
Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 1

Flatland3 Draw Engine Domain

Author

Leon Starr

Model document organization

The Flatland models belong to a single Draw Engine Domain representing a coherent and self contained
subject matter. For document management purposes, this domain is spread out over several interconnect-
ed Subsystems. All Subsystems are at the same level of abstraction and freely reference one another via
interconnecting class model relationships and imported classes (dashed classes on the class diagrams).

The first section of this document describes the types (data types) used throughout the domain. Subse-
quent sections describe the classes, attributes and relationships of each subsystem.

License / Copyright

Copyright (c) 2020, Leon Starr

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associat-
ed documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following con-
ditions:

The above copyright notice and this permission notice shall be included in all copies or substantial por-
tions of the Software.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 2

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHE-
THER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 3

Types

Position

(Descriptions to be added later. For now see attribute descriptions.)

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 4

Distance

Description

Connection Geometry

Stroke Style

Plus Minus

Root Vine

Face Placement

Name

Adjacent Layer Last

Rect Size

Degrees

Boolean

Hollow Solid Open

Ordinal

Padding

Alignment

Orientation

Text Style

Count

Rounding

Text

Diagram Coordinates

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 5

Binary Connector Subsystem

This subsystem describes the anatomy of a Binary Connector which connects from a position on one
Node face to a different position on the same or another Node face. This includes the use of Tertiary
Stems which branch off from a Binary Connector to connect a third Node face position forming a T-
shaped line. Binary Connectors may form a straight line between Node faces or be bent at one or more
corners.

Relationship numbering range: R100-R149

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 6

Class Descriptions

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 7

Anchored Binary Stem
This is an Anchored Stem that is one of the opposing (non-Tertiary) Stems in a Binary Connector.

Attributes

ID

Same asBinary Stem.ID

Connector

Same asBinary Stem.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 8

Bend
A Bend is the line drawn between two Corners in a Bending Binary Connector. One is drawn for each
user specified Path.

Attributes

T location

Type: Same as Corner.Location

P location

Type: Same as Corner.Location

Path

Type: Same as Path.Sequence

Connector

Same as Path.Connector and Corner.Connector

Identifiers

1. T location No two Bends can share the same Corner

2. P location Same reasoning as #1

3. Path + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 9

Bending Binary Connector
This is a Binary Connector that must turn one or more corners to connect its opposing Binary Stems. In
such a case the two Binary Stems will be counterparts and we can arbitrarily start drawing a line from
one of the Counterpart Binary Stems to the other. In fact, we could start from both ends and work toward
the middle or start from the middle and work our way out. So the terms “start” and “end” could just as
easily have been labeled “A” and “B”.

Attributes

ID

Same as Binary Connector.ID and, for each of the two Counter Part Binary Stems, Counterpart Binary
Stem.Connector

Start stem

Same as Counterpart Binary Stem.ID

End stem

Same as Counterpart Binary Stem.ID and not the same as theStart stem value

Identifiers

1. ID

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 10

Binary Connector
The defining property of a Binary Connector is that it connects two points, each on some Node face. Com-
mon examples are a transition from one state to another on a state diagram or an association between two
classes on a class diagram.

While each Binary Stem must be in a unique position (Stems never overlap) both Binary Stems may be on
the same Node or even on the same Node face in a Binary Connector. For example, a state may transition
to itself or a class may be associated with itself via a reflexive association.

A Binary Connector may also include a Tertiary Stem which attaches to a third Node face position and
then extends in a straight line to some point on the line connecting the two Binary Stems. Since the Ter-
tiary Stem is a straight line, it cannot attache to the same Node as either of the Binary Stems in the Binary
Connector. So the Tertiary Stem will be attached to the face of a Node that has neither of the Binary Stems
attached.

At present, the only known example of a Tertiary Stem’s usage is to represent an association class rela-
tionship on a class diagram.

