

J8

Unfortunately, this is overly simplistic, because calling conventions prescribe the
use of certain fixed registers for passing arguments and receiving results, so we
will have to extend the above rule further.

4 x86-64 Calling Conventions

In x86-64, the first six arguments are passed in registers, the remaining arguments
are passed on the stack. The result is returned in a specific return register %rax.
These conventions do not count floating point arguments and results, which are
passed in the dedicated floating point registers %xmm0 to %xmm7 and on the stack
only if there are more than eight floating point parameters. Fortunately, our lan-
guage has only integers at the moment, so you do not have to worry about the
conventions for floating point numbers.

On the x86, stack frames were required to have a frame pointer %ebp (base
pointer) which had to be saved and restored with each function call. It provided
a reliable pointer to the beginning of a stack frame for easy calculation of frame
offsets to handle references to arguments and local variables. It also allowed tools
such as gdb to print backtraces of the stack. On the x86-64 this information is main-
tained elsewhere and a frame pointer is no longer required.

The general organization of stack frames at the time a procedure is called, will
be as follows.

Position Contents Frame
· · · · · · Caller

16(%rsp) argument 8
8(%rsp) argument 7
(%rsp) return address
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Note that all arguments take 8 bytes of space on the stack, even if the type of
argument would indicate that only 4 bytes need to be passed.

The function that is called, the callee, should set up its stack frame, reserving
space for local variables, spilled temps that could not be assigned to registers, and
arguments passed to functions it calls in turn. We recommend calculating the to-
tal space needed and then decrementing the stack pointer %rsp by the appropriate
amount. By changing the stack pointer only once, at the beginning, references to
parameters and local variables remain constant throughout the function’s execu-
tion. The stack then looks as follows, where the size of the callee’s stack frame is
n.

Position Contents Frame
· · · · · · Caller

n+ 16(%rsp) argument 8
n+ 8(%rsp) argument 7
n+ 0(%rsp) return address

local variables Callee
· · ·

argument build area
for function calls

· · ·
(%rsp) end of frame

128 bytes red zone

Note that %rsp should be aligned 0 mod 16 before another function is called, and
may be assumed to be aligned 8 mod 16 on function entry. This happens because
the call instruction saves the 64-bit return address on the stack.

The area below the stack pointer is called the red zone and may be used by the
callee as temporary storage for data that is not needed across function calls or even
to build arguments to be used before a function call. The ABI states that the red
zone “shall not be modified by signal or interrupt handlers.” This can be tricky,
however, because, for example, Linux kernel code may not respect the red zone
and overwrite this area. We therefore suggest not using the red zone.

5 Register Convention

We extract from [MHJM09] the relevant information on register usage. In the first
column is a suggested numbering for the purpose of register allocation.
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Abstract x86-64 Preserved accross
form Register Usage function calls
res0 %rax return value∗ No
arg1 %rdi argument 1 No
arg2 %rsi argument 2 No
arg3 %rdx argument 3 No
arg4 %rcx argument 4 No
arg5 %r8 argument 5 No
arg6 %r9 argument 6 No
ler7 %r10 caller-saved No
ler8 %r11 caller-saved No
lee9 %rbx callee-saved Yes
lee10 %rbp callee-saved∗ Yes
lee11 %r12 callee-saved Yes
lee12 %r13 callee-saved Yes
lee13 %r14 callee-saved Yes
lee14 %r15 callee-saved Yes

%rsp stack pointer Yes

The starred registers have a potentially relevant alternative use. %al (the lower
8 bits of %rax) contains the number of floating point arguments on the stack in a call
to varargs functions. %rbp is the frame pointer for the stack frame, in an x86-like
calling convention (which is optional for the x86-64).

6 Typical Calling Sequence

If we have 6 or fewer arguments, a typical calling sequence for 32-bit arguments
with an instruction

d← f(s1, s2, s3)

will have the following form:
arg3 ← s3
arg2 ← s2
arg1 ← s1
call f
d← res0

First we move the temps into the appropriate argument registers, then we call the
function f (represented by a symbolic label), and then we move the result register
into the desired destination.

This organization, perhaps just before register allocation, has the advantage
that the live ranges of fixed registers (called precolored nodes in register allocation) is
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minimized. This is important to avoid potential conflict. We have already applied a
similar technique in the implementation of div and mod operations, which expect
their arguments in fixed registers.

Let us state this as a fundamental principle of code generation that you should
strive to adhere to:

The live range of precolored registers should be as short as possible!

We can now see a problem with our previous calculation of def and use informa-
tion: the above sequence to actually implement the function call will overwrite the
argument registers %edx, %esi, %edi as well as the result register %eax (the lower
32bits of the return register %rax)! In fact, any of the argument registers, the result
register, as well as %r10 (temporary register for passing static function chain point-
ers) and %r11 (temporary register) may not be preserved across function calls and
therefore have to be considered to be defined by the call. If we represent this in the
low-level intermediate language, we would add to the rule R8 the following rule
R′8:

l : d← f(s1, . . . , sn)
caller-save(r)

def(l, r)
J ′8

where caller-save(r) is true of register r among %rax, %rdi, %rsi, %rdx, %rcx, %r8,
%r9, %r10, and %r11.

Here we assume that register aliasing is handled correctly, that is, the register
allocator understands that, for example, %eax constitutes the lower 32 bits of %rax.

Note that all argument registers and the result register are caller-save. This is justi-
fied by the fact that we often compute a value for the purposes of passing it into a
function, but we do not require that value afterwards. Of course, the result register
has to be caller-save, since it will be defined by the called function before it returns.

We refer to argument registers more abstractly as arg1, arg2, . . . , arg6 and ler7
and ler8 for the other two caller-save registers (even if they are not used for passing
arguments to a function). We refer to the result register %rax as res0.

Now if a temp t (except for d) is live after a function call, we have to add a edge
connecting t with any of the fixed registers noted above, since the value of those
registers are not preserved across a function call.

The other fixed used of argument registers is of course at the beginning of a
function. Again, we should be careful to generate code that keeps the live ranges
of functions short. We can accomplish this by moving the argument registers into
temps. Under some heuristics in register allocation and coalescing, these moves
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can sometimes be eliminated. A function f(x, y, z) might then start with

f :
x← arg1
y ← arg2
z ← arg3

One more note: if it is possible that the function f is a function accepting a vari-
able number of arguments, some additional considerations apply. For example, the
low 8 bits of %rax, called %al hold the number of floating point arguments passed
to the function. One therefore sometimes sees xorl %eax, %eax before a function
call to define zero variable arguments.

7 Callee-Save Registers

The typical calling sequence above takes care of treating caller-save registers cor-
rectly. But what about callee-save registers, namely %rbx, %rbp, %r12, %r13, %r14
and %r15? In compiling a function we are required that the generated code pre-
serves all the callee-save registers. We generically refer to these registers as leei
where 9 ≤ i ≤ 14.

The standard approach is to save those that are needed onto the stack in the
function prologue and restore them from the stack in the function epilogue, just be-
fore returning. Of course, saving and restoring them all is safe, but may be overkill
for small functions that do not require many registers.

Remember that callee-save registers are essentially live throughout the body
of a function, since their value at the return instruction matters. This violates our
general rule to keep the live ranges of precolored registers short—in fact, they are
maximal!

One simple way to deal with this is by listing them last among the registers to
be assigned by register allocation. If we need more than the available number of
caller-save registers, we assign callee-save registers before we resort to spilling, but
make sure the save them at the beginning of a function and restore them at the end.
This is generally more efficient than the usual register spilling since such temps still
live in a register throughout the function execution. We use this technique in the
example in Section 8.

Another solution is to let register allocation together with register coalescing
do the job for us. We can move the contents of all the callee-save registers into
temps at the beginning of a function and then move them back at the end. If it
turns out these temps are spilled, then they will be saved onto the stack. If not,
they may be moved from one register to another and then back at the end. How-
ever, this only works well with the right heuristics for assigning registers or using
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register coalescing.2 Register coalescing consults the interference graph to check if
we can assign the same register for variable-to-variable moves. Another optimiza-
tion that can eliminate register-to-register moves is copy propagation, covered in a
later lecture. However, copy propogation requires care because it might extend the
live range of variables, possibly undoing the care we applied to keep precolored
registers contained.

With this technique, the general shape of the code for a function f before regis-
ter allocation would be

f :
t1 ← lee9
t2 ← lee10
· · ·
function body
· · ·
lee10 ← t2
lee9 ← t1
ret

One complication with this approach is that we need to be sure to spill the full
64-bit registers, while registers holding 32-bit integer values might be saved and
restored (or directly used as operands) using only 32 bits. Looking ahead, we see
that we will need both 32 bit and 64 bit registers and spill slots in the next lab, so we
might decide to introduce this complication now. Or we can still treat callee-save
registers specially and switch over to a more uniform treatment in the next lab.

With either of the techniques for using callee-save registers, the one additional
rule (R′8) is not enough. We should also note that all callee-save registers should be
considered live at the return instruction.

l : return s
callee-save(r)

use(l, r)
J ′2

We already know, by prior rule, that s itself is live at l. The rule new rule J ′2 correctly
flags all callee-save registers as live throughout the function body, unless they are
assigned somewhere. The code pattern above achieves exactly that, cutting their
live ranges down to a minimum.

8 An Extended Example

We use the recursive version of the power function as an example to illustrate reg-
ister allocation in the presence of function calls. The C0 source is on the left; the
abstract assembly on the right.

2One technique for register coalescing is briefly described in Section 8 of Lecture 3.

LECTURE NOTES OCTOBER 1, 2013

http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/03-regalloc.pdf


Calling Conventions L11.8

int pow(int b, int e) pow(b,e):

//@requires e >= 0; if (e == 0) goto done

{ t0 <- e - 1

if (e == 0) t1 <- pow(b, t0)

return 1; t2 <- b * t1

else return t2

return b * pow(b, e-1); done:

} return 1

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program live-in
pow(b, e) :
if (e == 0) goto done b, e
t0 ← e− 1 b, e
t1 ← pow(b, t0) b, t0
t2 ← b ∗ t1 b, t1
return t2 t2

done :
return 1

Next, we move to a slightly lower-lever representation, making the precolored reg-
isters explicit with the code pattern in Section 6.

program live-in
pow :

b← arg1 arg1, arg2
e← arg2 b, arg2
if (e == 0) goto done b, e
t0 ← e− 1 b, e
arg2 ← t0 b, t0
arg1 ← b b, arg2
call pow b, arg1, arg2
t1 ← res0 b, res0
t2 ← b ∗ t1 b, t1
res0 ← t2 t2
return res0

done :
res0 ← 1
return res0
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We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l, we create an edge between t and any variable live in the successor. The only
exception is a move t← s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers:

temp interfering with
b res0, arg1, arg2, t0, t1
e b
t0 b
t1 b
t2

Implicitly all precolored registers interfere with each other.
However, we forgot one important piece of information3, namely that the call

instruction must be interpreted as defining all caller-save registers. Since b remains
alive through the function call, it can therefore not be assigned to a caller-save
register, based on the code that we have.

We proceed by admitting that we need one caller-save register lee9 and save
and restore it at the beginning and end of the function. We use the push and pop

3which we only recalled at the last minute in lecture, too
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instructions for the save and restore operations.

program live-in
pow :

push lee9 arg1, arg2, lee9
b← arg1 arg1, arg2
e← arg2 b, arg2
if (e == 0) goto done b, e
t0 ← e− 1 b, e
arg2 ← t0 b, t0
arg1 ← b b, arg2
call pow b, arg1, arg2
t1 ← res0 b, res0
t2 ← b ∗ t1 b, t1
res0 ← t2 t2
pop lee9 res0
return res0, lee9

done :
res0 ← 1
pop lee9 res0
return res0, lee9

While the callee-save lee10, . . . , lee14 are still (implicitly) live through this function,
after the rewrite lee9 no longer is. Therefore, it no longer interferes with any temps.

We can construct a simplicial elimination ordering, from the interference graph,
such as:

b, e, t0, t1, t2

We order the colors (machine registers) as

res0, arg1, . . . , arg6, ler7, ler8, lee9

with the idea that caller-save registers come first (including argument registers
which we will likely need anyway), followed by the only callee-save register we
are currently permitted to use. If we needed more, we would first have to spill and
restore them.

From this we construct the assignment

b 7→ lee9
e 7→ res0
t0 7→ res0
t1 7→ res0
t2 7→ res0
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Applying the substitutions:

pow :
push lee9
lee9 ← arg1
res0 ← arg2
if (res0 == 0) goto done
res0 ← res0 − 1
arg2 ← res0
arg1 ← lee9 (redundant)
call pow
res0 ← res0 (redundant)
res0 ← lee9 ∗ res0
res0 ← res0 (redundant)
pop lee9
return

done :
res0 ← 1
pop lee9
return

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move after copy propagation. One would
also typically have just one epilog for the function (which restores the callee-save
registers and the stack pointer, which is not visible here). Making these last changes,
we obtain:

pow :
push lee9
lee9 ← arg1
res0 ← arg2
if (res0 == 0) goto done
res0 ← res0 − 1
arg2 ← res0
call pow
res0 ← lee9 ∗ res0
goto epilogue

done :
res0 ← 1

epilogue :
pop lee9
return

Using GNU assembler format for x86-64:
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pow:

pushq %rbx

movl %edi, %ebx

movl %esi, %eax

testl %eax, %eax

je L1

subl $1, %eax

movl %eax, %esi

call pow

imull %ebx, %eax

goto L2

L1:

movl $1, %eax

L2:

popq %rbx

ret
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1 Introduction

After lexing and parsing, a compiler will usually apply elaboration to translate the
parse tree to a high-level intermediate form often called abstract syntax. Then we
verify that the abstract syntax satisfies the requirements of the static semantics.
Sometimes, there is some ambiguity whether a given condition should be enforced
by the grammar, by elaboration, or while checking the static semantics. We will not
be concerned with details of attribution, but how to describe and then implement
various static semantic conditions. The principal properties to verify for C0 and
the sublanguages discussed in this course are:

• Initialization: variables must be defined before they are used.

• Proper returns: functions that return a value must have an explicit return state-
ment on every control flow path starting at the beginning of the function.

• Types: the program must be well-typed.

Type checking is frequently discussed in the literature, so we use initialization as
our running example and discuss typing at the end, in Section 9.

2 Abstract Syntax

We will use a slightly restricted form of the abstract syntax in Lecture 10 on IR trees,
with the addition of variable declaration with their scope. This fragment exhibits
all the relevant features for the purposes of the present lecture.

Expressions e ::= n | x | e1 ⊕ e2 | e1 && e2
Statements s ::= assign(x, e) | if(e, s1, s2) | while(e, s)

| return(e) | nop | seq(s1, s2) | decl(x, τ, s)
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3 Definition and Use

Initialization guarantees that every variable is defined before it is used. The natural
way to specify this in two parts: when is a variable is defined, and when it is
used. An error is signaled if we cannot show that every variable in the program is
defined before it is used. As usual, this property is an approximation of what actual
behaviors can be exhibited at runtime.

First, we define when a variable is used in an expression, written as use(e, x).
This is entirely straightforward, since we have a clear separation of expressions
and statements in our language.

no rule for
use(n, x) use(x, x)

no rule for
use(y, x), y 6= x

use(e1, x)

use(e1 ⊕ e2, x)

use(e2, x)

use(e1 ⊕ e2, x)

use(e1, x)

use(e1 && e2, x)

use(e2, x)

use(e1 && e2, x)

We see already here that use(e, x) is a so-called may-property: x may be used
during the evaluation of x, but it is not guaranteed to be actually used. For exam-
ple, the expression y > 0 && x > 0 may or may not actually use x. The expression
false && x > 0 will actually never use x, and yet we flag it as possibly being used.

This is appropriate: we would like to raise an error if there is a possibility that
an unitialized variable may be used. Because determining this in general is unde-
cidable, we need to approximate it. Our approximation essentially says that any
variable occurring in an expression may be used. The rule above express this more
formally.

For a language to be usable, it is important that the rules governing the static
semantics are easy to understand for the programmer and have some internal co-
herence. While it might make sense to allow false && x > 0 in particular, what is
the general rule? Designing programming languages and their static semantics is
difficult and requires a good balance of formal understanding of the properties of
programming languages and programmer’s intuition.

Once we have defined use for expressions, we should consider statements.
Does an assignment x = e use x? Our prior experience with liveness analysis
for register allocation on abstract machine could would say: only if it is used in e.
We stay consistent with this intuition and terminology and write live(s, x) for the
judgment that x is live in s. This means the value of x is relevant to the execution
of s.

Before we specify liveness, we should specify when a variable is defined. This is
because, for example, the variable x is not live before the statement x = 3, because
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its current value does not matter for this statement, or any subsequent statement.
We write def(s, x) is the execution of statement s will define s. This is an example
of a must-property: we want to be sure that whenever s executes (and completes
normally, without returning from the current function or raising an exception of
some form), the x has been defined.

def(assign(x, e), x)
no rule for
def(assign(y, e), x), y 6= x

def(s1, x) def(s2, x)

def(if(e, s1, s2), x)
no rule for
def(while(e, s), x)

The last two rules clearly illustrate that def(s, x) is a must-property: A condi-
tional only defines a variable if is it defined along both branches, and a while loop
does not define any variable (since the body may never be executed).

no rule for
def(nop, x)

def(s1, x)

def(seq(s1, s2), x)

def(s2, x)

def(seq(s1, s2), x)

def(s, x) y 6= x

def(decl(y, τ, s), x)

The side condition on the last rule apply because s is the scope of y. If we have
already checked variable scoping, then in the particular case of C0, y could not be
equal to x because that would have led to an error earlier. However, even in this
case it may be less error-prone to simply check the condition even if it might be
redundant.

A strange case arises for return statement. Since a return statement never com-
pletes normally, any subsequent statements are unreachable. It is therefore permis-
sible to claim that all variables currently in scope have been defined. We capture
this by simply stating that return(e) defines any variable.

def(return(e), x)
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4 Liveness

We now lift the use(e, x) property to statements, written as live(s, x) (x is live in s).
Liveness is again a may-property.

use(e, x)

live(assign(y, e), x)

use(e, x)

live(if(e, s1, s2), x)

live(s1, x)

live(if(e, s1, s2), x)

live(s2, x)

live(if(e, s1, s2), x)

We observe that liveness is indeed a may-property, since a variable is live in a con-
ditional if is used in the condition or live in one or more of the branches. Similarly,
if a variable is live in the body of a loop, it is live before because the loop body may
be executed.

use(e, x)

live(while(e, s), x)

live(s, x)

live(while(e, s), x)

use(e, x)

live(return(e), x)
no rule for
live(nop, x)

live(x, s) y 6= x

live(decl(y, τ, s), x)

In some way the most interesting case is a sequence of statements, seq(s1, s2). If a
variable is live in s2 it is only live in the composition if it is not defined in s1!

live(s1, x)

live(seq(s1, s2), x)

¬def(s1, x) live(s2, x)

live(seq(s1, s2), x)

5 Initialization

Given liveness, we can now say when proper initialization is violated: If a variable
is live at the site of its declaration. That means that its value would be used some-
where before it is defined. Assume we have a program p and we write “s in p” if s is
a statement appearing in p. The the following rule captures the general condition.

decl(x, τ, s) in p live(s, x)

error

Unlike the previous rules in the lecture, this one should be read from the premises
to the conclusion. In this way it is similar to our rules for liveness from Lecture 4.

This brings out an important distinction when we try to convert the specifica-
tion rules into an implementation. We have to decide if the rules should be read
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from the premises to the conclusion, or from the conclusion to the premises. Some-
times, the same property can be specified in different directions. For example, we
can define a predicate init which verifies that all variables are properly initialized
and which works from the conclusion to the premises with the following schema.

init(nop)

init(s1) init(s2)

init(seq(s1, s2))

init(s) ¬live(s, x)

init(decl(x, τ, s)) (other rules omitted)

The omitted rules just verify each substatement so that all declarations in the pro-
gram are checked in the end.