Attributes

ID

Same as Connector.ID

Identifiers

ID

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 11

Binary Stem
This is a Stem that is one of the opposing (non-Tertiary) Stems in a Binary Connector. It’s position may be
specified by the user as an anchor point, or computed in the case of a Floating Binary Stem.

Attributes

ID

Same asBinary Stem.ID. Also the union of the ID values in each subclass.

Connector

Same asBinary Stem.Connector Also the union of the Connector values in each subclass.

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 12

Corner
This is a point on the Canvas where two lines of a Bending Binary Connector meet at a right angle. Cor-
ners are not specified by the user, they are computed from user specified anchor positions and Paths.

Attributes

Location

The computed Canvas x and y coordinate of the Corner

Type: Position

Connector

Same as Bending Binary Connector.ID

Identifiers

1. Location (No two Corners may overlap)

2. Location + Connector (super identifier to support R111)

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 13

Counterpart Binary Stem
When a Binary Connector bends at least once the user must specify an anchor position for each Binary
Stem. Since this means that we must have a pair of Anchored Binary Stems, we can think of these as re-
quired counterparts within such a Binary Connector.

Attributes

ID

Same asAnchored Binary Stem.ID

Connector

Same asAnchored Binary Stem.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 14

Floating Binary Stem
The point where this Stem meets a Node Face is determined by drawing a straight line across from a Pro-
jecting Binary Stem in a Binary Connector. It “floats” because because the face position is computed
rather than being specified by the user.

Attributes

ID

Same asBinary Stem.ID

Connector

Same asBinary Stem.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 15

Lane
The corridor formed by either a Row or Column in the Grid. For the purpose of drawing a line as part of
a Connector, Rows and Columns are regarded similarly.

Attributes

Number

Type: Same as eitherColumn.Number or Row.Number

Orientation

Type: Row_Column :: [row | column]

Identifiers

 Number + Direction

Since you can have both a Row and Column with the same number in the Grid, we need the direction to
distinguish them.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 16

Path
If a Bending Binary Connector requires more than one Corner, it will be necessary for the user to specify
where to place each Corner to Corner stretch. Depending on the orientation, either a Row or Column is
chosen along with an alignment preference.

Attributes

Connector

Same as Bending Binary Connector.ID

Sequence

Paths are sequenced from the Node in the T position toward the Node in the P position.

Type: Ordinal

Lane

Type: Same as Lane.Number

Direction

Type: Same as Lane.Direction

Rut

We can imagine the Path guided a long a rut somewhere in the Lane. In a horizontal lane this could be the
center, top or bottom. Finer gradations in a Lane are possible. For now only three rut positions will be
available, but finer gradations should eventually be supported.

Type: Lane Placement

Identifiers

Sequence + Connector

Paths are numbered uniquely within each Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 17

Projecting Binary Stem
This is an Anchored Binary Stem participating on one of the opposing (non-Tertiary) sides of a Binary
Connector. It could be one component of a pair of opposing Anchored Binary Stems in the case where the
Binary Connector bends around at least one corner or a Projecting Binary Stem that establishes the posi-
tion of it opposing Floating Binary Stem

Attributes

ID

Same asAnchored Binary Stem.ID

Connector

Same asAnchored Binary Stem.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 18

Straight Binary Connector
This is a Binary Connector drawn as a single straight vertical or horizontal line. Since the line is straight,
only one of its Binary Stems has an anchor position specified by the user. The opposite Binary Stem will
be placed where the straight line projecting from the Anchored Binary Stem intersects the target Node
face. At that point a Floating Binary Stem is drawn which won’t necessarily line up with any specific Face
Placement position on the Node face.

The anchored Stem is called a Projecting Binary Stem with the non-anchored Stem referred to as a Float-
ing Binary Stem.

Attributes

ID

Same as Binary Connector.ID, Floating Binary Stem.Connector and Projecting Binary Stem.Connector

Floating stem

Same as Floating Binary Stem.ID

Projecting stem

Same as Projecting Binary Stem.ID

Identifiers

ID

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 19

Tertiary Stem
Drawn from a Node face to the middle of a Binary Connector where the root end is on the Node and the
vine end touches the Binary Connector between its two Opposing Stems.

Attributes

ID

Same as Anchored Stem.ID

Connector

Same as Anchored Stem.Connector and Binary Connector.ID

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 20

Relationship Descriptions

R100 / 1:1

Projecting Binary Stem, establishes x or y coordinate of one Floating Binary Stem

Floating Binary Stem gets x or y coordinate from one Projecting Binary Stem

If a Binary Connector is unbent (straight) we want to specify an anchor position on one Node face and
then just draw the Connector line straight across to stop on the opposite Node face. What we don’t want
to do is try to connect anchor to anchor since that will lead to a diagonal line if the anchors on each side
aren’t on the same x or y axis.

So we pair an Anchored Binary Stem which we will call the Projecting Binary Stem with a non-Anchored
Binary Stem which we call the Floating Binary Stem. Thus the x or y value of the Floating Binary Stem is
strictly determined by that of its paired Projecting Binary Stem anchor position. This pairing then forms a
Straight Binary Connector.

Formalization

Straight Binary Connector association class

R101 / Generalization

Anchored Binary Stem is a Projecting Binary Stemor Counterpart Binary Stem

These are the two roles played by a Binary Stem that has a user specified anchor position. In the project-
ing case, the Stem serves to establish the x or y coordinate of a line shared by a corresponding Floating Bi-

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 21

nary Stem. In the counterpart case, two Anchored Binary Stems are the terminating points of a line bent at
least once.

Formalization

The identifier in each of the subclasses referring to the superclass identifier.

R102 / 1:M

Bending Binary Connector turns at right angle on one or many Corner

 Corner is a right angle turn of one Bending Binary Connector

By definition, a there is at least one right angle turn in a Binary Bending Connector and hence, one Cor-
ner.

Formalization

Referential attribute in the Corner class

R103 / Generalization

Binary Connector is a Straight Binary Connectoror Bending Binary Connector

A Straight Binary Connector is a single horizontal or vertical line that connects both of its non-tertiary
Stems. Only one of the two non-tertiary Stems is an Anchored Stem since the opposing Stem is positioned
based on the intersection of the connector line and the opposing Node face. Thus the face position of only
one Stem, the Anchored Stem, need be specified by the user.

A Bending Binary Connector has at least one corner and requires all of its Stems to be Anchored Stems
(fixed on user specified node face positions).

Formalization

The identifier in each of the subclasses referring to the superclass identifier

R104 / 1:1

Counterpart Binary Stem, starts line toward one Counterpart Binary Stem

 Counterpart Binary Stem ends line from one Counterpart Binary Stem

In a Bending Binary Connector, a line is drawn between two Counterpart Binary Stems. The terms “start”
and “end” are used to establish an arbitrary ordering of the Bends so that we can refer to a next or previ-
ous Bend while copumting and drawing the lines.

Formalization

Bending Binary Connector association class

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 22

R105 / 1:M

Bending Binary Connector turns at right angle on one or many Bend

Bend is a right angle turn of one Bending Binary Connector

The line forming a Bending Binary Connector must, by definition, bend at least once. At each Bend the
line turns 90 degrees in either direction and proceeds to the end Stem or to the next Bend.

We would like most of the connector lines in our model diagrams to be straight as much as possible. This
can be achieved more easily for non-Binary Connectors. For now at least bending is only supported for
Binary Connectors and, therefore, a Bend can only exist as part of a Binary Connector.

Formalization

Referential attributes in the Bend class

R107 / 1:Mc

Bending Binary Connector takes zero, one or many Path

Path is taken by one Bending Binary Connector

In the simplest and most common case, a Bending Binary Connector turns at only one point forming a
single Corner. In this case there is no need for the user to specify a Path as the anchor positions on each
Stem establish the single Corner location. You just find the intersection of the lines projecting from each
Stem.