6 From Judgments to Functions

We now focus on the special case that the inference rules are to be read bottom-up.
Starting with the judgments we ultimately want to verify, consider init(s). When
we start this, s is known and we are trying to determine if there is a deduction of
init(s) given the rules we have put down. If there is such a deduction, we succeed.
If not, we issue an error message. We can model this as a function returning a
boolean, or a function returning no interesting value but raising an exception in
case there the property is violated.

init : stm→ bool

Now each of the rules becomes a case in the function definition.

init(nop) = >
init(seq(s1, s2)) = init(s1) ∧ init(s2)
init(decl(x, τ, s)) = init(s) ∧ ¬live(s, x)
. . .

Here we assume a boolean constant > (for true) and boolean operators con-
junction A ∧ B and negation ¬A in the functional language; later we might use
disjunction A ∨ B and falsehood ⊥. When we call live(s, x) we assume that it is a
similar function.

live : stm× var→ bool

This function is now a transcription of the rules for the live judgment. In this
process we sometimes have to combine multiple rules into a single case of the func-
tion definition (as, for example, for seq(s1, s2).
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live(nop, x) = ⊥
live(seq(s1, s2), x) = live(s1, x) ∨ (¬def(s1, x) ∧ live(s2, x))
live(decl(y, τ, s), x) = y 6= x ∧ live(x, s)
. . .

We still have to write functions for predicates def(s, x) and use(e, x), but these
are a straightforward exercise now.

def : stm× var→ bool
use : exp× var→ bool

The whole translation was relatively straightforward, primarily because the
rules were well-designed, and because we always had enough information to just
write a boolean function.

7 Maintaining Set of Variables

What we have done above is a perfectly adequate implementation of initialization
checking. But we might also try to rewrite it in order limit the number of traversals
of the statements. For example, in

live(seq(s1, s2), x) = live(s1, x) ∨ (¬def(s1, x) ∧ live(s2, x))

we may traverse s1 twice: once to check if x is live in s1, and once to see if x is
defined in s1. In general, we might traverse statements multiple times, namely for
each variable declaration in whose scope it lies. This in itself is not a performance
bug, but let’s see how one might change it.

One way this can often be done is to notice that for any statement s, there could
be multiple variables x such that live(s, x) or def(s, x) holds. We can try to combine
these into a set. We denote a set of variables with δ and define the following two
judgments:

• init(δ, s, δ′): assuming all the variables in δ are defined when s is reached, then
after its execution all the variables in δ′ will be defined.

• use(δ, e): e will only use variables defined in δ.

As a common convention, we isolate assumptions on the left-hand side of a turn-
stile symbols are write these:

• δ ` s⇒ δ′ for init(δ, s, δ′).

• δ ` e for use(δ, e).
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From the previous rules we develop the following:

δ ` nop⇒ δ

δ ` s1 ⇒ δ1 δ1 ` s2 ⇒ δ2

δ ` seq(s1, s2)⇒ δ2

δ ` e
δ ` assign(x, e)⇒ δ ∪ {x}

δ ` e δ ` s1 ⇒ δ1 δ ` s2 ⇒ δ2

δ ` if(e, s1, s2)⇒ δ1 ∩ δ2

δ ` e δ ` s⇒ δ′

δ ` while(e, s)⇒ δ

δ ` s⇒ δ′

δ ` decl(y, τ, s)⇒ δ′ − {y}

δ ` e
δ ` return(e)⇒ {x | x in scope}

It is worth reading these rules carefully to make sure you understand them.
The last one is somewhat problematic, since we don’t have enough information
to know which rules declarations we are in the scope of. We should generalize
our judgment to Γ ; δ ` s −→ δ′, where Γ is the context containing all variables
currently in scope. Usually, we have

Γ ::= · | Γ, x:τ

Then the last rule might become

δ ` e
Γ ; δ ` return(e)⇒ {x | x ∈ dom(Γ)}

and we would systematically add Γ to all other judgments. We again leave this as
an exercise.

In these judgments we have traded the complexity of traversing statements
multiple times with the complexity of maintaining variables sets.

8 Modes of Judgments

If we consider the judgment δ ` e there is nothing new to consider: we would
translate this to a function

use : set var × exp→ bool

On the other hand, it does not work to translate δ ` s⇒ δ′ as

init : set var × stm× set var→ bool
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This is because, in general, we do not know δ′ before we start out. We need to
compute it as part of building the deduction! So we need to implement

init : set var × stm→ bool× set var

In order to handle return(e), we probably should also pass in a second set of de-
clared variables or a context. We could also avoid returning a boolean by just re-
turning an optional set of defined variables, or raise an exception in case we disover
a variable that is used but not defined.

Examining the rules shows that we will need to be able to add variables to and
remove variables from sets, as well as compute intersections. Otherwise, the code
should be relatively straightforward.

Before we actually start this coding, we should go over the inference rules to
make sure we always have enough information to compute the output δ′ given the
inputs δ and s. This is the purpose of mode checking. Let’s go over one example:

δ ` s1 ⇒ δ1 δ1 ` s2 ⇒ δ2

δ ` seq(s1, s2)⇒ δ2

Initially, we know the input δ and s = seq(s1, s2). This means we also know s1 and
s2. We cannot yet compute δ2, since the required input δ1 in the second premise
is unknown. But we can compute δ1 from the first premise since we know δ and
s1 and this point. This gives us δ1 and we can now compute δ2 from the second
premise and return it in the conclusion.

init(δ, seq(s1, s2)) = let δ1 = init(δ, s1) in init(δ1, s2)

9 Typing Judgments

Arguably the most important judgment on programs is whether they are well-
typed. We have already introduced the context (or type environment) Γ that assigns
types to variables. The typing judgment for expressions

Γ ` e : τ

verifies that the expression e is well-typed with type τ , assuming the variables are
typed as prescribed by Γ. Most of the rules are straightforward; we show a couple.

Γ(x) = τ

Γ ` x : τ Γ ` n : int Γ ` true : bool Γ ` false : bool

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 && e2 : bool
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Typing for statements is slightly more complex. Statements are executed for
their effects, but statements in the body of a functions also ultimately return a
value. We write

Γ ` s : [τ ]

to express that s is well-typed in context Γ. If s returns (using a return(e) statement),
then emust be of type τ . We use this to check that no matter how a function returns,
the returned value is always of the correct type.

Γ(x) = τ ′ Γ ` e : τ ′

Γ ` assign(x, e) : [τ ]

Γ ` e : bool Γ ` s1 : [τ ] Γ ` s2 : [τ ]

Γ ` if(e, s1, s2) : [τ ]

Γ ` e : bool Γ ` s : [τ ]

Γ ` while(e, s) : [τ ]

Γ ` e : τ

Γ ` return(e) : [τ ]

Γ ` nop : [τ ]

Γ ` s1 : [τ ] Γ ` s2 : [τ ]

Γ ` seq(s1, s2) : [τ ]

Γ, x:τ ′ ` s : [τ ]

Γ ` decl(x, τ ′, s) : [τ ]

In the last rule for declarations, we might prohibit shadowing of variables by
requiring that x 6∈ dom(Γ). Alternatively, we could stipulate that the rightmost
occurrence of x in Γ is the one considered when calculating Γ(x). It is also possible
that we already know that no conflict can occur, since shadowing may have been
ruled out during elaboration already.

10 Modes for Typing

When implementing type-checking, we need to decide on a mode for the judgment.
Clearly, we want the context Γ and the expression e or statement s to be known,
but what about the type?

We first look at expression typing, Γ ` e : τ . Can we always know τ? Perhaps
in our small language fragment from this lecture, but not in L3. For example, if we
check an expression e1 == e2 : bool, we may know the type boo but we do not
know the types of e1 or e2 (they could be bool or int). Similarly, if we have an ex-
pression used as a statement, we do not know the type of expression. Therefore, we
should implement a function that takes the context Γ and e as input and synthesizes
a type τ such that Γ ` e : τ (if such a type exists, and fails otherwise). The resulting
type τ can be then be compared to a given type if that is known. Of course, you
should go through the rules and verify that one can indeed always synthesize a
type.
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For the typing of statements Γ ` s : [τ ] the situation is slightly different. Because
τ is the return type of the function in which s occurs, we will know τ instead of
having to synthesize is. We say we check the statement s against the return type τ .

Therefore, if we assume that functions raise an exception if an expression or
statement is not well-typed, we might have functions such as

syn exp : ctx× exp→ tp
chk stm : ctx× stm× tp→ unit

For convenience, we might also write a function

chk exp : ctx× exp× tp→ unit

where chk exp(e, τ) would simply synthesize a type τ ′ for e and compare it to τ .

Questions

1. Write out the rules for proper returns: along each control flow path starting
at the beginning of a function, there must be a return statement. Clearly, this
is a must-property.

2. Write some cases in the functions for type-checking.
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1 Introduction

In the previous lecture we have specified the static semantics of a small imperative
language. In this lecture we proceed to discuss its dynamic semantics, that is, how
programs execute. The relationship between the dynamic semantics for a language
and what a compiler actually implements is usually much less direct than for the
static semantics. That’s because a compiler doesn’t actually run the program. In-
stead, it translates it from some source language to a target language, and then the
program in the target language is actually executed.

In our context, the purpose of writing down the dynamic semantics is therefore
primarily to precisely specify how programs are supposed to execute. Just the
exercise of writing this down formally should help us think about the special cases
and make sure our implementation is correct.

Another important purpose is to verify properties of the language itself in a
formal (mathematical) way. Much of the theory of programming languages is con-
cerned with just that and therefore requires an operational semantics. A third pur-
pose is to actually prove that a compiler is correct. That requires at least two opera-
tional specifications: one for the source language and one for the target language.
To date, this still requires a major research effort (and is, in any case, out of the
scope of this course).

2 Evaluating Expressions

When trying to specify the operational semantics of a programming language,
there are a bewildering array of choices regarding the style of presentation. Some
choices are natural semantics, structural operational semantics, abstract machines,
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substructural operational semantics, and many more. Having developed substruc-
tural operational semantics (SSOS) myself, I have a natural bias towards that style
of specification. It has the great virtue that in many cases one can extend the lan-
guage with new constructs without having to rewrite the rules already in place.
However, it requires some machinery, namely substructural logic, which is a little
more extensive than what I would like to introduce in this course. So instead I am
using natural semantics, despite some of its shortcomings.

In natural semantics, which is a form of so-called big-step operational semantics,
we relate an expression e directly to its value v. So the basic judgment might be
written eval(e, v). While accurate, this can be a bit lengthy, so we write e ↓ v instead.
Here, e are expression in our (elaborated) abstract syntax, and v are 32 bit integers,
interpreted in two’s complement representation.

We begin with straightforward rule. The rules of natural semantics are intended
to be read bottom-up, from the conclusion to the premise.

e1 ↓ v1 e2 ↓ v2 v = v1 + v2 (mod 232)

e1 + e2 ↓ v

We read this as follows:

To evaluate e1 + e2 we evaluate e1 to some value v1, then e2 to some value v2
and return the sum v1 + v2 in arithmetic modulo 232.

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment η that maps variables to their
values. We write

η ::= · | η, x 7→ v

and η[x 7→ v] for either adding x 7→ v to η or overwriting the current value of x by
v (if η(x) is already defined). The rule above now carries along η, and the case of a
variable looks it up.

η ` e1 ↓ v1 η ` e2 ↓ v2 v = v1 + v2 (mod 232)

η ` e1 + e2 ↓ v

η(x) = v

η ` x ↓ v

The next problem is posed by operations that may raise an exception. We write
η ` e ↑ exn if e raises the exception exn . We use a only a few predefined exceptions,
and the language provides no way to handle such exceptions, greatly simplifying
its semantics. We obtain four rules to specify the behavior of division. We write
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trunc(x) for truncation of x towards 0.

e1 ↓ v1 e2 ↓ v2
−231 ≤ v1/v2 < 231

v = trunc(v1/v2)

e1 / e2 ↓ v

e1 ↓ v1 e2 ↓ v2
v2 = 0
or (v1 = −231 and v2 = −1)

e1 / e2 ↑ arith

e1 ↑ exn
e1 / e2 ↑ exn

e1 ↓ v1 e2 ↑ exn
e1 / e2 ↑ exn

The last two rules follow from the general convention that we perform left-to-
right evaluation of subexpressions. This leads to an unfortunate proliferation of
rules. We follow the convention of annotating a rule with (+LR) to indicate that we
have omitted additional versions of the rule which can be obtained by replacing
premises that converge ( ↓ v) by premises that raise an exception ( ↑ exn), from left
to right, and propagating the exception in the conclusion.

The remaining kind of expressions are fairly straightforward, but we have to
remember that some boolean operators shirtcircuit evaluation. We also fix the in-
terpretation of true as 0 and false as 1.

η ` false ↓ 0 η ` true ↓ 1

η ` e1 ↓ 0

η ` e1 && e2 ↓ 0

η ` e1 ↓ 1 η ` e2 ↓ v2
η ` e1 && e2 ↓ v2

(+LR)

The (+LR) annotation on the second rule means that the following two rules are
implied.

η ` e1 ↑ exn
η ` e1 && e2 ↑ exn

η ` e1 ↓ 1 η ` e2 ↑ exn
η ` e1 && e2 ↑ exn

3 Relating Static and Dynamic Semantics

The judgments in the static and dynamic semantics are designed to be closely re-
lated. We will not prove any of these relationships, but they might help us consider
the correctness and completeness of our rules. Here are some of the relationships
for expressions.

Γ ` e : τ

: :

η ` e ↓ v

This picture expresses that the environment η should match the context Γ and that,
furthermore, v should have type τ . We say that η matches Γ (η : Γ) if for every
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declaration Γ, x:τ we have a definition η(x) = v with v : τ . The typing for values
here is a bit degenerate, but it should stipulate, for example, that only 0 : bool and
1 : bool. Note that values are typed without an environment because they are just
32 bit words and cannot contain variables.

The above relationship does not quite hold in our semantics, because not all
variables in Γ may have been initialized. But we will have checked statically that

δ ` e

where δ ⊆ dom(Γ). So we can refine the above by restricting Γ to the defined
variables in δ.

δ ` e

Γ|δ ` e : τ

: :

η ` e ↓ v

Going back to the earlier rules, we can see the significance of these relationships.
For example, we see that in the rules for variables, we can never encounter an
uninitialized variable. In the rules for logical conjunction, we see that the two cases
for the value of e1 in e1 && e2, namely 0 and 1, capture all possibilities because the
value v1 such that η ` e1 ↓ v1 must be of type bool.

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception.

• η ` s → η′: executing s in environment e completes normally with environ-
ment η′.

• η ` s ↓ [v]: executing s in environment η does not complete normally, but
instead returns value v.

• η ` s ↑ exn : executing s in environment η raises exception exn .

We start with some simple cases:

η ` nop→ η

η ` s1 → η1 η1 ` s2 −→ η2

η ` seq(s1, s2)→ η2
(+LR)
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The second rule highlights that sequences of statements are executed left to right.
We extend our convention regarding the propogation of exception, where any ex-
ception by s1 is propagated, and an exception in s2 is propagated if s1 completes
normally. So the annotation (+LR) implies the following two rules:

η ` s1 ↑ exn

η ` seq(s1, s2) ↑ exn

η ` s1 → η1 η1 ` s2 ↑ exn

η ` seq(s1, s2) ↑ exn

Because s1 or s2 may also execute a return statement, we also need the following
additional rules:

η ` s1 ↓ [v]

η ` seq(s1, s2) ↓ [v]

η ` s1 → η1 η1 ` s2 ↓ [v]

η ` seq(s1, s2) ↓ [v]

How do these judgments line up with our static semantics?

Γ|δ ` s : [τ ]

δ ` s ⇒ δ′

: :

η ` s → η′

The diagram is trying to express that if η matches Γ|δ then η′ matches Γ|δ′ . In other
words, if s completes normally then it will define exactly those variables that the
static semantics claimed it must, namely those in δ′. Moreover, all the values have
the right type.

For return values we have a related diagram:

δ ` s ⇒ δ′

Γ|δ ` s : [τ ]

: :

η ` s ↓ [v]

That is, if s returns a value v, then that must have the type τ . The rule on the right
clearly should satisfy this.

η ` e ↓ v

η ` return(e) ↓ [v]

η ` e ↑ exn

η ` return(e) ↑ exn

Assignment straightforwardly updates the environment, propagating excep-
tions.

η ` e ↓ v

η ` assign(x, e)→ η[x 7→ v]
(+LR)
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For conditionals, we evaluate only the relevant branch.

η ` e ↓ 1 η ` s1 → η′

η ` if(e, s1, s2)→ η′
(+LR)

η ` e ↓ 1 η ` s1 ↓ [v]

η ` if(e, s1, s2) ↓ [v]

η ` e ↓ 0 η ` s2 → η′

η ` if(e, s1, s2)→ η′
(+LR)

η ` e ↓ 0 η ` s2 ↓ [v]

η ` if(e, s1, s2) ↓ [v]

Loops are somewhat more interesting. If the loop guard is false, we exit the
loop. If it is true, we execute the loop body once (obtaining a new environment η′)
and then repeat in the new environment η′.

η ` e ↓ 0

η ` while(e, s)→ η
(+LR)

η ` e ↓ 1 η ` s→ η′ η′ ` while(e, s)→ η′′

η ` while(e, s)→ η′′
(+LR)

We omit the additional, obvious rules for dealing with possible returns.
Loops bring up the question of nontermination. Natural semantics is not par-

ticularly well-suited to reflect on nontermination. If, say, an expression e does not
terminate in environment η, we cannot find any value v such that η ` e ↓ v can be
proved, nor is there an exception exn such that η ` e ↑ exn . But nontermination is a
bit stronger than that, because, intuitively, we can always continue with our proof
construction but never complete it. In the case of the while loop, the third premise
of the second rule would again apply the same rule, with again the same while loop
in the third premise, and so on without ever completing.

Declarations are not particularly difficult; we just have to be careful to track
the scopes of variables correctly during elaboration so that there are no surprises
during execution.

η ` s→ η′

η ` decl(x, τ, s)→ η′ \ [x 7→ ]
(+LR)

Here we just remove whatever definition might have been given to x during the
execution of s.

5 Function Calls

Finally, for this lecture, we come to another connection between statements and
expressions: function calls. We stack th premises on top of each other so the rule
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doesn’t become too wide.

η ` e1 ↓ v1
· · ·
η ` en ↓ vn
f(x1, . . . , xn) = s
x1 7→ v1, . . . , xn 7→ vn ` s ↓ [v]

η ` f(e1, . . . , en) ↓ v
(+LR)

Here, η is entirely ignored in the body of f (called s), because s only has access to
the function parameters x1, . . . , xn. If all goes well, we know that s must raise an
exception or return a value, it cannot complete normally. That’s because we have
checked in the static semantics that there is a return statement along each control
flow path through s. We can provide an additional version of this rule in case we
have a function not returning a value (void), or we can elaborate void into return of
a distinguished value, say, 0.

Recall that according to our convention, the function call raises an exception if
e1 does, or if e1 returns a value and e2 raises an exception, etc. Finally, any exception
from s is passed on.
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1 Introduction

In this lecture we extend our language with the ability to allocate data structures
on the so-called heap. Addresses of heap elements serve as pointers which can be
dereferenced to read stored values, or used as destinations for write operations.
Similarly, arrays are stored on the heap1 and via appropriate address calculations.

Adding mutable store requires yet again a significant change in the structure of
the rules of the dynamic semantics. By contrast, the static semantics is relatively
easy to extend.

2 Pointers

We extend our language of types with τ∗, where τ is a type.

τ ::= int | bool | α | τ∗

In the language of expressions, we can allocate a cell on the heap that can hold
a value of type τ , we have a distinguished null pointer, and we can dereference a
pointer to obtain the stored value.

e ::= . . . | alloc(τ) | ∗e | null

They have the following typing rules:

Γ ` alloc(τ) : τ∗
Γ ` e : τ∗
Γ ` ∗e : τ Γ ` null : τ∗

At first glance they might be harmless, but the third rule should raise a red flag:
we previously claimed in our mode analysis of typing, that given Γ and e we can
synthesize the type of e (if it exists). However, in the rule for null that’s not the case.

1C0 does not have stack-allocated arrays
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3 Detail: Typing ∗null

We cannot synthesize a definite type for null. Unfortunately, we also cannot, in
general, know what type to check an expression against. So we’ll synthesize an
indefinite type, let’s call it any ∗, the type of a pointer to data of potentially any
type.

Now we have to walk through all the constructs in the language to see whether
we can resolve any ∗, assuming it can only arise for null. Let’s consider pointer
equality first, that is, an expression p == q where p and q are pointers. If p and q
both have definite type τ∗, we just treat it as well-typed. If one has type τ∗ and the
other τ ′∗ for τ 6= τ ′, we reject the comparison as ill-typed. If one is definite τ∗ and
the other indefinite, we allow the comparison, because the indefinite type has only
one value (null) which can be compared to a pointer of any definite type. If both
are indefinite, we would be comparing null with null, which is also fine.

One way to capture this is to have a so-called type subsumption rule that allows
a “silent” transition:

Γ ` e : any ∗
Γ ` e : τ∗

Then three rules suffice for our overloaded equality:2

Γ ` e1 : τ∗ Γ ` e2 : τ∗
Γ ` e1 == e2 : bool

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 == e2 : bool

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 == e2 : bool

A difficulty arises with the dereferencing operator: ∗null would have any type,
which means it could essentially appear anywhere. Of course, when run, it will
always yield an exception, since dereferencing the null pointer is disallowed. We
therefore rewrite our earlier rule to disallow dereferencing values of indefinite
type.

Γ ` e : τ∗ Γ 6 ` e : any ∗
Γ ` ∗e : τ

In particular ∗null is disallowed, and so is ∗(b ? null : null) and variants thereof,
because the conditional still has indefinite type any∗. Of course, indefinite types
are not part of the source language and only used internally during type checking.

4 Dynamic Semantics for Pointers

A value of type τ∗ is just an address where a value of type τ is stored, or the special
address 0. Allocation returns an unused address, and dereferencing the pointer
retrieves the stored value. But where is the store? We currently only carry an

2Actually, in this language fragment just one would suffice, since elements of all types can be
compared for equality.
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environment η that maps variables to their values. We now also carry a heap H that
maps addresses to stored values.

Evaluation of expressions may change the heap, because it may call a function
that changes its state. So expression evaluation now looks like:3

H ; η ` e ↓ v ; H ′

Here the semicolon ’;’ is just a separator between the heap and the environment on
the left and the value and the new heap on the right. We read it as

Given heap H and environment η, evaluation of e returns value v in the new
heap state H’.

When we raise an exception, we do not need to carry a new heap H ′ since C0 has
no mechanism for catching an exception.

H ; η ` e ↑ exn

All the prior rules now carry thread through the heap, always following left-to-
right evaluation order. For example,

H ; η ` e1 ↓ v1 ; H ′ H ′ ; η ` e2 ↓ v2 ; H ′′ v = v1 + v2 (mod 232)

H ; η ` e1 + e2 ↓ v ; H ′′
(+↑)

The new rules for pointers should be not particularly surprising. We write a for
addresses, in our architecture a 64-bit word. Allocation returns a fresh address a
and maps it to an appropriate default value in a new heap.

[a, a+ |τ |) ∩ dom(H) = {}, a 6= 0

H ; η ` alloc(τ) ↓ a ; H[a 7→ default(τ)]
(+↑)

Freshly allocated cells are initialized with a default value for the type τ . In the
implementation, this is arranged to always be 0 (in whatever word length required
by the size of τ ). For booleans this means false, for integers 0 and for pointers null
in the source language.

For the implementation of this rule, we need to know the sizes of each type.
This is, of course, highly dependent on the processor architecture and conventions.
For this course, we compile to x86-64, in which case we have:

|int| = 4
|bool| = 4
|τ∗| = 8
|τ []| = 8

3This is a slight departure from lecture, where we tried to combine the heap H and the envi-
ronment η into a single memory M . However, certain operations like function calls are difficult to
describe in that formulation.
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Dereferencing a pointer just retrieves from the address, assuming it is not 0. If
it is 0, we raise the memory exception mem, which is actually signal SIGSEGV (11)
on our architecture.

H ; η ` e ↓ a ; H ′ a 6= 0, H(a) = v

H ; η ` ∗e ↓ v ; H ′
(+↑)

H ; η ` e ↓ 0 ; H ′

H ; η ` ∗e ↑ mem

The null pointer of course just evaluates to 0.

H ; η ` null ↓ 0

On our architecture, an attempt to access the memory location with address 0 will
raise the appropriate memory exception for us.

This leaves us with a puzzle: how do we write to memory? In C0 (and C) this is
accomplished via assignments where the left-hand side dictates the destination of
the write operation. These are sometimes called l-values, where l stands for left-hand
side.

5 Writing to Heap Destinations

We define destinations (or l-values)

d ::= x | ∗d

Adding arrays and structs will add more kinds of destinations. Every kind of des-
tination is also a valid expression, so we can just destinations as expressions.

Γ ` d : τ Γ ` e : τ

Γ ` assign(d, e)

In the operational semantics we now distinguish variables from other destinations,
since variables are on the stack (or in registers), while destinations ∗d are on the
heap.

For this we need to fix the new judgments describing how statements are exe-
cuted. In analogy with the judgments for evaluating expressions, we have

H ; η ` s→ η′ ; H ′ s completes normally with new env. η′ and heap H ′

H ; η ` s ↓ [v] ; H ′ s invokes return with value v
H ; η ` s ↑ exn s raises exception exn
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For assignment, we obtain:

H ; η ` e ↓ v ; H ′

H ; η ` assign(x, e)→ η[x 7→ v] ; H ′
(+↑)

H ; η ` d ↓ a ; H ′ H ′ ; η ` e ↓ v ; H ′′ a 6= 0

H ; η ` assign(∗d, e)→ η ; H ′[a 7→ v]
(+↑)

H ; η ` d ↓ a ; H ′ H ′ ; η ` e ↓ v ; H ′′ a = 0

H ; η ` assign(∗d, e) ↑ mem

Detail: Evaluating Assignments

Based on the rules above, what should happen in the following code fragments.

int* p = NULL;

*p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluate p to 0. Second we evaluate 1/0. This will raise an arith
exception, which is therefore the outcome of the execution.

int** p = NULL;

**p = 1/0;

First we define p to be 0. Then we evaluate the assignment from left to right. This
means we first evaluation ∗p. Since the value of p is 0 this raises a mem exception,
which is therefore the outcome of the execution

6 Arrays

Arrays are in many ways similar to pointers, but there are no null arrays. We’ll
discuss default arrays below. For now, though, this is a simplification since the
typing rules are more straightforward.

τ ::= . . . | τ []
e ::= . . . | alloc array(τ, e) | e1[e2]
d ::= . . . | d[e]

Γ ` e : int

Γ ` alloc array(τ, e) : τ []

Γ ` e1 : τ [] Γ ` e2 : int

Γ ` e1[e2] : τ
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The dynamic semantics for allocation obtains a fresh segment of memory and
initializes all n elements of the array with the default value of type τ .

H ; η ` e ↓ n ; H ′

n ≥ 0
[a, a+ n|τ |) ∩ dom(H ′) = { }, a 6= 0
H ′′ = H ′[a+ 0|τ | 7→ default(τ), . . . , a+ (n− 1)|τ | 7→ default(τ)]

H ; η ` alloc array(τ, e) ↓ a ; H ′′
(+↑)

Array access evaluates from left to right and then computes the correct memory
address for the value.

H ; η ` e1 ↓ a ; H ′

H ′ ; η ` e2 ↓ i ; H ′′

a 6= 0, 0 ≤ i < length(a), e1 : τ []
v = H ′′(a+ i|τ |)

H ; η ` e1[e2] ↓ v ; H ′′
(+↑)

There are two significant complications here: where do we obtain the length of the
array stored at address a, and where do we get the type τ?

The second is actually easier: when we compile an array access, we will know
the type of e1. It must be of the form τ [] for some τ . Then we calculate its size at
compile time and generate code to multiply it by the index i.

Finding the length of the array is actually harder, since it not known at compile
time. This is because array allocation has the form alloc array(e) where e is an ar-
bitrary expression that should evaluate to the number of elements in the array to
allocate.

Detail: Storing the Array Length

One possibility is to allocate a few additional bytes to store the length of the array.
This could be layed out as follows, where a is the address of the array A with
elements of type τ .

n
�
��

@
@@ A[0] · · · A[n− 1]

a a+4 a+8 a+8+(n−1)|τ |

Alternatively, we could lay it out with the address a pointing to the first array
element. This simplifies the address arithmetic, and would also allow passing this
pointer directly to C (which would not care about the length information to the
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left).

n
�
��

@
@@ A[0] · · · A[n− 1]

a−8 a−4 a a+(n−1)|τ |

The reason we locate the length n at a − 8 and not a − 4 is so that a itself will be
aligned at 0 modulo 8, if the whole memory block as returned from calloc is aligned
that way.

Under this second regime, the code pattern for e1[e2] with e1 : τ [] and |τ | = k
could be like this:

cogen(e1, a) (a new)
cogen(e2, i) (i new)
a1 ← a− 8
t2 ←M [a1]
if (i < 0) goto error
if (i ≥ t2) goto error
a3 ← i ∗ $k
a4 ← a+ a3
t5 ←M [a4]

Here, a, a1, a3, a4 would be 64 bit temps, t2 would be 32 bits, and t5 would be k
bytes. We have written $k to indicate that this is an immediate operand (that is, a
compile-time constant). Some compound memory operands can be used on x86-64
to avoid some intermediate computation such as a1 or a4. Also, we can exploit
properties of two’s complement arithmetic and combine the two comparisons into
a single unsigned comparison of i and t2.

Of course, there are still limits to interoperability with C: if C passes an array to
a C0 program, we somehow need to find out its length and marshal it somewhere
else so we can add the length information. Alternatively, we can compile the code
in unsafe mode where array bounds are not checked, which is just what C does.

Executing assignments with the new destinations is quite similar to reading.

H ; η ` d1 ↓ a ; H ′

H ′ ; η ` e2 ↓ i ; H ′′

a 6= 0, 0 ≤ i < length(a), d1 : τ []
a′ = a+ i|τ |
H ′′ ; η ` e3 ↓ v ; H ′′′

H ; η ` d1[e2] = e3 → η ; H ′′′[a′ 7→ v]
(+↑)
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If the bounds check is not satisfied, a memory exception is raised.

H ; η ` d1 ↓ a ; H ′

H ′ ; η ` e2 ↓ i ; H ′′

a = 0 or i < 0 or i ≥ length(a)

H ; η ` d1[e2] = e3 ↑ mem

7 Detail: Default Values of Array Type

Each type has a default value. For integers it is 0, for booleans 0 (which represents
false), and for pointers it is 0 (which represents null). The default for arrays is also
0, which represents an array of size 0. We can never legally access any element of
this default array, since the condition that the index must be in bounds can never be
satisfied. Nevertheless, arrays can be compared for equality and disequality (which
is a comparison of their address), so zero-sized arrays are not entirely useless. In
particular, alloc array(0) must return a fresh zero-sized array that’s different from
all other arrays already allocated, and also different from the default array of size
0.

The fact that a = 0 is a valid array address creates an issue when we try to
access M [a − 8] to obtain its size. We could rely on the operating system to raise a
mem exception, although that may not be reliably so. To be sure, we should check
whether a is 0 before doing address calculation. Of course, if we are in unsafe mode
when bounds-checking is turned off (which we will implement in Lab 5), then this
is not necessary.

8 Detail: Compound Assignment Operators

Previously, we could expand x += e to x = x + e. However, with the addition of
arrays, this has become problematic. The difficulty is d1[e2] += e3. After syntac-
tic expansion we obtain d1[e2] = d1[e2] + e3 in which both d1 and e2 would be
evaluated twice. Since evaluation of expressions and destinations now can have an
effect, that effect would be unexpectedly repeated.

Instead we have to more-or-less repeat the rules for assignment. For example:

H ; η ` d1 ↓ a ; H ′

H ′ ; η ` e2 ↓ i ; H ′′

a 6= 0, 0 ≤ i < length(a), d1 : τ []
a′ = a+ i|τ |
H ′′ ; η ` e3 ↓ v ; H ′′′

v′ = H ′′′[a′]⊕ v

H ; η ` d1[e2] ⊕= e3 → η ; H ′′′[a′ 7→ v′]
(+↑)
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This should be modified in a systematic way to handle out-of-bounds array access
and a possible effect of the binary operation as may happen for division, modulus,
or shift operation.
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1 Introduction

Pointers allow access to data stored in the heap. Arrays allow us to aggregate
data of the same type. Structs provides means to aggregate data of different types.
This creates few additional challenges in the C0 language definition and also in its
implementation (and, of course, the language fragment L4 used in this course).

2 Struct Declarations and Definitions

C0 (and L4) support a subset of the struct-related constructs in C. Structs may be
declared with

struct s;

or they can be defined by specifying the fields f1, . . . , fn of the struct with their types

struct s {τ1 f1; . . . τn fn; };

We will elaborate this into a form where, for typing purposes, we know s.fi : τi.
For compilation purposes we also compute offset(s, fi); see remarks later in this
lecture.

Because structs might require an arbitrary amount of memory, we stipulate that
they can never be held in variables, but must be allocated on the heap. To specify
this concisely we distinguish small types from large types. Values of small type fit in
registers, while values of large type must be on the heap. In L4, we have

• small types int, bool, τ∗, τ [], and

• large types struct s

We have the following significant restrictions on types:
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• Local variables, function parameters, and return values must have small type.

• Left- and right-hand sides of assignments must have small type.

• Conditional expressions must have small type.

• Equality and disequality must compare expressions of small type.

• Expressions used as statements must have small type.

There are some scoping requirements imposed on structs, but they are surpris-
ingly lenient. The reason is that undefined structs provide a very weak form of
polymorphism. For example, we can pass values of type struct s ∗ as pointers
without needing to know how struct s is defined, as long as we don’t attempt to
access its fields. The following static semantic rules apply:

1. Field names occupy their own name space, so they cannot clash with variable,
function, or type names (but they must be distinct from keywords). The same
field names can be used in different struct definitions.

2. In a given struct definition, all field names must be distinct.

3. A struct may be defined at most once.

4. Types struct s that have not (yet) been defined may be referenced as long as
their size is irrelevant. The size of a struct is relevant in expressions alloc(struct s),
alloc array(struct s, e), and in struct definitions when serving as the type of a
field.

5. An occurrence of struct s in a context where its size is irrelevant serves as an
implicit declaration of the type struct s. In effect this means that explicit struct
declarations are optional (but encouraged as good style).

3 Expressions and Typing

The extension of the language of expressions and destinations is surprisingly eco-
nomical.

e ::= . . . | e.f
d ::= . . . | d.f

We also define (typically during elaboration):

e→f ≡ (∗e).f

which can also be used as a destination in the form d→f .
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Γ ` e : struct s s.f : τ

Γ ` e.f : τ

For this rule to apply, struct s must have been defined. It is not sufficient for it to
have just been declared, because we could not determine the type of field f .

Because destinations are also expressions, no additional typing rules are needed
for destinations. But recall from the restrictions in Section 2 that prior rules are
severely restricted by allowing only small types.

4 Dynamic Semantics

As might be suspected, the dynamic semantics for structs is more difficult. This is
because we write programs as if structs would fit into variables; in reality we are
mostly manipulating their addresses. For example, under the definition

struct point {

int x;

int y;

};

and after

struct point* p = alloc(struct point);

the expression (∗p).y should evaluate to 0. But what is the value of ∗p? We cannot
just dereference the p, since that just holds the address of the beginning of the struct
stored in memory. Instead we have to use this address itself and then compute
the offset of the field y (4, under the x86-64 ABI we are using), counting from the
beginning of the struct, add that to p, and then retrieve the integer stored in that
position.

So, in this context (when the expression has a large type), we evaluate ∗e, es-
sentially just taking the value of e but not dereferencing it. This is quite similar
to what we have to do when ∗d appears as an l-value on the left-hand side of an
assignment. To unify these, we introduce a new judgment

H ; η ` e ⇓ a ; H ′ e denotes address a

which we only really need if e has large type. We use this to evaluate e.f and also
d.f below.

e : struct s
small(s.f)
H ; η ` e ⇓ a ; H ′

a 6= 0

H ; η ` e.f ↓ H ′(a+ offset(s, f)) ; H ′
(+↑)
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The judgment itself is defined by only three rules, because these are the only pos-
sibilities for expressions of large type: a field dereference, a pointer dereference, or
an array access.

e : struct s
large(s.f)
H ; η ` e ⇓ a ; H ′

a 6= 0

H ; η ` e.f ⇓ a+ offset(s, f) ; H ′
(+↑)

H ; η ` e ↓ a ; H ′

H ; η ` ∗e ⇓ a ; H ′
(+↑)

H ; η ` e1 ↓ a ; H ′

H ′ ; η ` e2 ↓ i
a 6= 0, 0 ≤ i < length(a)
e1 : τ []

H ; η ` e1[e2] ⇓ a+ i|τ | ; H ′
(+↑)

Similarly, on the left-hand side of an assignment, we get

d : struct s
H ; η ` d.f ⇓ a ; H ′

H ′ ; η ` e ↓ v ; H ′′

H ; η ` assign(d.f, e)→ η′;H ′′[a 7→ v]
(+↑)

We could revisit the earlier rules for assignment as well, perhaps simplify them.
When structs are allocated in memory, all the fields are initialized with their

default values. As mentioned in the previous lecture, this just means filling the
memory with 0, which is what the C library function calloc does.

5 Dealing with Different Data Sizes

In L2 and L3 we only had integers and booleans, but in L4 we have data of different
sizes. For small types, we have the following table:

L4 type size in bytes C type
|int| = 4 int

|bool| = 4 int

|τ∗| = 8 t *

|τ []| = 8 t *

|struct s| = size(s) struct s

Note that we have decided to represent L3 booleans as integers in C, rather than as
members of the type bool (defined as an alias to _Bool). This is because booleans
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in C, according to the x86-64 ABI, have width 1 byte and do not need to be aligned.1

Actually, the introduction of type bool to C seems relatively recent, so just using
type int to represent truth values is not inconsistent with the C philosophy. In
full C0 we decided on representing C0 booleans as C booleans, since we also have
characters of width 1 byte and therefore cannot avoid dealing with data of size 1.

The size of a struct type is computed by laying out the structs in memory from
left to right, inserting padding to make sure that each field is properly aligned.
Each integer and boolean must be aligned at 0 modulo 4, each pointer or array
reference must be aligned at 0 modulo 8, and each enclosed struct must be aligned
according to its most stringent field requirement. Furthermore, we add padding
at the end so that the whole struct has a size which is 0 modulo its most stringent
field requirement. This is so arrays can be laid out simply by knowing the size of
its type. The C library function calloc should always return a pointer that is 0
modulo 8 and therefore appropriate for any struct we might want to allocate.

6 Detail: Register Sizes

Dealing with data of different sizes will likely require maintaining additional infor-
mation in your compiler so you can pick the right load/store and register move-
ment instructions (movl vs. movq), the right comparisons (cmpl vs. cmpq), reserve
the appropriate amount of stack space, allocate the appropriate amount of heap
space, and do correct address calculations.

The good news is that in L3 and L4, registers only need to hold 4 byte or 8 byte
values. Still, it is very easy to introduce bugs when you do not explicitly medi-
ate changes in data size. For example, for the intermediate form we recommend
disallowing instructions of the form

d64 ← s32

where s and d are registers of the indicated sizes, but writing one of

d64 ← zeroextend s32

d64 ← signextend s32

and similarly for truncations in the other directions. This should ensure that you
do not accidentally apply incorrect transformations, like copy propagation, if the
destination and source of a “move” have different sizes.

On the x86-64 architecture, both move and arithmetic instructions that target a
32-bit register have the peculiar effect of zero-extending the value into the whole
64-bit register. For example,

1This created some significant complications in writing the compiler for L3 that we wanted to
avoid.
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MOVL %EAX, %EAX

has an effect: it replaces bits 32–63 of %RAX by 0. Similarly,

XORL %EAX, %EAX

will set all 64 bits of %RAX to 0, not just the lowest 32. For more on this we rec-
ommend Bryant and O’Hallaron’s note on x86-64 Machine-Level Programming, in
particular the information on Page 9.
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Lecture Notes on
Basic Optimizations

15-411: Compiler Design
Frank Pfenning

Lecture 16
Oct 17, 2013

1 Introduction

The opportunities for optimizations1 in compiler-generated code are plentiful. Gen-
erally speaking, they arise more from the tensions between the high-level source
language and the lower-level target language, rather than any intrinsic inefficien-
cies in the source. One common source, sometimes estimated to constitute as much
as 70% of optimization opportunities, is address arithmetic and is therefore tied to
structs and arrays.

In this lecture we discuss basic optimizations that apply pervasively during the
compilation process. In the next two lectures we will discuss specifically optimiza-
tions of loops. Another class of optimizations is concerned with functions calls,
like tail-call optimization and inlining. You have the opportunity to consider these
in Assignment 3.

2 Dead Code Elimination

Optimizations have two components: (1) a condition under which they are appli-
cation and the (2) code transformation itself. The applicability condition can come
in various forms, but often requires a dataflow analysis.

As a warm-up exercise, we reconsider dead code elimination from Section 4 of
Lecture 5. We defined there a predicate needed(l, x) which is defined via a backward
dataflow analysis. Instructions of the forms

l : x← s1 ⊕ s2
l : x← s

1Very little in a compiler is actually optimal, so “optimizations” should be interpreted as “effi-
ciency improvements”.
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with a pure (effect-free) right-hand side are considered dead code if x is not needed
in the successor l + 1 of l.

We can describe the transformation by stating how the given lines are affected,
and which new lines should perhaps be added. We use the notation

P1 . . . Pm

L1 . . . Ln

which replaces P1 . . . Pm with L1 . . . Ln. Any condition of applicability is also listed
among the premises. This is an example of linear inference, where the process of
inference consumes the premises and adds the conclusions.2 In this notation, dead
code elimination could be described as

l : x← s1 ⊕ s2 succ(l, l′) ¬needed(l′, x)

l : nop

l : x← s succ(l, l′) ¬needed(l′, x)

l : nop

where ⊕ is an effect-free operation. We replace the instruction with a nop instead
of just deleting it so that, for example, jumps to line l will continue to remain value.
At a later stage of optimization, spurious no-ops can be deleted from the code.

3 Constant Propagation

Another straightforward optimization is constant propagation. If we have definition
l : x ← c for a constant c, we might want to replace an occurrence of x by c in the
hope that we may be able to eliminate the assignment (and x) altogether. Moreover,
we may be able to apply other optimizations where we have substituted c for x,
such as constant folding.

The tricky question is when this is a correct optimization. For example, in the
code

l : x← c
· · ·

k : y ← x + 1

it depends on what happens in the lines between l and k. Jumps may target lines
in between, or there may be another assignment to x so that x no longer has the
value c when execution reaches k.

2Linear inference gives rise to a relatively new kind of logic called linear logic which we do not
discuss further in the class. Some materials on linear inference and linear logic can be found at
http://www.cs.cmu.edu/~fp/courses/15816-s12/
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Rather than give a general solution to this question, we greatly simplify our
lives by assuming that the code has been transformed in static single-assignment
(SSA) form. In that form, any variable is defined exactly one so a reference to x
must be the correct one. We use the notation l′ : instr(x) for an instruction that uses
x (that is, uses(l′, x)) and instr(c) for the result of replacing x by c.

l : x← c l′ : instr(x)

l : x← c l′ : instr(c)

Note that we need to repeat l : x ← c in the conclusion since the premise is con-
sumed when the inference rule is applied.

4 Copy Propagation

Copy propagation is very similar to constant propagation, except that one variable
is defined in terms of another.

l : x← y l′ : instr(x)

l : x← y l′ : instr(y)

Again, we should ask if this is sound, assuming the program is in SSA form. We
know there is exactly one definition of y that is available at line l. Since x is available
at line l′, y must also be available there so the replacement is sound.

5 Termination

When applying code transformations, we should always consider if the transfor-
mations terminate. Clearly, each step of dead code elimination reduces the number
of assignments in the code. We can therefore apply it arbitrarily until we reach qui-
escence, that is, neither of the dead code elimination rules is applicable any more.
Quiescence is the linear inference counterpart to saturation for ordinary inference,
as we have discussed in prior lectures. Saturation means that any inference we
might apply only has conclusions that are already known. Quiescence means that
we can no longer apply any linear inference.

A single application of constant propagation reduces the number of variable
occurrence in the program and must therefore reach quiescence. It also does not
increase the number of definitions in the code, and can therefore be mixed freely
with dead code elimination.

It is more difficult to see whether copy propagation will always terminate, since
the number of variable occurrences stays the same, as does the number of variable
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definitions. In fact, in a code pattern

l : x← y
k : w ← x
m : instr(w)
m′ : instr(x)

we could for decrease the number of occurrence of x by copy propagation from
line l and then increase it again by copy propagation from line k. However, if we
consider a string partial order x > y among variables if the definition of x uses y
(transitively closed), then copy progation reduces the occurrence of a variable by a
strictly smaller one. This order is well-founded since in SSA we cannot have a cycle
among the definitions. If x is defined in terms of y, then y could not be defined in
terms of x since it the single definition of y must come before x in the control flow
graph.

6 Constant Folding

Constant folding evaluates a constant epxression at compile time. In the three-
address form, this is simply:

l : x← c1 � c2 c1 � c2 = c

l : x← c

where ⊕ doubles as a syntactic binary operation and its arithmetic counterpart.
We need to make sure that c1 � c2 is defined in this case (and should not raise an
exception at runtime). There is really not other precondition to this transforma-
tions.

7 Common Subexpression Elimination

It is natural to try to apply a transformation similar to copy or constant propagation
to of the form

l : x← s1 ⊕ s2
· · ·

k : instr(x)

where we replace x by s1⊕s2. However, this will not work most of the time, because
the result may not even be a valid instruction (for example, if instr(x) = (y ← x⊕1).
Moreover, the program becomes bigger, plus we are computing an expression more
than once instead of just once, so this is likely to make the code slower rather than
faster.
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However, we can consider the opposite: In a situation

l : x← s1 ⊕ s2
· · ·

k : y ← s1 ⊕ s2

we can replace the second computation of s1 ⊕ s2 by a reference to x (under some
conditions), saving a reduction computation. This is called common subexpression
elimination (CSE).

For this to be correct we need to know that x will have the right value when
execution reaches line k. Because we are in SSA form, the right-hand sides will
always have the same meaning if they are syntactically identical. But will x be
available at k?

What we would like to know is that every control flow path from the beginning
of the code (that is, the beginning of the function we are compiling) to line k goes
through line l. Then we can be sure that x has the right value when we reach k. This
is the definition of the dominance relation between lines of code. We write l ≥ k if
l dominates k and l > k if it l strictly dominated k. We see how to define it in the
next section; once it is defined we use it as follows:

l : x← s1 ⊕ s2
k : y ← s1 ⊕ s2
l > k

l : x← s1 ⊕ s2
k : y ← x

8 Dominance

On general control flow graphs, dominance is an interesting relation and there
are several algorithms for computing this relationship. We can cast it as a form
of forward data-flow analysis. One of the approaches exploits the simplicity of our
language to directly generate the dominance relationship as part of code genera-
tion. We briefly discuss this here. The drawback is that if your code generation is
slightly different or more efficient, or if your transformation change the essential
structure of the control flow graph, then you need to update the relationship. A
simple and fast algorithm that works particularly well in our simple language is
described by Cooper et al. [CHK06] which is empirically faster than the traditional
Lengauer-Tarjan algorithm [LT79] (which is asymptotically faster). In this lecture,
we consider just the basic cases.

For straight-line code the predecessor if each line is its immediate dominator, and
any preceding line is a dominator.

For conditionals, consider
if(e, s1, s2)
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We translate this to the following code, ě or š is the code for e and s, respectively
and ê is the temp through which we can refer to the result of evaluating e.

l0 : ě
l′0 : if (ê != 0) goto l1 ; goto l2
l1 : š1 ; l′1 : goto l3
l2 : š2 ; l′2 : goto l3
l3 :

e	
  

s1	
   s2	
  

l0:	
  

l1:	
   l2:	
  

l3:	
  

l1’:	
   l2’:	
  

l0’:	
  

On the right is the corresponding control-flow graph. Now the immediate domina-
tor of l1 should be l′0 and the immediate dominator of l2 should also be l′0. Now for
l3 we don’t know if we arrive from l′1 or from l′2. Therefore, neither of these nodes
will dominate l3. Instead, the immediate dominator is l′0, the last node we can be
sure to be traversed before we arrive at l′3. Indicating immediate dominators with
dashed read lines, we show the result below.

e	
  

s1	
   s2	
  

l0:	
  

l1:	
   l2:	
  

l3:	
  

l1’:	
   l2’:	
  

l0’:	
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However, if it turns out, say, l′1 is not reachable, then the dominator relationship
looks different. This is the case, for example, if s1 in this example is a return state-
ment or is known to raise an error. Then we have instead:

e	
  

s1	
   s2	
  

l0:	
  

l1:	
   l2:	
  

l3:	
  

l1’:	
   l2’:	
  

l0’:	
  

In this case, l′1 : goto l3 is unreachable code and can be optimized away. Of course,
the case where l′2 is unreachable is symmetric.

For loops, it is pretty easy to see that the beginning of the loop dominates all
the statements in the loop. Again, considering the straightforward compilation of
a while loop with the control flow graph on the right.

l0 : ě
l′0 : if (ê == 0) goto l2 ; goto l1
l1 : š
l′1 : goto l0
l2 :

e	
  

s	
  

l0:	
  

l1:	
   l2:	
  

l1’:	
  

l0’:	
  

p’:	
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Interesting here is mainly that the node p′ just before the loop header l0 is indeed
the immediate dominator of l0, even l0 has l′1 as another predecessor. The definition
makes this obvious: when we enter the loop we have to come through p′ node,
on subsequent iterations we come from l′1. So we cannot be guaranteed to come
through l′1, but we are guaranteed to come through p′ on our way to l0.

e	
  

s	
  

l0:	
  

l1:	
   l2:	
  

l1’:	
  

l0’:	
  

p’:	
  

9 Implementing Common Subexpression Elimination

To implement common subexpression elimination we traverse the program, look-
ing for definitions l : x← s1�s2. If s1�s2 is already in the table, defining variable y
at k, we replace l with l : x← y if k dominates l. Otherwise, we add the expression,
line, and variable to the hash table.

Dominance can usually be checked quite quickly if we maintain a dominator
tree, where each line has a pointer to its immediate dominator. We just follow
these pointers until we either reach k (and so k > l) or the root of the control-flow
graph (in which case k does not dominate l).

10 Strength Reduction

Strength reduction in general replaces and expensive operation with a simpler one.
Sometimes it can also eliminate an operation altogether, based on the laws of mod-
ular, two’s complement arithmetic. Recall that we have the usual laws of arithmetic
modulo 232 for addition, subtraction, multiplication, but that comparisons are more
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difficult to transform3

Common simplifications (and some symmetric counterparts):

a + 0 = a
a− 0 = a
a ∗ 0 = 0
a ∗ 1 = a

but one can easily think of others involving further arithmetic of bit-level opera-
tions. One that may be interesting for optimization of array accesses is the dis-
tributive law:

a ∗ (b + c) = a ∗ b + a ∗ c

where a could be the size of an array element and (b + c) could be an index calcu-
lation.

11 A Simple Example

Let’s consider the rather innocuous C0 code fragment

A[i] = A[i] + 1

Assuming we perform no null or array bound checking, and a holds the address
of the array, we would obtain something like the following. The semantics of C0
require left-to-right evaluation, so we first obtain the address of A[i] in t1 (lines
l0 − −l1), then we evaluate the right-hand-side (lines l2 − −l5), and then we write
to the memory at address t3 (line l6). The number 4 is the size of |int|, which is the
type of the array elements.

l0 : t0 ← 4 ∗ i # cse
l1 : t1 ← a + t0
l2 : t2 ← 4 ∗ i # cse
l3 : t3 ← a + t2
l4 : t4 ← M [t3]
l5 : t5 ← t4 + 1
l6 : M [t1] ← t5

3For example, x+ 1 > x is false in general, because x could be the maximal integer, 231 − 1.
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We notice that l0 and l2 both compute 4 ∗ i so we obtain the code on the left. This is
now subject to copy propagation from l2 to l3 to obtain the code on the right.

l0 : t0 ← 4 ∗ i l0 : t0 ← 4 ∗ i
l1 : t1 ← a + t0 l1 : t1 ← a + t0 # cse
l2 : t2 ← t0 l2 : t2 ← t0
l3 : t3 ← a + t2 l3 : t3 ← a + t0 # cse
l4 : t4 ← M [t3] l4 : t4 ← M [t3]
l5 : t5 ← t4 + 1 l5 : t5 ← t4 + 1
l6 : M [t1] ← t5 l6 : M [t1] ← t5

The code on the right yields another opportunity for common subexpressions elim-
ination for lines l1 and l3. The result is pictured on the left, followed again by copy
propagation on the right.

l0 : t0 ← 4 ∗ i l0 : t0 ← 4 ∗ i
l1 : t1 ← a + t0 l1 : t1 ← a + t0
l2 : t2 ← t0 l2 : t2 ← t0 # dead
l3 : t3 ← t1 l3 : t3 ← t1 # dead
l4 : t4 ← M [t3] l4 : t4 ← M [t1]
l5 : t5 ← t4 + 1 l5 : t5 ← t4 + 1
l6 : M [t1] ← t5 l6 : M [t1] ← t5

A pass of dead code elimination yields the code in which the address of A[i] is
computed only once.

l0 : t0 ← 4 ∗ i
l1 : t1 ← a + t0
l2 : nop
l3 : nop
l4 : t4 ← M [t1]
l5 : t5 ← t4 + 1
l6 : M [t1] ← t5

This example illustrates the cascading of optimizations: initially, we only had two
common subexpressions, but after some optimizations more were uncovered. Tech-
niques such as global value numbering help to avoid multiple passes over code by
combining several iterations into one. Neededness analysis is another example
where multiple lines are declared dead code at once, rather than in sequence with
new analysis in between.
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1 Introduction

Optimizing loops is particularly important in compilation, since loops (and in par-
ticular the inner loops) account for much of the executions times of many programs.
Since tail-recursive functions are usually also turned into loops, the importance of
loop optimizations is further magnified. In this lecture we will discuss two main
ones: hoisting loop-invariant computation out of a loop, and optimizations based
on induction variables.

2 What Is a Loop?

Before we discuss loop optimizations, we should discuss what we identify as a
loop. In our source language, this is rather straightforward, since loops are formed
with while or for, where it is convenient to just elaborate a for loop into its corre-
sponding while form.

The key to a loop is a back edge in the control-flow graph from a node l to a
node h that dominates l. We call h the header node of the loop. The loop itself then
consists of the nodes on a path from h to l. It is convenient to organize the code so
that a loop can be identified with its header node. We then write loop(h, l) if line l
is in the loop with header h.

When loops are nested, we generally optimize the inner loops before the outer
loops. For one, inner loops are likely to be executed more often. For another, it
could move computation to an outer loop from which it is hoisted further when
the outer loop is optimized and so on.
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3 Hoisting Loop-Invariant Computation

An (pure) expression is loop invariant if its value does not change throughout the
loop. We can then define the predicate inv(h, p), where p is a pure expression, as
follows:

c constant

inv(h, c)

def(l, x) ¬loop(h, l)

inv(h, x)

inv(h, s1) inv(h, s2)

inv(h, s1 ⊕ s2)

Since we are concerned only with programs in SSA form, it is easy to see that vari-
ables are loop invariant if they are not parameters of the header label. However, the
definition above does not quite capture this for definitions t ← p where p is loop-
invariant but t is not part of the label parameters. So we add a second propagation
rule.

l : t← p inv(h, p) loop(h, l)

inv(h, t)

Note that we do not consider memory references of function calls to be loop invari-
ant, although under some additional conditions they may be hoisted as well.

In order to hoist loop invariant computations out of a loop we should have
a loop preheader in the control-flow graph, which immediately dominates the loop
header. When then move all the loop invariant computations to the preheader, in
order.

Some care must be taken with this optimization. For example, when the loop
body is never executed the code could become significantly slower. Another prob-
lem if we have conditionals in the body of the loop: values computed only on one
branch or the other will be loop invariant, but depending on the boolean condition
one or the other may never be executed.

In some cases, when the loop guard is inexpensive and effect-free but the loop-
invariant code is expensive, we might consider duplicating the test so that instead
of

seq(pre,while(e, s))

we generate code for

seq(if(e, seq(pre,while(e, s)), nop))

where pre is the hoisted computation in the loop pre-header.
A typical example of hoisting loop invariant computation would be a loop to

initialize all elements of a two-dimensional array:

for (int i = 0; i < width * height; i++)

A[i] = 1;
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We show the relevant part of the abstract assembly on the left. In the right is the
result of hoisting the multiplication, enabled because both width and height are
loop invariant and therefore their product is.

i0 ← 0 i0 ← 0
t← width ∗ height

goto loop(i0) goto loop(i0)
loop(i1) : loop(i1) :

t← width ∗ height
if (i1 ≥ t) goto exit if (i1 ≥ t) goto exit
. . . . . .
i2 ← i1 + 1 i2 ← i1 + 1
goto loop(i2) goto loop(i2)

exit : exit :

4 Induction Variables

Hoisting loop invariant computation is significant; optimizing computation which
changes by a constant amount each time around the loop is probably even more
important. We call such variables basic induction variables. The opportunity for op-
timization arises from derived induction variables, that is, variables that are computed
from basic induction variables.

As an example we will use a function check if a given array is sorted in ascend-
ing order.

bool is_sorted(int[] A, int n)

//@requires 0 <= n && n <= \length(A);

{

for (int i = 0; i < n-1; i++)

//@loop_invariant 0 <= i && i <= n-1;

if (A[i] > A[i+1]) return false;

return true;

}

Below is a possible compiled SSA version of this code, assuming that we do not
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perform array bounds checks (or have eliminated them).

is sorted(A,n) :
i0 ← 0
goto loop(i0)

loop(i1) :
t0 ← n− 1
if (i1 ≥ t0) goto rtrue
t1 ← 4 ∗ i1
t2 ← A+ t1
t3 ←M [t2]
t4 ← i1 + 1
t5 ← 4 ∗ t4
t6 ← A+ t5
t7 ←M [t6]
if (t3 > t7) goto rfalse
i2 ← i1 + 1
goto loop(i2)

rtrue :
return 1

rfalse :
return 0

Here, i1 is the basic induction variable, and t1 = 4 ∗ i1 and t4 = i1 + 1 are the
derived induction variables. In general, we consider a variable a derived induction
variable if its has the form a ∗ i+ b, where a and b are loop invariant.

Let’s consider t4 first. We see that common subexpression elimination applies.
However, we would like to preserve the basic induction variable i1 and its version
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i2, so we apply code motion and then eliminate the second occurrence of i1 + 1.

is sorted(A,n) : is sorted(A,n) :
i0 ← 0 i0 ← 0
goto loop(i0) goto loop(i0)

loop(i1) : loop(i1) :
t0 ← n− 1 t0 ← n− 1
if (i1 ≥ t0) goto rtrue if (i1 ≥ t0) goto rtrue
t1 ← 4 ∗ i1 t1 ← 4 ∗ i1
t2 ← A+ t1 t2 ← A+ t1
t3 ←M [t2] t3 ←M [t2]

i2 ← i1 + 1
t4 ← i1 + 1 t4 ← i2
t5 ← 4 ∗ t4 t5 ← 4 ∗ t4
t6 ← A+ t5 t6 ← A+ t5
t7 ←M [t6] t7 ←M [t6]
if (t3 > t7) goto rfalse if (t3 > t7) goto rfalse
i2 ← i1 + 1
goto loop(i2) goto loop(i2)

Next we look at the derived induction variable t1 ← 4 ∗ i1. The idea is to see how
we can calculate t1 at a subsequent iteration from t1 at a prior iteration. In order to
achieve this effect, we add a new induction variable to represent 4 ∗ i1. We call this
j and add it to our loop variables in SSA form.

is sorted(A,n) :
i0 ← 0
j0 ← 4 ∗ i0 @ensures j0 = 4 ∗ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ∗ i1
t0 ← n− 1
if (i1 ≥ t0) goto rtrue
t1 ← j1 @assert j1 = 4 ∗ i1
t2 ← A+ t1
t3 ←M [t2]
i2 ← i1 + 1
j2 ← 4 ∗ i2 @ensures j2 = 4 ∗ i2
t4 ← i2
t5 ← 4 ∗ t4
t6 ← A+ t5
t7 ←M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)
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Crucial here is the invariant that j1 = 4 ∗ i1 when label loop(i1, j1) is reached. Now
we calculate

j2 = 4 ∗ i2 = 4 ∗ (i1 + 1) = 4 ∗ i1 + 4 = j1 + 4

so we can express j2 in terms of j1 without multiplication. This is an example of
strength reduction since addition is faster than multiplication. Recall that all the laws
we used are valid for modular arithmetic. Similarly:

j0 = 4 ∗ i0 = 0

since i0 = 0, which is an example of constant propagation followed by constant
folding.

is sorted(A,n) :
i0 ← 0
j0 ← 0 @ensures j0 = 4 ∗ i0
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ∗ i1
t0 ← n− 1
if (i1 ≥ t0) goto rtrue
t1 ← j1 @assert j1 = 4 ∗ i1
t2 ← A+ t1
t3 ←M [t2]
i2 ← i1 + 1
j2 ← j1 + 4 @ensures j2 = 4 ∗ i2
t4 ← i2
t5 ← 4 ∗ t4
t6 ← A+ t5
t7 ←M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)
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With some copy propagation, and noticing that n−1 is loop invariant, we next get:

is sorted(A,n) :
i0 ← 0
j0 ← 0 @ensures j0 = 4 ∗ i0
t0 ← n− 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ∗ i1
if (i1 ≥ t0) goto rtrue
t2 ← A+ j1
t3 ←M [t2]
i2 ← i1 + 1
j2 ← j1 + 4 @ensures j2 = 4 ∗ i2
t5 ← 4 ∗ i2
t6 ← A+ t5
t7 ←M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

With common subexpression elimination (noting the additional assertions we are
aware of), we can replace 4 ∗ i2 by j2. We combine this with copy propagation.

is sorted(A,n) :
i0 ← 0
j0 ← 0 @ensures j0 = 4 ∗ i0
t0 ← n− 1
goto loop(i0, j0)

loop(i1, j1) : @requires j1 = 4 ∗ i1
if (i1 ≥ t0) goto rtrue
t2 ← A+ j1
t3 ←M [t2]
i2 ← i1 + 1
j2 ← j1 + 4 @ensures j2 = 4 ∗ i2
t6 ← A+ j2
t7 ←M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2)

We observe another derived induction variable, namely t2 = A+ j1. We give this a
new name (k1 = A+ j1) and introduce it into our function. Again we just calculate:
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k2 = A+ j2 = A+ j1 + 4 = k1 + 4 and k0 = A+ j0 = A.

is sorted(A,n) :
i0 ← 0
j0 ← 0 @ensures j0 = 4 ∗ i0
k0 ← A+ j0 @ensures k0 = A+ j0
t0 ← n− 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ∗ i1 ∧ k1 = A+ j1
if (i1 ≥ t0) goto rtrue
t2 ← k1
t3 ←M [t2]
i2 ← i1 + 1
j2 ← j1 + 4 @ensures j2 = 4 ∗ i2
k2 ← k1 + 4 @ensures k2 = A+ j2
t6 ← A+ j2
t7 ←M [t6]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

After more round of constant propagtion, common subexpression elimination, and
dead code elimination we get:

is sorted(A,n) :
i0 ← 0
j0 ← 0 @ensures j0 = 4 ∗ i0
k0 ← A @ensures k0 = A+ j0
t0 ← n− 1
goto loop(i0, j0, k0)

loop(i1, j1, k1) : @requires j1 = 4 ∗ i1 ∧ k1 = A+ j1
if (i1 ≥ t0) goto rtrue
t3 ←M [k1]
i2 ← i1 + 1
j2 ← j1 + 4 @ensures j2 = 4 ∗ i2
k2 ← k1 + 4 @ensures k2 = A+ j2
t7 ←M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, j2, k2)

With neededness analysis we can say that j0, j1, and j2 are no longer needed and
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can be eliminated.

is sorted(A,n) :
i0 ← 0
k0 ← A @ensures k0 = A+ 4 ∗ i0
t0 ← n− 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ∗ i1
if (i1 ≥ t0) goto rtrue
t3 ←M [k1]
i2 ← i1 + 1
k2 ← k1 + 4 @ensures k2 = A+ 4 ∗ i2
t7 ←M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Unfortunately, i1 is still needed, since it governs a conditional jump. In order to
eliminate that we would have to observe that

i1 ≥ t0 iff A+ 4 ∗ i1 ≥ A+ 4 ∗ t0

This holds the the addition here is a on 64 bit quantities where the second operand
is 32 bits, so no overflow can occur. If we exploit this we obtain:

is sorted(A,n) :
i0 ← 0
k0 ← A @ensures k0 = A+ 4 ∗ i0
t0 ← n− 1
goto loop(i0, k0)

loop(i1, k1) : @requires k1 = A+ 4 ∗ i1
if (k1 ≥ A+ 4 ∗ t0) goto rtrue
t3 ←M [k1]
i2 ← i1 + 1
k2 ← k1 + 4 @ensures k2 = A+ 4 ∗ i2
t7 ←M [k2]
if (t3 > t7) goto rfalse
goto loop(i2, k2)

Now i0, i1, and i2 are no longer needed and can be eliminated. Moreover, A+4 ∗ t0
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is loop invariant and can be hoisted.

is sorted(A,n) :
k0 ← A
t0 ← n− 1
t8 ← 4 ∗ t0
t9 ← A+ t8
goto loop(k0)

loop(k1) :
if (k1 ≥ t9) goto rtrue
t3 ←M [k1]
k2 ← k1 + 4
t7 ←M [k2]
if (t3 > t7) goto rfalse
goto loop(k2)

rtrue :
return 1

rfalse :
return 0

It was suggested that we can avoid two memory accesses per iteration by unrolling
the loop once. This make sense, but this opimization is beyond the scope of this
lecture.

We have carried out the optimizations here on concrete programs and values,
but it is straightforward to generalize them to arbitrary induction variables x that
are updated with x2 ← x1±c for a constant c, and derived variables that arise from
constant multiplication with or addition to a basic induction variable.
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Lecture Notes on
Memory Optimizations

15-411: Compiler Design
Frank Pfenning

Lecture 19
October 29, 2013

1 Introduction

Even on modern architecures with hierarchical memory caches, memory access, on
average, is still significantly more expensive than register access or even most arith-
metic operations. Therefore, memory optimizations play a significant role in gener-
ating fast code. As we will see, whether certain memory optimizations are possible
or not depends on properties of the whole language. For example, whether or not
we can obtain pointers to the middle of heap-allocated objects will be a crucial
question to answer.

2 A Simple Example

We will use a simple running example to illustrate memory optimization and their
conditions of applicability. In this example, mult(A, p, q) will multiply matrix A
with vector p and return the result in vector q.

struct point {

int x;

int y;

};

typedef struct point pt;

void mult(int[] A, pt* p, pt* q) {

q->x = A[0] * p->x + A[1] * p->y;

q->y = A[2] * p->x + A[3] * p->y;

return;

}
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Below is the translation into abstract assembly, with the small twist that we have
allowed memory reference to be of the form M [base + offset ]. The memory opti-
mization question we investigate is whether some load instructions t ← M [s] can
be avoided because the corresponding value is already held in a temp.

mult(A, p, q) :
t0 ←M [A+ 0]
t1 ←M [p+ 0]
t2 ← t0 + t1
t3 ←M [A+ 4]
t4 ←M [p+ 4]
t5 ← t3 ∗ t4
t6 ← t2 + t5
M [q + 0]← t6
t8 ←M [A+ 8]
t9 ←M [p+ 0] # redundant load?
t10 ← t8 + t9
t11 ←M [A+ 12]
t12 ←M [p+ 4] # redundant load?
t13 ← t11 ∗ t12
t14 ← t10 + t13
M [q + 4]← t14
return

We see that the source refers to p->x and p->y twice, and those are reflected in the
two, potentially redundant loads above. Before you read on, consider if we could
replace the lines with t9 ← t1 and t12 ← t4. We can do that if we can be assured
that memory at the addresses p + 0 and p + 4, respectively, has not changed since
the previous load instructions.

LECTURE NOTES OCTOBER 29, 2013



Memory Optimizations L19.3

It turns out that in C0 the second load is definitely redundant, but the first one
may not be.

The first load is not redundant because when this function is called, the pointers
p and q might be the same (they might aliased). When this is the case, the store to
M [q+0] will likely change the value stored atM [p+0], leading to a different answer
than expected for the second line.

On the other hand, this cannot happen for the first line, because M [q+ 0] could
never be the same asM [p+4] since one accesses the x field and the other the y field
of a struct.

Of course, the answer is mostly likely wrong when p = q. One could either
rewrite the code, or require that p 6= q in the precondition to the function.

In C, the question is more delicate because the use of the address-of (&) operator
could obtain pointers to the middle of objects. For example, the argument int[] A

would be int* A in C, and such a pointer might have been obtained with &q->x.

3 Using the Results of Alias Analysis

In C0, the types of pointers are a powerful basis of alias analysis. The way alias
analysis is usually phrased is as a may-alias analysis, because we try to infer which
pointers in a program may alias. Then we know for optimization purposes that
if two pointers are not in the may-alias relationship that they must be different.
Writing to one address cannot change the value stored at the other.

Let’s consider how we might use the results of alias analysis, embodied in a
predicate may-alias(a, b) for two addresses a and b. We assume we have a load
instruction

l : t←M [a]

and we want to infer if this is available at some other line l′ : t′ ←M [a] so we could
replace it with l′ : t′ ← t. Our optimization rule (in the notation of linear inference
from Lecture 16):

l : t←M [a]
l′ : t′ ←M [a]
l > l′

avail(l, l′)

l : t←M [a]
l′ : t′ ← t

The fact that l dominates l′ is sufficient here in SSA form to guarantee that the
meaning of t and a remains unchanged. reaches is supposed to check that M [a]
also remains unchanged.

Reaching analysis for memory references is a simple forward dataflow analysis.
If we have a node with two or more incoming control flow edges, it must be avail-
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able along all of them. For the purposes of traversing loops we assume availability,
essentially trying to find a counterexample in the loop. To express this concisely,
our analysis rules propagate unavailability of a definition l : t ← M [a] an other
instructions l′ that are dominated by l.

For unavailability, unavail(l, l′), we have the seeding rule on the left and the
general propagation rule on the right. Because we are in SSA, we know in the
seeding rule that l > l′′ where l′′ is the (unique) successor of l′′.

l : t←M [a]
l > l′

l′ : M [b]← s
may-alias(a, b)
succ(l′, l′′)

unavail(l, l′′)

unavail(l, l′)
succ(l′, l′′)
l > l′′

unavail(l, l′′)

The rule on the right includes the cases of jumps or conditional jumps. This ensures
that in a node with multiple predecessors, if a value is unavailable in just one of
them, in will be unavailable at the node. From this we can deduce which memory
values are still available, namely those that are not unavailable (restriction attention
to those that are dominated by the load—otherwise the question is not asked).

l : t←M [a]
l > l′

¬unavail(l, l′)

avail(l, l′)

4 Type-Based Alias Analysis

The simplest form of alias analysis is based on the type and offset of the address.
We call this an alias class, with the idea that pointers in different alias classes cannot
alias. The basic predicate here is class(a, τ, offset) which expresses that a is an ad-
dress derived from a source of type τ and offset offset from the start of the memory
of type τ .

Then the may-alias relation is defined by

class(a, τ, k) class(b, τ, k)

may-alias(a, b)

There is a couple of special cases we do not treat explicitly. For example, the
location of the array length (which is stored in safe mode at least) may be at offset
−8. But such a location can never be written to (array lengths never change, once
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allocated), so a load of the array length is available at all locations dominated by
the load.

The seed of the class relation comes from the compiler, that annotates an address
with this information. In our example,

mult(A, p, q) :
t0 ←M [A+ 0]
t1 ←M [p+ 0]
t2 ← t0 + t1
t3 ←M [A+ 4]
. . .

the compiler would generate

class(A, int[ ], 0)
class(p, struct point∗, 0)
class(q, struct point∗, 0)

We now propagate the information through a forward dataflow analysis. For ex-
ample:

l : b← a class(a, τ, k)

class(b, τ, k)

l : b← a+ $n class(a, τ, k)

class(b, τ, k + n)

In the second case we have written $n to emphasize the second summand is a
constant n. Unfortunately, if it is a variable, we cannot precisely calculate the offset.
This may happen with arrays, but not with pointers, including pointers to structs.
So we need to generalize the third argument to class to be either a variable or >,
which indicates any value may be possible. We then have, for example

l : b← a+ t class(a, τ, k)

class(b, τ,>)

Now > behaves like an information sink. For example, > + k = k + > = >.
Since in SSA form a is defined only once, we should not have to change our mind
about the class assigned to a variable. However, at parameterized jump targets
(which is equivalent to Φ-functions), we need to “disjoin” the information so that
if the argument is known to be k at one predecessor but unknown at > at another
predecessor, the result should be >.

Because of loops, we then need to generalize further and introduce ⊥ which
means that we believe (for now) that the variable is never used. Because of the
seeding by the compiler, this will mostly happen for loop variables. The values are
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arranged in a lattice
>

···

0 1 2 · · ·

···

⊥
where at the bottom we have more information, at the top the least. The t oper-
ation between lattice elements finds the least upper bounds of its two arguments.
For example, 0t4 = > and⊥t2 = 2. We use it in SSA form to combine information
about offsets. Written with Φ-functions, we would have

class(a0, τ, k0)
a0 ← Φ(a1, . . . , an)
class(ai, τ, ki) (1 ≤ k ≤ n)

class(a0, τ, k0 t k1 t · · · t kn)

Because of loops we might perform this calculation multiple times until we have
reached a fixed point. In this case the fixed point is least upper bound of all the
offset classes we compute, which is a little different than the saturated data base
we considered before.

This is an example of abstract interpretation, which may be a subject of a future
lecture. One can obtain a more precise alias analysis if one refines the abstract do-
main, which is lattice shown above.

5 Allocation-Based Alias Analysis

Another technique to infer that pointers may not alias is based on their allocation
point. In brief, if two pointers are allocated with different calls to alloc or alloc array,
then they cannot be aliased. Because allocation may happen in a different function
than we are currently compiling (and hopefully optimizing), this is an example of
an interprocedural analysis.
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Lecture Notes on Decompilation

15411: Compiler Design
Maxime Serrano

Lecture 20
October 31, 2013

1 Introduction

In this lecture, we consider the problem of doing compilation “backwards” - that is, transforming from
a compiled binary into a reasonable representation of its original source. Solving this problem will involve
significant consideration of our standard dataflow analyses, as well as a discussion of good selection of internal
representations of code.

While the motivation for the existence of compilers is fairly clear, the motivation for the existence of
decompilers is less so. However, in the modern world there exist many legacy systems for which the original
source code has been lost, which need bugs fixed in them or to be ported to a more modern architecture.
Decompilers facilitate this process greatly. In addition, in malware analysis, generally source is not provided.
It is therefore extremely useful to have some way to go from binary to a reasonable approximation of the
original code.

For this lecture, we will focus on decompiling machine code, originally C0 code, that conforms to the C
ABI, into a version of C0 with pointer arithmetic and goto. This comes nowhere near to being a treatment
of decompilation of arbitrary binaries (and in fact the algorithms as described here will frequently fail to
work on arbitrary binaries!), though more complex variants of the same ideas will continue to work.

2 Steps of Decompilation

Roughly, decompilation follows a few steps:

1. Disassembly - transformation from machine code to the assembly equivalent. There are a surprising
number of pitfalls here.

2. Lifting and dataflow analysis - transforming the resulting assembly code into a higher-level internal
representation, such as our three-operand assembly. One of the tricky parts here is recognizing distinct
variables, and detaching variables from registers or addresses. We also recover expressions, function
return values and arguments.

3. Control flow analysis - recovering control flow structure information, such as if and while statements,
as well as their nesting level.

4. Type analysis - recovering types of variables, functions, and other pieces of data.

3 Disassembly

The first step of writing a good decompiler is writing a good disassembler. While the details of individual
disassemblers can be extremely complex, the general idea is fairly simple. The mapping between assembly
and machine code is in theory one-to-one, so a straight-line translation should be feasible.
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However, disassemblers rapidly run into a problem: it is very difficult to reliably distinguish code from
data.

In order to do so, generally disassemblers will take one of two strategies:

1. Disassemble the sections that are generally filled with code (.plt, .text, some others) and treat the
rest of them as data. One tool that follows this strategy is objdump. While this works decently well
on code produced by most modern compilers, there exist (or existed!) compilers that place data into
these executable sections, causing the disassembler some confusion. Further, any confusingly-aligned
instructions will also confuse these disassemblers.

2. Consider the starting address given by the binary’s header, and recursively disassemble all code reach-
able from that address. This approach is frequently defeated by indirect jumps, though most of the
disassemblers that use it have additional heuristics that allow them to deal with this. An example tool
that follows this strategy is Hex-Ray’s Interactive Disassembler.

While disassembly is a difficult problem with many pitfalls, it is not particularly interesting from an
implementation perspective for us. Many program “obfuscators” have many steps that are targeted at
fooling disassemblers, however, as without correct disassembly it is impossible to carry on the later steps.

4 Lifting and Dataflow Analysis

Given correct disassembly, another problem rears its head. As you may have noticed while writing your
compilers, doing any form of reasonable analysis on x86 64 is an exercise in futility. The structure of most
assembly language does not lend itself well to any kind of sophisticated analysis.

In order to deal with this, decompilers generally do something which closely resembles a backwards
form of instruction selection. However, decompilers cannot just tile sequences of assembly instructions with
sequences of abstract instructions, as different compilers may produce radically different assembly for the
same sequence of abstract instructions.

Further, frequently a single abstract instruction can expand into a very long sequence of “real” instruc-
tions, many of which are optimized away by the compiler later on.

There are two primary approaches to dealing with this issue. The first is to simply translate our complex
x86 64 into a simpler RISC instruction set. The tools produced by Zynamics frequently take this approach.
The alternative is to translate into an exactly semantics-preserving, perhaps more complicated, instruction
set, which has more cross-platform ways of performing analysis on it. This is the approach taken by CMU’s
BAP research project, as well as by the Hex-Rays decompiler.

The choice of the internal representation can be very important. For our purposes, we’ll consider a
modified version of the 3-operand IR that we’ve been using throughout the semester. We’ll consider a
version that is extended to allow instructions of the form s <- e where e is an expression.

We will summarize the translation from x86 64 to our IR by simply effectively doing instruction selection
in reverse. The difficulty here is generally in the design of the IR, which we most likely do not have the time
to discuss in detail. Some places to learn about IRs include the BAP website (bap.ece.cmu.edu) and the
Zynamics paper “REIL: A platform-independent intermediate representation of disassembled code for static
code analysis” by Thomas Dullien and Sebastian Porst.

Once we have obtained an IR, we would now like to eliminate as many details about the underlying
machine as possible. This is generally done using a form of dataflow analysis, in order to recover variables,
expressions and the straight-line statements.

Recall the dataflow analyses that have been presented in past lectures. Many of these analyses will be
available to help us “refactor” the IR produced by our direct translation.

We will follow two preliminary analyses, both of which are predicated on liveness analysis:

1. Dead register elimination. This is necessary to efficiently deal with instructions such as idiv, as well
as to notice void functions. It should be noted that unlike in your compilers, it is sometimes possible
to eliminate instructions with additional state. For example, if idiv %ecx translates into:
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t <- %edx:%eax
%eax <- t / %ecx
%edx <- t % %ecx

and %eax is not live in the successor, it is permissible to remove the second line of the result, since the
third line will cause the division by 0 in the case that %ecx is zero.

Dead register elimination is done following effectively the same rules as dead code elimination from the
homeworks, with some special cases like the above.

2. Dead flag elimination. Our translation makes direct use of the condition flags, and keeps track of which
of them are defined and used at which time. We treat flags effectively as registers of their own. In
this case, if a flag f is defined at a line l and is not live-in in l + 1, then we remove the definition of
f from the line l. This will simplify our later analyses greatly, allowing us to collapse conditions more
effectively.

3. Conditional collapsing. At this stage, we collapse sequences of the form comparison-cjump into a
conditional jump on an expression. For example, after flag elimination, we collapse:

zf <- cmp(%eax,0)
jz label

into

jcond (%eax == 0) label

In C0, generally every conditional will have this form. However, sufficiently clever optimizing compilers
may be able to optimize some conditional chains more efficiently. A discussion of transforming more
optimized conditions can be found in Cristina Cifuentes’ thesis.

Having reached this point in the analysis, we would like to lose registers. Hence, we may simply replace
each register with an appropriate temp, taking care to keep argument and result registers pinned. We then do
the function-call-expansion step in reverse, replacing sequences of moves into argument registers followed by
a call with a parametrized call. We note that in order to do so, we must first make a pass over all functions
to determine how many arguments they take, in order to deal with the possibility of certain moves being
optimized out.

At this stage, it is possible to effectively perform a slightly modified SSA analysis on the resulting code.
Hence, for the future we will assume that this SSA analysis has been executed, and define our further analysis
over SSA code. We may now perform an extended copy-propagation pass to collapse expressions.

This is sufficient to perform the next stages of the analysis. However, many decompilers apply much
more sophisticated techniques to this stage. Cristina Cifuentes’ thesis contains a description of many such
algorithms.

5 Control Flow Analysis

Having reached this stage, we now have a reasonable control flow graph, with “real” variables in it. At this
point, we could produce C code which is semantically equivalent to the original machine code. However,
this is frequently undesirable. Few programs are written with as much abuse of the goto keyword as this
approach would entail. Most control flow graphs are generated by structured programs, using if, for and
while. It is then desirable for the decompiler to attempt to recover this original structure and arrive at a
fair approximation of the original code.

This form of analysis relies largely on graph transformations. A primary element of this analysis relies
on considering dominator nodes. Given a start node a, a node b is said to dominate a node c if every path
from a to c in the graph passes through b. The immediate dominator of c is the node b such that for every
node d, if d dominates c, then either d = b or d dominates b.
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5.1 Structuring Loops

We will consider three primary different classes of loops. While other loops may appear in decompiled
code, analysis of these more complex loops is more difficult. Further reading can be found in the paper “A
Structuring Algorithm for Decompilation” by Cristina Cifuentes. Our three primary classes are as follows:

1. While loops: the node at the start of the loop is a conditional, and the latching node is unconditional.

2. Repeat loops: the latching node is conditional.

3. Endless loops: both the latching and the start nodes are unconditional.

The latching node here is the node with the back-edge to the start node. We note that there are at most
one of these per loop in our language, as break and continue do not exist.

In order to do so, we will consider intervals on a digraph. If h is a node in G, the interval I(h) is the
maximal subgraph in which h is the only entry node and in which all closed paths contain h. It is a theorem
that there exists a set {h1, ...hk} of header nodes such that the set {I(h1), ...I(hk)} is a partition of the
graph, and further there exists an algorithm to find this partition.

We then define the sequence of derived graphs of G as follows:

1. G1 = G.

2. Gn+1 is the graph formed by contracting every interval of Gn into a single node.

This procedure eventually reaches a fixed point, at which point the resulting graph is irreducible.
Note that for any interval I(h), there exists a loop rooted at h if there is a back-edge to h from some

node z ∈ I(h). One way to find such a node is to simply perform DFS on the interval. Then, in order to
find the nodes in the loop, we define h as being part of the loop and then proceed by noting that a node k
is in the loop if and only if its immediate dominator is in the loop and h is reachable from k.

The algorithm for finding loops in the graph then proceeds as follows. Compute the derived graphs of
G until you reach the fixed point, and find the loops in each derived graph. Note that if any node is found
to be the latching node for two loops, one of these loops will need to be labeled with a goto instead. While
there do exist algorithms that can recover more complex structures, this is not one of them.

5.2 Structuring Ifs

An if statement is a 2-way conditional branch with a common end node. The final end node is referred to
as the follow node and is immediately dominated by the header node.

First, compute a post-ordering of the graph, and traverse it in that order. This guarantees that we will
analyze inner nested ifs before outer ones.

We now find if statements as follows:

1. For every conditional node a, find the set of nodes immediately dominated by a.

2. Produce G′ from G by reversing all the arrows. Filter out nodes from the set above that do not
dominate a in G′.

3. Find the closest node to a in the resulting set, by considering the one with the highest post-order
number.

The resulting node is the follow node of a.
We note that this algorithm does not do a particularly good job of dealing with boolean short-circuiting.
Any control flow that does not match the patterns above will be replaced with an if with a goto.
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6 Type Analysis

Given control flow and some idea of which variables are which, it is frequently useful to be able to determine
what the types of various variables are. While it may be correct to produce a result where every variable
is of type void *, no one actually writes programs that way. Therefore, we would like to be able to assign
variables and functions their types, as well as hopefully recover structure layout.

A compiler has significant advantages over a decompiler in this respect. The compiler knows which
sections of a structure are padding, and which are actually useful; it also knows which things a function can
take or accept. A compiler notices that the functions below are different, and so compiles them separately;
a decompiler may not be able to notice that these functions accept different types without some more
sophisticated analysis. In particular, on a 32-bit machine, these functions will produce identical assembly.

struct s1 { int a; };
int s1_get(struct s1 *s) { return s->a; }
struct s2 { struct s1 *a; };
struct s1 *s2_get(struct s2 *s) { return s->a; }

Given this problem, how does type analysis work?
In short, the answer is: this is an open problem. The TIE paper by CyLab claims to resolve many such

cases, but is far from complete. The Hex-Rays decompiler fails to recognize structures altogether, and often
defaults to int even when the variable is in fact a pointer.

We can model a simple type analysis as follows:

1. Multiplication, substraction, shifting, xor, binary and, binary or and division force their “parameters”
to be integers.

2. Dereferencing forces its parameter to be a pointer.

3. The return values of standard library functions are maintained.

4. Any variable that is branched on is a boolean.

5. If two variables are added together and one is a pointer, the other is an integer.

6. If two variables are added together and one is an integer, the other is either a pointer or an integer.

7. If two variables are compared with <, >, >= or <=, they are both integers.

8. If two variables are compared with == or !=, they have the same type.

9. If something is returned from main(), it is an integer.

10. If the value of one variable is moved into another variable, they have the same type.

11. If the dereferenced value of a pointer has type τ , then the pointer has type τ∗.

12. The sum of a pointer of type τ∗ and an integer is a pointer, but not necessarily of type τ∗.

We note that in order to get high-quality types, we will often need to perform analysis across function
boundaries. We also note that this analysis is entirely unable to distinguish between structures and arrays.
A more sophisticated type analysis is described in the TIE paper in the references section. There is plenty
of research being done in this area, however!
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7 Other Issues

Other issues that haven’t been discussed here include doing things like automatically detecting vulnerabilities,
detecting and possibly collapsing aliases, recovering scoping information, extracting inlined functions, or
dealing with tail call optimizations. Many of these problems (and, in fact, many of the things discussed
above!) do not have satisfactory solutions, and remain open research problems. For one, CMU’s CyLab
contains a group actively doing research on these topics. They recently (a few days ago!) released a paper
containing a description of their solutions to many of these problems. Since they decompile arbitrary native
code, rather than caring mostly about a specific language, they encounter some very interesting and difficult
problems.

Decompilation as a whole is very much an open research topic, and there exist very few reasonable
decompilers. One of the better-known ones is the Hex-Rays decompiler, and it is sadly entirely closed-
source. As far as I know, there are no high-quality open-source decompilers for x86 or x86 64.

8 References
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2. Cifuentes, Cristina. “Reverse Compilation Techniques.” PhD thesis, Queensland University of Tech-
nology, 1994.

3. Dullien, Thomas, and Sebastian Porst. “REIL: A platform-independent intermediate representation
of disassembled code for static code analysis.” CanSecWest, 2009.

4. Lee, JongHyup, Thanassis Avgerinos, and David Brumley. “TIE: Principled Reverse Engineering of
Types in Binary Programs.” NDSS Symposium, 2011.
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Lecture Notes on
Garbage Collection

15-411: Compiler Design
Frank Pfenning

Lecture 21
November 5, 2013

These brief notes only contain a short overview, a few pointers to the literature with detailed
descriptions, and a few remarks particularly relevant to C0.

1 Introduction

So far, in C0 we have had only primitives for allocation of memory on the heap.
Memory was never freed. In C, the free function accomplishes this, but it is very
error-prone. Memory may not be freed that is no longer needed (a leak), or, worse,
memory may be free that will be referenced later in the computation. In type-safe
languages this can avoided by using garbage collection that automically reclaims
storage that can no longer be referenced. Since it is undecidable if memory might
still be referenced, a garbage collector uses a conservative approximation, where
different techniques may approximate in different ways.

There are three basic garbage collection techniques.

Reference Counting. Each heap object maintains an additional field containing the
number of references to the object. The compiler must generate code that maintains
this reference count correctly. When the count reaches 0, the object is deallocated,
possibly triggering the reduction of other reference counts. Reference counts are
hard to maintain, especially in the presence of optimizations. The other problem
is that reference counting does not work well for circular data structures because
reference counts in a cycle can remain positive even though the structure is un-
reachable. Nevertheless, reference counting appears to remain popular for script-
ing languages like Perl, PHP, or Python. Another use of reference counting is in
part of an operating system where we know that no circularities can arise.

Mark-and-Sweep. A mark-and-sweep collector traverses the stack to find point-
ers into the heap and follows each of them, marking all reachable objects. It then
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sweeps through memory, collecting unmarked objects into a free list while leaving
marked objects in place. It is usually invoked if there is not enough space for a
requested allocation. Because objects are never moved once allocated, a mark-and-
sweep collector runs the risk of fragmented memory which can translate to poor
performance. Another difficulty with a mark-and-sweep collector is that the cost
of a collection is proportional to all available memory (which will be touched in the
sweep phase).

Copying Collection. A copying collector also traverses the heap, starting from the
so-called root pointers on the stack. Instead of marking objects it moves reachable
objects from the heap to a new area called the to-space. When all reachable objects
have been moved, the old heap (the from-space) and the to-space switch roles. The
copying phase will compact memory, leading to good locality of reference. More-
over, the cost is only proportional to the reachable memory rather than all allocated
memory. On the other hand, a copying collector typically needs to run with twice
as much memory than a mark-and-sweep collector.

Mark-and-sweep and copying collectors are called tracing collectors, since they
determine the reachable (or live) objects on the heap by following pointers. They
tend to suffer from long pauses when a garbage collection is performed. Many
variations and refinements have been proposed to overcome some of the difficulties
and drawbacks in various forms of garbage collectors. A somewhat dated, but still
excellent survey on garbage collection by Wilson1 [Wil92].

For this course and the C0 language we recommend implementing a simple
copying collector. Experience shows that it is less error-prone and easier to im-
plement than a mark-and-sweep or copying collector. Since there is extensive and
accessible literature on garbage collection, in the remainder of this note we focus
on the compiler support that is necessary for a tracing collector. The issues for
mark-and-sweep and copying collectors are very similar.

We explicit do not discuss many optimizations and refinements of the basic
schemes. Some of these are common sense, others can be found in the literature.

2 Allocation

In a mark-and-sweep collector, allocation is handled via a free list, usually doubly
linked. This is analogous to the data structure maintained by implementations of
malloc/free in C. When allocation is called we traverse the free list until we find
a block that is big enough for the requested payload plus header information. We
return a pointer to this object (usually with the header to the left of the pointer)
which should be aligned at 0 modulo 8. If a sufficiently large portion of the block

1Revised version at http://www.cs.cmu.edu/~fp/courses/15411-f13/misc/wilson94-gc.pdf
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is unused, it is returned to the free list for further allocations. We run out of space
if we cannot find any block that is big enough.

In a copying collector there is no free list. Instead we have a currently used
half-space and a next pointer to the end of the currently used portion of the half-
space. We return a pointer to its beginning (perhaps after adding a fixed offset to
allow for a header) and advance the next pointer. Allocation in a copying collector
is typically significantly faster than in a mark-and-sweep collector.

3 Finding Root Pointers

Assume that either alloc or alloc_array is called and we have run out of space.
We now need to find the root pointers on the stack that point to the heap. This
task is simplified in C0 since we have no pointers to the stack, unless the compiler
optimizes to allocate some data on the stack. The compiler lays out each stack
frame, so it knows where to find pointers and what their types are. Which pointers
exactly are still live (and even where they are on the stack) may change during the
computation of the function. We therefore best associate this information with each
return address.

The information we need at a snapshot of the stack frame is the place where
pointers are. This may be kept in a pointer map for the stack frame. A reference
to the pointer map may be kept in a seperate data structure, or in the stack frame
itself (for example, at the bottom or top of the stack frame).

Since have the traverse the stack it is convenient to keep base pointers for each
frame which are pushed onto the stack just as in the x86 calling convention. While
optional for the x86-64, it is quite useful for the garbage collector. So, once we have
processed the pointers in the current frame, we find the return address to get the
pointer map for the previous frame until we get to the first frame on the stack.

There are some subtleties regarding registers. Since the last call will always be
to alloc or alloc_array we don’t have to worry about registers except callee-save
registers. The called function will not be able to tell if any of the callee-save regis-
ters contains a root pointer. A simple strategy to handle such callee-save registers
is for the caller (who knows what they are) to simply push callee-save registers
containing live root pointers onto the stack and add these locations to the pointer
map. They do not need to be restored, due to the callee-save protocol. Caller-save
and argument registers will already be on the stack (and in the pointer map) if they
are live.

4 Derived Pointers

Some computations and optimizations will compute addresses of data in the mid-
dle of heap objects. It is important that we don’t follow such pointers since, for
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example, the header of an object will not be at a fixed offset from such a derived
pointer. Instead, the compiler should arrange to keep mark the corresponding base
pointer as live and keep it somewhere were it is recognized as a root pointer. A typ-
ical example of this is the computation of the address of an array element, which
will be a derived pointer.

5 Traversing the Heap

When we traverse the heap, whether just marking or copying reachable objects, we
need to identify pointers in the objects we reach. The traditional way to accomplish
this is to keep a reference to a pointer map in the object header. Just as for a stack
frame, every pointer in the heap object has an entry with its offset in the pointer
map, with a special indicator for arrays. In addition the header should have a bit
that can marked when visited (for mark-and-sweep) or marked when copied (for
a copying collector). In the case of a copying collector, we need to make sure the
object is big enough to hold the forwarding pointer when it is moved to the to-space.
In the case of a mark-and-sweep collector the object has to be big enough to hold
the next and prev pointers of the doubly-linked free list.

6 Tagless Garbage Collection

In a safe, statically typed language such as C0, pointer maps are not strictly nec-
essary for heap objects as long as we can determine the types of the root pointers.
After that, the type of every heap object we reach, and the types of the components,
are determined entirely from the types and the computed offsets for structs.

As suggested by Goldberg2 [Gol91] an efficient and convenient way to achieve
this is for the compiler to generate a structure traversal function for each type that
may be allocated on the heap. For each root pointer we then just need to know
which garbage collection traversal function to call. This is something the com-
piler can know (since types are known at compile-time) and store at an appropriate
place, either in the stack frame, the text segment, or allocate during an initialization
phase in a global variable.
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1 Introduction

Polymorphism in programming languages refers to the possibility that a function
or data structure can accommodate data of different types. There are two principal
forms of polymorphism: ad hoc polymorphism and parametric polymorphism. Ad hoc
polymorphism allows a function to compute differently, based on the type of the
argument. Parametric polymorphism means that a function behaves uniformly
across the various types [Rey74].

In C0, the equality == and disequality != operators are ad hoc polymorphic:
they can be applied to small types (int, bool, τ∗, τ [ ], and also char, which we don’t
have in L4), and they behave differently at different types (32 bit vs 64 bit compar-
isons). A common example from other languages are arithmetic operators so that
e1 + e2 could be addition of integers or floating point numbers or even concate-
nation of strings. Type checking should resolve the ambiguities and translate the
expression to the correct internal form.

The language extension of void∗ we discussed in Assignment 4 is a (somewhat
borderline) example of parametric polymorphism, as long as we do not add a con-
struct hastype(τ, e) or eqtype(e1, e2) into the language and as long as the execution
does not raise a dynamic tag exception. It should therefore be considered some-
what borderline parametric, since implementations must treat it uniformly but a
dynamic tag error depends on the run-time type of a polymorphic value.

Generally, whether polymorphism is parametric depends on all the details of
the language definition. The importance of parametricity for data abstraction in
language implementations cannot be overstated. Failure of parametricity often
means failure of data abstraction: an implementation of a generic data structure
cannot necessarily be replaced by another one (even if it is correct!) without break-
ing a client.
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2 Parametric Polymorphism

The prototypical example of a parametric function is the identity function, λx. x :
α→ α. In C0, we might write this as

a id(a x) {

return x;

}

which interprets the undefined type name a as a type variable whose scope is
the current function. The projection function, which ignores its second argument,
would be

a proj(a x, b y) {

return x;

}

with both a and b as type variables. From this we extract an abstract form of defi-
nition

id : ∀a. (a)→ a
proj : ∀a, b. (a, b)→ a

When type-checking the body of a function, the free variables in the function defi-
nition are treated like new basic types. In particular, they are not subject to instan-
tiation, since in the end the function has to work for all types. To account for this
we allow a new form of declaration a : type in our typecontext Γ.

When type-checking the use of a polymorphic function, we can instantiated the
type variables to other types. For example,

if (id(true)) return id(id(4));

should be well-typed. In order to formalize this we will need a substitution θ for the
(quantified) type variables from the definition of a function, using concrete types
and other type variables declared in the context. We write

Γ ` θ : (a1, . . . , ak)

if θ substitutes types that are well-formed in Γ for the type variables a1, . . . , ak.
Furthermore, we write θ(τ) for the result of applying the substitution θ to the type
τ .

Our typing rule then shapes up as follows:

f : ∀a1, . . . , ak.(τ1, . . . , τn)→ τ
Γ ` θ : (a1, . . . , ak)
Γ ` e1 : θ(τ1)
· · ·
Γ ` en : θ(τn)

Γ ` f(e1, . . . , en) : θ(τ)
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Note that there is a single substitution θ, so the type variables a1, . . . , an must be
instantiated consistently for all arguments and the result. For example:

id : ∀a. (a)→ a
· ` (int/a) : (a)
· ` 4 : int

· ` id(4) : int

where 4 : int arises from 4 : (int/a)(a).

3 Generic Data Structures

In a first-order imperative language, the main use of polymorphism is for generic
data structures. For example, we may want to have a stack with elements of arbi-
trary type a.

struct list_node<a> {

a data;

struct list_node<a>* next;

};

typedef struct list_node<a> list<a>;

During compilation, we would like to create parametric code, which works the
same independently of the type a. If we restrict type variables to be instantiated to
small types then we can allocate 8 bytes for a polymorphic field of a struct, which
should always be enough room. During allocation, the polymorphic field will be
initialized with 0, which by design represents the default value of all types.

In other languages we may box polymorphic data (replace them by a reference
to the actual data), or monomorphise the whole program and compile multiple ver-
sions of a function.

The type parameter of the structure is indicated inside the angle brackets. Func-
tions manipulating the structure would be correspondingly polymorphic. For ex-
ample:

list<a>* cons(list<a>* p, a elem) {

list<a>* q = alloc(list<a>);

q->data = elem;

q->next = p;

return q;

}
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4 Pairs

We can easily define a product type, which would usually be written as a ∗ b in a
functional language.

struct prod<a,b> {

a fst;

b snd;

};

typedef struct prod<a,b>* prod<a,b>;

a fst(prod<a,b> p) {

return p->fst;

}

b snd(prod<a,b> p) {

return p->snd;

}

prod<a,b> pair(a x, b y) {

prod<a,b> p = alloc(struct prod<a,b>);

p->fst = x;

p->snd = y;

return p;

}

5 Function Pointers

Polymorphism in data structures is severely handicapped unless we can store func-
tion pointers. For example, a hash table may be parameterized by a type key for
keys and a type a for the elements stored in the table. We store in the header func-
tions to hash a key value, to compare keys, and extracting a key from an element.

struct ht_header<key,a> {

int size; /* size >= 0 */

int capacity; /* capacity > 0 */

list<a*>*[] table; /* \length(table) == capacity */

int (*hash)(key k); /* hash function */

bool (*key_equal)(key k1, key k2); /* key comparison */

key (*elem_key)(a elem); /* extracting key from element */

};
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typedef struct ht_header<key,a> ht<key,a>;

a* ht_lookup(ht<key,a> H, key k)

//@requires is_ht(H);

{

int i = (*H->hash)(k);

list<a*>* p = H->table[i];

while (p != NULL) {

//@assert p->data != NULL;

if ((*H->key_equal)((*H->elem_key)(*p->data), k))

return p->data;

else

p = p->next;

}

/* not in list */

return NULL;

}

6 Interactions With Other Language Features

The interactions between parametric and ad hoc polymorphism are often tricky. In
C0 with parametric polymorphism, the main issue arises with equality. If we have
e1 == e2 where e1 and e2 are of type a? If a stands for a small type, this might
be feasible, but there is still a difference between 32-bit and 64-bit comparisons.
Alternative, we could simply rule this out. This would suggest itself in particular
in C0 with a type string, which is not subject to equality testing.

A general approach to interactions between ad hoc and parametric polymor-
phism are type classes as they are used in Haskell. In lecture, students proposed
some extensions of the above so that polymorphism can be limited to type classes.
Since I did not take any pictures of the blackboard at the time, these extensions are
lost to posterity unless someone sends me some suggestions.

7 Type Inference

Often associated with parametric polymorphism is the idea of type inference. For the
polymorphic part of the language, this actually presents rather few problems, since
the scope of type variables is naturally delineated by function definitions. How-
ever, in C0 there is a problem with field selection, e.f . Since fields are global and
can freely be shared between different structs, it will be difficult to disambiguate
uses of the field names f and therefore the type of e.
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8 Type Conversions and Coherence

Ad hoc polymorphism is often associated with (implicit) conversions between types.
For example, in an expression 3 + x where x : float we might promote the integer
3 to a floating point number, since the other summand is a floating point number.
There is a complicated set of rules in the definition of C [KR88] regarding such
conversions between types, including integral types of varying sizes, pointers, and
other numeric types like float or double.

Inside a compiler, such promotions should be turned into explicit operators, for
example itof(3) + x, where itof converts an integer to its floating point representa-
tion.

The problem with such implicit conversion is that it can easily lead to errors.
The more complicated the rules in the language definition, the more likely it is
to lead to errors which are often hard to find. Particularly pernicious are error
arising from truncation of wider types to narrower ones, since they can remain un-
detected for a long time on smaller inputs. A language satisfies coherence if various
legal ways of inserting type conversions always leads to the same answer [Rey91].
In such language the meaning of expressions is less dependent on arcane details.
Nevertheless, overloading and implicit conversions ought to be viewed with sus-
picion.
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1 Introduction

Generally speaking, it is difficult to add concurrency to a language and retain the
same kind of strong guarantees that static typing in a language like C0 gives us.
For a sequential language, type safety usually includes preservation (that program
remains well-typed as it executes) and progress (there is always a well-defined
action to take). In the presence of concurrency, we would like to add deadlock-
freedom (which is an analogue to progress) and the absence of race conditions (to
guarantee the result is well-defined).

In order achieve these properties, we work under the following conditions:

• Communication between processes is by message-passing rather then via
shared memory. In a concrete implementation the message-passing might
be accomplished using shared memory, but the computational model itself is
at a higher level of abstraction.

• Processes communicate with each other along channels with just two end-
points, one process on each end.

• A process offers a service along a unique channel and uses services along
possibly many other channels. This allows us to identify a process with the
channel along which it offers a service.

Under these assumptions we have designed a type system that guarantees preser-
vation and progress, including the absence of deadlock and race conditions [CP10].
It uses the idea of linear typing, which is closely related to the concept of linear in-
ference we used to specify program transformations. It is a particular instantiation
of the idea of session types [Hon93] that prescribe interactions between processes
along private channels. The settings for the prior work was process calculi [CPT13]
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and functional languages [TCP13]; here we import some of the ideas in the (first-
order) imperative setting. It should be emphasized that we have not proven any-
thing about this extension of C0, so all the above properties may be false for this
language instance.

2 Process Definitions

We have to extend our language of types by session types σ. We continue to use τ
for ordinary value types. We will introduce various forms of session types incre-
mentally and summarize them at the end.

Session type σ are used to prescribe communication behavior along channels,
which are written as $c. A channel declaration is therefore of the form σ $c in the
concrete syntax and $c : σ in the typing judgments.

A process that offers service σ along channel $c and uses services σ1, . . . , σn along
channels $d1, . . . , $dn is spawned by invoking a process definition pwith prototype

σ $c p(σ1 $d1, . . . , σn $dn);

A process can additionally take value arguments of primitive types, a feature we
will exploit shortly. The body of a process definition contains the computation and
communications to be performed by the process when spawned.

As a first example we consider a process producing a (potentially infinite) stream
of integers. The protocol requires that the consumer request a new integer by send-
ing the label ‘next’, to which the process responds with the next integers. In addi-
tion, the consumer can stop the process by sending the label ‘stop’. This behavior
is expressed by the type

choice natstream {

int /\ choice natstream next;

void stop;

};

The keyword choice indicate that the client chooses the operation to be performed
by sending of the labels. natstream is the name for this particular choice. Syntacti-
cally, this is analogous to struct s, where s is the name of the struct.

The session type τ ∧ σ (here τ = int and σ = choice natstream means that the
process hand to send a value of type τ and then follow the session type σ. next is
the label of the first alternative, stop the label of the second alternative. The session
type void indicates that the process should terminate without further interactions.

Instead of writing out choice natstream we create nats as a synonym for it:

typedef choice natstream nats;

Next we would like to define a process that outputs a stream of integers according
to the above protocol, starting at an integer n.
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nats $c from(int n) { /* $c : nats */

switch ($c) { /* receive label along $c */

case next: /* $c : int /\ nats */

send($c, n); /* $c : nats */

$c = from(n+1); /* tail call, continue in current process */

case stop:

close($c); /* $c : void */

}

}

The construct
switch ($c) {case li : seq i}i

waits to receive a label li along channel $c and then executes the corresponding case
in the body of the switch statement. For this to be correct, the channel $c must be a
choice among the labels li. In case the label next is received, we have the command
send($c, n) which has the general form

send($c, e);

which sends the value of e along channel $c. For this to be correct, the channel
$c must have type τ ∧ σ, for some session type σ, and e must have type τ . Some
restrictions may also be imposed on the type of e, so we do not have potentially
complex marshaling and unmarshaling operations to be performed. The primitive
types int, bool, char and string seem to be a reasonable choice.

What is curious here is that the switch statement requires $c to present a choice,
while the subsequent send command requires $c to be a conjunction. This reflects
the fact that the types of channels must change throughout the interactions of a
process with its environment. If a channel $c has type choice name {σi : li}i then
after receiving label li it will have type σi. Similarly, if a channel $c has type τ ∧ σ,
then after sending τ the channel will have type σ.

Next we come to

$c = from(n+1);

where the current process offers along $c and from(n + 1) is a process invocation.
This is the process analogue of a tail-call for a function, and means the current
process continues by executing from(n + 1). This is also the last statement along
this branch of the switch statement, since this process invocation will never return.
Notice that the value argument n to a process essentially functions as a variable
local to the process.

In the stop branch of the switch, channel $c has type void. This means we have
to close the channel, which is the last action the from process will take.
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3 Typing

Because channels change their type during communcations, the typing judgment
is a bit unusual. In addition to the context Γ that types value variables, we have a
second context

∆ = (c1 : σ1, . . . , cn : σn)

of channel typings. Since channels are distinguished by their position in the judg-
ment, we drop the $-prefix for the names. The general form of the judgment then
is

Γ ; ∆ ` P :: (c : σ)

which says that P is a process expression that offers service of session type σ along
channel c, using value variables in Γ and channels in ∆. As usual, we do not care
about the order of declarations in Γ or ∆.

{Γ ; ∆ ` Pi :: c : σi}i
Γ ; ∆ ` switch(c, {li : Pi}i) :: c : choice{li : σi}i

Γ ` e : τ Γ ; ∆ ` P :: c : σ

Γ ; ∆ ` send(c, e) ; P :: c : τ ∧ σ

Γ ; · ` close(c) :: c : void

p : (σ1, . . . , σn ` σ) ∆ ∼ (d1:σ1, . . . , dn:σn)

Γ ; ∆ ` c = p(d1, . . . , dn) :: c : σ

In the last rule, ∆ ∼ ∆′ means that ∆′ is a permutation of ∆. We therefore have a
precise account for all channels: they are used exactly once (even if that use might
be in a recursive procedure invocation). For simplicity, we omitted value argu-
ments, but they would just be expressions ej of ordinary types τj , matching the
process declaration. For example, when we close a channel c there may not be any
unused channels left in the context. In a switch construct we check every branch
in the same context ∆. This is correct, because exactly one of the branches will be
chosen when the program is executed.

4 Stream Transducers

Our overall goal of this lecture will be to write a code for the prime sieve (or Sieve of
Eratosthenes) that produces a stream of prime numbers. The sieve is implemented
as a sequence of filters, each of which filters out all multiples of one particular
prime. This is illustrated in the following picture.
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Each circle represents a process, where the bullet indicates the channel along
which it offers. Below each channel is the sequence of integers flowing from right
to left, eliding the request labels next flowing from left to right.

We have already implemented the from process on the far right. Next we imple-
ment the filter processes. filter uses one process ($d) and offers along another ($c).
It drops all multiples of p from $d and forwards the rest ot $c. It begins by receiving
a label along $c, which must be one of next and stop.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

...

case stop:

...

}

}

If it is next, we now need to request the next integer along $d. This means we
have to send the label next along $d. We are using the channel $d, and $d has type
choice natstream , so this follows the protocol correctly. Sending a label l along a
channel $d has the syntax $d.l, analogous to the field selection in a struct.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

...

case stop:

...

}

}
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After sending next, $d has evolved to type int ∧ choice natstream . This means that
the process providing $d will send an integer, and we have to receive it. The syntax
is x = recv($d), where x must be declared if it hasn’t already.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

int k = recv($d);

/* $d : nats |- $c : int /\ nats */

...

case stop:

}

}

We have indicated the types of $d and $c at this point during the computation. We
now need to check whether p divides k. If so, we keep requesting integers from
$d until we receive a value that is not a multiple of p. We then send the first such
value along $c and recurse. We could accomplish this with two mututally recursive
function, or with a loop. For illustration purposes we use a loop.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

int k = recv($d);

/* $d : nats |- $c : int /\ nats */

while (k % p == 0) {

$d.next;

k = recv($d);

}

/* $d : nats |- $c : int /\ nats */

send($c, k);

$c = filter(p, $d);

case stop:

...

}

}

Because we don’t know how often the loop will be traversed, the channel types
must remain invariant throughout the loop. We have indicated those types in a
comment before the loop. This will also be the type of the channels immediately
after the loop.
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In the case we receive the stop label, we cannot just close the channel $c, because
the channel $d would be left unaccounted for. Instead, we send it in turn a stop
label and wait until it finishes. Of course, waiting wouldn’t be strictly necessary
if we trust it to complete, but for typing purposes we would like to consume that
channel.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

int k = recv($d);

/* $d : nats |- $c : int /\ nats */

while (k % p == 0) {

$d.next;

k = recv($d);

}

/* $d : nats |- $c : int /\ nats */

send($c, k);

$c = filter(p, $d);

case stop:

$d.stop;

wait($d);

close($c);

}

}

5 Spawning New Processes

We have now written from and filter. Assume we would like to write the enclos-
ing process primes which is supposed to produce the increasing sequence of prime
numbers on channel $c. Let’s refer back to the diagram.
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We want to write an outermost process

nats $c primes(nats $d);

which uses $d3 (in the diagram above) and produces along $c as in the extended
diagram below.
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$c	
  =	
  primes($d3)	
  

If we are requested to produce a number (by receiving next along $c), we ask
$d for the next integer. Since this has already been filtered by all smaller primes, it
should be a prime number and we can send it along $c.

nats $c primes(nats $d) {

switch ($c) {

case next:

$d.next;

int p = recv($d);

send($c, p);

...
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case stop:

...

}

}

Before we can recurse we need to spawn a new process, which filters the multiples
of p. We do this simply by invoking the process definition and assigning a (new!)
channel to the output. We then recurse, using this new channel. It’s easy to see that
there is exactly one filtering channel for each prime number that we send along
$c. In the case we are asked to stop, we just stop the process we use (which will
cascade to the right).

nats $c primes(nats $d) {

switch ($c) {

case next:

$d.next;

int p = recv($d);

send($c, p);

nats $e = filter(p, $d); /* spawn new process */

$c = primes($e);

case stop:

$d.stop; wait($d);

close($c);

}

}

We could also reuse the channel name $d, since $d is no longer in the context since
it is used in the invocation of filter.

$d = filter(p, $d); /* spawn new process */

$c = primes($d);

At the risk of blurring the line between process invocation and function call, we
might also abbreviate these two lines to

$c = primes(filter(p, $d)); /* spawn new process */

which would desugar to the first phrasing.
We can now create a process that just produces a stream of primes by creating

the process on the far right (producing 2, 3, 4, 5, 6, . . .) and supplying it to primes.

nats $c prime_stream() {

nats $d = from(2);

$c = primes($d);

}
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Here the tail call preserves the process (identified from the channel $c) even though
it is not a recursive call.

We can now embed this in a top-level function which creates a fresh stream of
prime numbers and requests the first n before terminating the stream.

void print_primes(int n) {

nats $c = prime_stream();

/* $c : nats |- */

for (int i = 0; i < n; i++) {

$c.next;

int p = recv($c);

printint(p);

}

$c.stop; wait($c);

return;

}

6 Additional Typing Rules

We show another few sample rules to supplement the ones shown earlier. The first
is process invocation.

p : (σ1, . . . , σn ` σ′) ∆ ∼ (d1:σ1, . . . , dn:σn) ∆′, e:σ′ ` P :: c : σ

Γ ; ∆,∆′ ` e = p(d1, . . . , dn);P :: c : σ

Implicit here is that e is different from c and all the channels declared in ∆′. If e is a
variable previously declared, it must have been used (not in ∆′) and its new type σ′

should be consistent (which is something we do not track explicitly in these rules).

Γ ; ∆, d:σi ` P :: c : σ

Γ ; ∆, d:choice{li : σi}i ` c.li ; P :: c : σ

Γ, x:τ ; ∆, d:σ′ ` P :: c : σ

Γ ; ∆, d:τ ∧ σ′ ` x = recv(d) ; P :: c : σ

Γ ; ∆ ` P :: c : σ

Γ ; ∆, d:void ` wait(d) ; P :: c : σ

We see that each type construct has a rule when it types the channel we are offering
and when it types a channel we are using. One corresponds to a send, while the
other corresponds to a receive, reflecting the complementary roles of the processes
on the two ends of a channel.
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7 Internal Choice and Forwarding

We refer to the choice construct we introduced so far as external choice. This is
because if we offer choice{li : σi}i along channel $c, then the client can choose the
label. We write

branch{li : σi}i
for the opposite internal choice, where the provider can choose the label and the
consumer has to account for all possibilities.

An example of this is a simple implementaton of stacks, where each process
holds an element of the stack. In the absence of further operations on the stack ele-
ments, this does not exhibit any concurrency, but it illustrates both internal choice
and forwarding (explained later).

The operations on a stack are push, pop, and deallocation. When the client
indicates he want to push an element onto the stack, we then have to receive an
element along the same channel. For this we have the type

τ ⇒ σ

(receive a value of type τ and then behave according to σ) which is symmetric to
τ ∧ σ (send a value of type τ and then behave according to σ).

When the client would like to pop an element from the stack, we send one of
two labels: none if there is no element on the stack, and some if there is one. In the
latter case we follow it up with the element itself. This is an example of the internal
choice we mentioned above. We define:

choice stack_node {

int => choice stack_node push;

branch opt_int pop;

void dealloc;

};

/* Optional result from pop */

branch opt_int {

int /\ choice stack some;

choice stack_node none;

};

typedef choice stack_node stack;

We now represent the stack constructors empty and node simply as processes.
We start with the empty stack. In case of a push, we call spawn a new empty process
and recurse as a node with the new element. In case of a pop we indicate that the
stack is empty and recurse. Deallocation just closes the channel and terminates the
process.
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stack $c empty(); /* empty stack */

stack $c node(int k, stack $d); /* stack with top element k */

stack $c empty() {

switch ($c) {

case push:

int k = recv($c);

stack $d = empty();

$c = node(k, $d); /* tail call: continue as nonempty */

case pop:

$c.none; /* no element available */

$c = empty(); /* tail call: continue as empty */

case dealloc:

close($c);

}

}

Second, the case of a nonempty stack with top element k. When we receive a
push, we just spawn a new process and recursive. The interesting operation is that
of pop. We first send the label some, indicating that the stack is non-empty, then we
send the top element.

stack $c node(int k, stack $d) {

switch ($c) {

case push:

int n = recv($c);

stack $e = node(k, $d); /* spawn new process */

$c = node(n, $e); /* new top of stack in current process */

case pop:

$c.some; send($c, k); /* send current element */

...

case dealloc:

...

}

}

At this point, we would like to terminate the current process and hand off any
interactions along $c to $d. This is an example of channel forwarding. We write this
as

$c = $d;

which identifies $c and $d.
This could be implemented in several ways. Perhaps the cleanest way is for the

current process to send $d to its client, essentially telling it “communicate along $d
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from now on instead of $c”. Then the process identified with $c can terminate since
the channel $c is effectively no longer in use.

At a great cost of efficiency, we could also keep the process identified with $c
alive, continuously forwarding messages in both directions until the channel is
closed.

Deallocation is straightforward, leading to the following final process defini-
tion.

/* nonempty stack */

stack $c node(int k, stack $d) {

switch ($c) {

case push:

int n = recv($c);

stack $e = node(k, $d); /* spawn new process */

$c = node(n, $e); /* new top of stack in current process */

case pop:

$c.some; send($c, k); /* send current element */

$c = $d; /* identify $c and $d; or: forward $d along $c */

case dealloc:

$d.dealloc; wait($d);

close($c);

}

}

We do not show any additional typing rules for the branch construct, since they
are symmetric to the choice construct, just swapping offer and use. For forwarding,
we just need to keep in mind that there is no continuation after forwarding, so the
forwarded channel must be the only one in the context.

Γ ; d:σ ` c = d :: c : σ

8 Further Constructs

The type language in [TCP13] contains further important constructs. One allows
the sending and receiving of channels along channels. Another allows persistent
channels that do not change their type, but allow new instances of a persistent ser-
vice to be spawned. We elide persistent channels entirely and just briefly show the
rules for sending or receiving channels along channels, since they are used in the
next example. We have type σ1 ⊗ σ2 (concrete syntax s1 ** s2) for sending and
σ1 ( σ2 (concrete syntax s1 -o s2) for receiving a channel.
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Γ ; ∆ ` P :: c : σ

Γ ; ∆, d:σ′ ` send(c, d) ; P :: c : σ′ ⊗ σ

Γ ; ∆, d:σ′ ` P :: d : σ

Γ ; ∆ ` d = recv(c) ; P :: c : σ′ ( σ

9 Further Example: Mergesort

Sending and receiving channels is exemplified in the mergesort program below.1

The main complication in this implementation is setting up and tearing down the
processes to, eventually, achieve an in-place sort. For the sake of brevity, we present
it here without further comment.

/* Mergesort */

/* Henry DeYoung, transcribed from SILL by fp */

branch list {

int /\ branch list cons;

void nil;

};

typedef branch list list;

branch forest {

int /\ (list ** branch forest) cons; /* int nl = num. of elems in list l */

void nil;

};

typedef branch forest forest;

/* $c = nil() */

list $c nil() {

$c.nil;

close($c);

}

/* $c = cons(k, $d) */

list $c cons(int k, list $d) {

$c.cons;

send($c, k);

$c = $d;

}

/* $c = merge($l, $r) offers sorted merge of $l and $r along $c */

1requested by a student in lecture
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list $c merge(list $l, list $r) {

switch ($l) {

case cons:

int x = recv($l);

switch ($r) {

case cons:

int y = recv($r);

if (x < y) {

list $r2 = cons(y, $r); /* push y back onto r */

list $d = merge($l, $r2); /* spawn new process */

$c = cons(x, $d);

} else {

list $l2 = cons(x, $l); /* push x back onto l */

list $d = merge($l2, $r); /* spawn new process */

$c = cons(y, $d);

}

case nil: /* $r is empty */

wait($r);

$c = cons(x, $l); /* push x back onto l */

}

case nil: /* $l is empty */

wait($l);

$c = $r; /* forward $r to $c */

}

}

/* $f = fnil() */

forest $f fnil() {

$f.nil;

close($f);

}

/* $g = fcons(nl, $l, $f), adjoins list to forest */

/* invariant: nl = num of elements in $l */

forest $g fcons(int nl, $l list, $f forest) {

$g.cons;

send($g, nl);

send($g, $l); /* send channel $l along $g */

$g = $f;

}

/* $g = join(nl, $l, $f), adjoins list to forest */

/* rebalances if necessary */

/* invariant: nl = num of elements in $l */

forest $g join(int nl, list $l, forest $f) {

switch ($f) {

case cons:

int nr = recv($f);
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list $r = recv($f);

if (nl >= nr) { /* $l is bigger than $r, first list in $f */

list $m = merge($l, $r); /* merge $l and $r */

$g = join(nl+nr, $m, $f); /* adjoin merged list to forest */

} else {

forest $f1 = fcons(nr, $r, $f); /* push $r back onto $f */

$g = fcons(nl, $l, $f1); /* adjoin $l */

}

case nil:

wait($f);

$f1 = fnil(); /* recreate empty forest */

$g = fcons(nl, $l, $f1);

}

}

/* $m = compress($f), linearizes $f to obtain list $m */

list $m compress(forest $f) {

switch ($f) {

case cons:

int nl = recv($f);

list $l = recv($f);

list $r = compress($f); /* spawn new process */

$m = merge($l,$r);

case nil:

wait($f);

$m = nil();

}

}

/* $g = load(A, n) */

/* \length(A) = n, load A[0..n) into forest $g */

/* A should be read-only here; perhaps this should

* be inlined in sort instead */

forest $g load(int[] A, int n) {

forest $f = fnil();

for (int i = 0; i < n; i++) {

list $l = nil();

list $l1 = cons(A[i], $l);

$f = join(1, $l1, $f);

}

$g = $f;

}

/* unload($f, A, n) */

/* \length(A) = n, load $f onto A[0..n) */

/* We can write A here, since unload is a function, not process */

void unload(forest $f, int[] A, int n) {

list $m = compress($f);
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for (int i = 0, i < n; i++)

switch ($m) {

case cons:

int k = recv($m);

A[i] = k;

/* case nil should be impossible */

}

switch ($m) {

/* case cons should be impossible */

case nil:

wait($m);

}

return;

}

/* sort(A, n), sort A[0..n) in ascending order */

void sort(int[] A, int n) {

forest $f = load(A, n); /* create $f */

unload($f, A, n); /* consume $f */

return;

}
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Lecture 26: Obfuscation

15411: Compiler Design
Robbie Harwood and Maxime Serrano

21 November 2013

1 Introduction

We have previously (lecture 20) considered the problem of doing compilation “backwards” (i.e., extracting
a reasonable approximation of the original source from its compiled code). However, rather than analyzing
our dataflow, we will be going one level beyond, and analyzing our analyses of dataflow.

The ethics of code obfuscation, DRM, and the like is a complicated topic, and we will not discuss it here.
Regardless of one’s ethical stance on the topic of obscurity, it is important as an proponent to understand
the basic ideas behind implementing it, as an opponent to understand it well enough to defeat it, and as an
intellectual to learn from it.

As alluded to above, if not the largest than certainly the most controversial application of code obfuscation
is as a means to implement copy protection and Digital Rights Management Schemes (DRM). However, on
occasion obfuscation can arise more organically. Hand-written assembly, despite being frowned upon as a
software development process today, is still alarmingly prevalent within industry. Somewhat unfortunately,
the less understandable snippets tend to be the most resistant to replacement, since writing code that
performs the same function is difficult.

Finally, it is worth noting that these lecture notes are by no means the final word on obfuscation. Obfuscation
is dependent on the workings of the tools used for reverse engineering, and so as they change, so to will
the methods used for obfuscation. This lecture will in particular focus on defeating IDA Pro, objdump, and
gdb.

2 Disassembly

The two disassembly tools, whlie they to some degree do a very similar job (converting machine code directly
into assembly language) have very different philosophies about how one might do this. This is most likely
due to the vastly higher degree of sophistication present in IDA, and to the effort that the authors of IDA
make in order to defeat obfuscating compilers.

In a perfect world, disassembly is very similar. Much like an assembler can take every mnemonic to a single
sequence of bytes, using a relatively simile one-to-one mapping, a disassembler ought to be able to read the
sequence of bytes and decide which instructions map to those bytes. For example, ret maps to C3, so when
a disassembler notices an instruction beginning with C3, it should produce a ret instruction.

There are, however, a few problems that appear. First of all, in modern executable file formats, the .text

section that contains program code is also allowed to contain program data. While most program code is
easy to disassemble, as long as no effort has been made to make it difficult, program data is very unlikely to
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disassemble to valid code - much less code that makes any sense. Therefore, modern disassemblers must be
able to differentiate code from data, even when the entire block is marked as code.

Here is where the differences between the tools mostly lie. IDA attempts to solve this problem; objdump
assumes your data is in the various data sections, and that .text is entirely made up of code. It should be
noted that while in general, IDA makes the correct choice, there are ways to trick it as well. In particular,
since the 00 00 bytes form a valid instruction (albeit add %al, (%eax)), IDA assumes that it is data. One
can use this to trivially trick objdump by placing data in the .text section.

Both tools assume that a single sequence of bytes will only be executed in exactly one way. This is a
wonderful efficiency gain for objdump in particular: rather than needing to do recursive-descent disassembly
and “pretend” to execute the program, objdump can just do a single, straight-line disassembly pass and be
done with it.

However, this causes a very significant issue the moment programs stop obeying this restriction. In particular,
consider the sequence of instructions:

push %rax

xor %rax, %rax

.byte 0x74

.byte 0x01

.byte 0x0f

pop %rax

mov $r, %rax

Given this code, gcc happily produces the following sequence of bytes:

50 48 31 c0 74 01 0f 58 48 c7 c0 03 00 00 00

We can then run objdump on these bytes, and notice that the following is produced:

Disassembly of section .text:

0000000000000000 <.text>

0: 50 push %rax

1: 48 31 c0 xor %rax, %rax

4: 74 01 je 0x07

6: 0f 58 48 c7 addps -0x39(%rax), %xmm1

a: c0 03 00 rolb $0x0, (%rbx)

...

What has happened here is this: the bytes 74 01 lead to a jump that skips the following byte (here, 0f),
which happens to be the first byte of all two-byte opcodes. The presence of the 0f, however, causes objdump
to decide that the bytes following the jump must be a mapping From an instruction with a two-byte opcode
(in this case, addps, a SIMD instruction). As the misalignment constinues (the 48 c7 bytes are the first two
bytes of our mov instruction from the original assembly, but have been “eaten up” by the SIMD instruction),
we continue to produce nonsensical assembly afterwards.

Now, a human reading the assembly can notice by the first three instructions that something fishy is going
on, but unless they can read machine code, they will still have to modify the 0f byte into something more
like 90 in order to read correct disassembly.

One might expect IDA, which does not perform straight-line disassembly but rather uses a recursive-descent
algorithm, to not be fooled by this trick. HOwever, IDA’s recursive descent follows branch-not-taken before
it follows branch-taken, and it also assumes that each sequence of bytes can only be disassembled one way.
Therefore, when it follows branch-taken (which would produce correct output!) it notices that the target of
the jump is marked as disassembled already and hence does not bothered to disassemble it correctly.

2



It should be noted, however, that the processor has no issues executing this code. Since xor %rax, %rax

will always cause the jump to be triggered, furthermore, it does not execute the potentially fatal SIMD
instruction (which dereferences -0x39(%rax), which is probably not a good place).

3 Anti-Analysis

The anti-analysis techniques described here are mostly targeted at IDA Pro, though one could probably also
adapt them to target CMU’s BAP system.1.

IDA’s analysis capabilities are formidable. With 32-bit code, in fact, they are often (though not always) able
to generate C code that preserves the semantics of the original code that was compiled. While the 64-bit
version of IDA does not yet have decompilation support, it does have a variety of other analysis tricks up
its sleeve.

One thing in particular that is exceedingly useful to reverse engineer is IDA’s capacity to recognize function
boundaries. However, different compilers tend to produce vastly different function boundary code!

In 32-bit code, the differences are relatively small. In particular, many Microsoft compilers produce code
that follows the stdcall calling convention rather than the more standard cdecl convention, which causes
end-of-function code to be more complicated. Similarly, the fastcall convention is different depending on
platform and compiler.

In 64-bit code, however, there is a significant difference between code produced by compilers that follow
the Microsoft calling conventions and the code produced by compilers that follow the System V calling
conventions (such as gcc, clang, and others).

In order to support all of these different conventions, as users of IDA expect it to, IDA uses a variety of
heuristics to decide where functions begin and end. One can exploit the characteristics of these heuristics in
order to cause IDA to believe that functions end before they do, or simply refuse to believe that they end at
all.

Other analyses performed by IDA involve stack variables. In order to confuse IDA here, one can temporarily
confuse the stack pointer. As IDA depends on symbolic execution of the code being analyzed, and expects
the stack pointer to remain at “sensible” values, this causes the analysis steps to fail entirely. It is possible to
produce 32-bit code that fails entirely to be recompiled by IDA, even if the disassembly step succeeds.

Confusing the stack pointer and IDA’s function boundary detection can be done by faking a sequence of
instructions that are similar to those done on return From a function, and transforming the “normal” return
sequence.

For example, the fake sequence:

push %rcx

push %rbx

push %rdx

.byte 0xe8

.byte 0x00

.byte 0x00

.byte 0x00

.byte 0x00

pop %rdx

add $08, %rdx

push %rdx

1More information on BAP can be found at http://bap.ece.cmu.edu/
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ret

.byte 0x0f

pop %rdx

pop %rbx

pop %rcx

These bytes e8 00 00 00 decode to call $+0, or simply “push %rip” (were such a thing allowed). This
confuses IDA’s stack pointer, since it resets the “relative” value of %rsp (which is all it keeps track of) upon
executing a call instruction. Following it up with a pop causes the sign of the stack pointer adjustment to
be something IDA fails to understand.

Further, the presence of the ret instruction so soon after a pop instruction causes some versions of IDA to
believe that this is the end of a function. Unfortunately (or fortunately, depending on your perspective),
there does not seem to be such a sequence for all versions.

Afterward, one can modify the real return sequence very slightly. Rather than ending functions with a ret

instruction, one could end them with, say:

pop %r15

pop %r14

pop %r13

pop %r12

pop %rbx

pop %r11

pop %r10

pop %rdi

jmp *%rdi

IDA attempts to decide what it believes the indirect jump is, and often labels the function a “chunk” rather
than a full function and does not list it in the functions list.

To understand what this means, some understanding of IDA’s internals is required. The way the function
detection works appears to be as follows:

1. Notice a standard function-beginning sequence.

2. “Evaluate” the code from the start (except backwards edges) until every piece of control flow reaches
a function end sequence.

3. If the pieces of the function are spread across memory, and don’t end in return statements, label them
as “chunks”.

If one can cause IDA to recognize a given piece of code as a chunk that has no corresponding function, then
it analyzes it and promptly tosses out its analysis.

4 Anti-Debugging

Often, when a reverse engineer cannot figure out the details of the program statically (either due to massive
program scale, unreadable assembly, or any of a variety of other factors), he or she will attempt to do
so dynamically, observing the program’s behavior as it runs. Debuggers such as gdb are a critical part
of this effort. Therefore, any full anti-reverse-engineering effort would need to have some anti-debugging
component.

The primary method for anti-debugging is to abuse the fact that each program can only be debugged by
one debugger. To use this, we inserted a ptrace() call into the program that causes the program’s parent
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to attach itself to it as a debugger. If the program already has a debugger attached, this call fails and the
program segfaults.

This is perhaps the simplest anti-debugging mechanism, and can be countered by a simple modification of the
binary, by very careful use of the debugger, or by interposing the ptrace() call. However, in combination
with anti-disassembly it is generally enough to delay reverse engineers for a significant amount of time,
especially since the ptrace() call can be well-hidden.

A more sophisticated trick is as follows:

1. The program begins, and before calling main(), calls a constructor function c(). The list of such
functions is held in the ctors section, and can be user-controlled.

2. This constructor forks the program. One fork is marked as the child, and the other is marked as the
parent.

3. The parent ptrace()s the child, and the child ptrace()s the parent.

4. Each inserts a critical structure into the memory of the other, or modifies the other’s code, or alters the
main() function to be a no-op, while inserting the address of the “real” main into the dtors section
to be called at exit.

5. One of the two runs the program as “normal”.

This trick (circular debugging) is very difficult to get around. It is, however, also very difficult to implement
at the compiler level. In general, mitigating this anti-debugging technique involves writing a custom loader
for the target program, and loading the structure into memory oneself. In general, understanding what the
structure is entails a full static analysis of the original program, effectively defeating the entire purpose of
debugging in the first place.

The last technique is trivial both in implementation and in mitigation: forced breakpoints. The int 3

instruction, on most platforms, forces a breakpoint. Inserting int 3 in various locations in the program would
cause the reverse engineer to need to manually deal with vastly more breakpoints than desired (especially
in tight loops) and hence hinder his or her debugging efforts. However, simply replacing all instances of
that instruction with a nop instruction trivially defeats this technique, so it is mostly just a nuisance to any
reverse engineer.

5 Other techniques

(This section was not reached in lecture since we did a demo.)

5.1 SSA

Obfuscation interacts quite well with SSA (and basic block analysis), since one can then use it to do IR-level
hiding of information. To do this, one could add extra unnecessary control flow nodes, without losing too
much in performance. Further, given the basic block information, one can then reorder blocks in the binary,
making reading disassembler output an exercise in scrolling.

5.2 Packers

A technique that has become more prevalent in recent years is the use of packers. The general idea here is
to keep a compressed or encrypted version of the binary on the disk (“packed”), as well as a small loader
stub which can then decrypt/decompress (“unpack”) the rest of the binary in memory. Advanced packers
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can even unpack individual functions or basic blocks one at a time, and then re-pack them when they are no
longer running. This completely defeats static analysis, as the bytes that make up the target program are
quite simply not decipherable until they are unpacked.

Packing is generally defeated by dumping the contents of memory at runtime, though the specific implemen-
tation of this technique can make memory dumps much harder. Packing has perhaps the highest return of
any anti-reverse-engineering technique, but is itself very time-consuming to write.

5.3 Calling conventions

Per-function calling conventions are the extreme of making human analysis difficult, as then the human
would need to keep track of which function takes which convention. From an implementation perspective,
however, it requires quite a lot of information be passed around at compile time and instruction selection
time to make it workable, and so is less viable than some other techniques.

5.4 Program bugs

The use of bugs in objdump and IDA can make them entirely useless. While writing our obfuscating com-
piler, for instance, we successfully produced a binary that caused objdump to segfault upon attempted
disassembly. (It’s not exploitable as far as we could tell.) However, such transformations can be unreliable
in implementation, since they require the construction of decidedly odd corner cases.

6 Want more?

The biggest problem with writing obfuscating compilers is debugging the compilers themselves. In effect,
the author is attempting to shoot himself or herself in the foot by preventing debugging while demanding
correctness, since determining why correctness was not maintained requires debugging. In effect, it requires
the author to mitigate their own anti-reverse-engineering transformations in order to reverse-engineer their
own program.

Finally, we should mention that if reversing and code obfuscation are topics you find interesting, the PPP
Security Research Group and Hacking Team may be for you. For more information, visit our webiste
http://pwning.net, sign up for our mailing list, or join our IRC channel irc://freenode.net/#pwning.
Our faculty advisor is Professor David Brumley; more information on his projects can be found at his website
https://users.ece.cmu.edu/~dbrumley/.
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