When more than one Corner is desired, the user must choose where to place each pair of Corners. Consid-
er two Nodes in the same Row where the Connector will be drawn between the top face of the T node to
the top face of the P node. Each Corner will lie somewhere above each Node on the same y coordinate,
since we want a straight line. But where is the y coordinate? One Row above? Two Rows above? It’s up
the the user to decide.

A Path represents both the choice of a Row or Column (Lane) and the alignment within that Lane.

The number of Paths that must be specified is equal to one less than the number of desired Corners in the
Bending Binary Connector. So, zero in the case of a single Corner as previously discussed and then incre-
menting from there.

A Path is defined specific to its Bending Binary Connector. A variety of constraints will prevent two Paths
from different Connectors from overlapping, such as the enforcing the uniqueness of Corner coordinates.

Formalization

Referential attributes in the Path class

R109 / Generalization

Binary Stem is a Floating Binary Stemor Anchored Binary Stem

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 23

A Stem used in a Binary Connector may or may not be anchored (user specified). In the case of a Straight
Binary Connector, one will be anchored with the other left floating (derived from the anchored Stem).
With a Bending Binary Connector each Stem must be anchored.

Formalization

The identifier in each of the subclasses referring to the superclass identifier. Also the superclass identifier
is defined as the union of the corresponding identifiers in each of the subclasses.

R110 / 1:1c

Tertiary Stem connects to the middle of one Binary Connector

 Binary Connector connects with zero or one Tertiary Stem

A third Node face position may be connected into a Binary Connector, effectively making it tertiary.
Rather than define a new kind of Connector we just say that a Tertiary Stem may or may not latch onto
the middle of any given Binary Connector. This is because the properties of a Binary Connector, bent or
straight, are not affected by the existence of any optional third Stem.

When we say “middle of” we mean anywhere between the vine ends of the Binary Connector’s two Bina-
ry Stems.

Formalization

Referential attribute in the Tertiary Stem class

R111 / 1c:1c

Corner is toward the P/T anchor of zero or one Corner

When there are more than two Corners in a Bending Binary Connector the Corners are connected in se-
quence proceeding from the T node to the P node. This establishes an arbitrary but consistent sequence
for the purpose of determining how all of the Bends are interconnected. So if we know which Node is
designated as T, we can proceed from one Path to the next filling in Bends to get to the P node.

For a Bending Binary Connector with only one Corner there are no Bends.

Formalization

Referential attributes in the Bend association class

R112 / 1:1

Bend is drawn along one Path

Path establishes line of one Bend

Whereas a Path is a user specified request for the placement of a line, a Bend is the actual line computed
between two Corners.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 24

For each Path specified by the user it is necessary to compute the corresponding Bend so that it can be
drawn.

Formalization

Referential attribute in the Bend class

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 25

Tree Connector Subsystem

This subsystem describes the anatomy of a Tree Connector which connects from a position on one trunk
Node face to a different position on one or more other branch Node faces. It can be used to express a gen-
eralization relationship on a class diagram. But there are surely other uses for this type of Connector on
other Diagram Types.

Relationship numbering range: R151-R199

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 26

Class Descriptions

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 27

Anchored Tree Stem
Any Stem within a Tree Connector attached to a user specified anchor position is an Anchored Tree Stem.

Attributes

ID

Same asAnchored Stem.ID and Tree Stem.ID

Connector

Same as Anchored Stem.Connector. Branch.Connector and Tree Stem.Connector

Branch

Same as Branch.ID

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 28

Branch Path
If the placement of a Branch can not be unambiguously computed by the specified grafts or Node face
placement on the Diagram, the user must specify a Path aligned in some Lane. This user supplied infor-
mation is a Branch Path.

Attributes

ID

Same asPath.ID

Connector

Same as Path.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 29

Leaf Stem
Each Node participating in a leaf role within a Tree Connector attaches to the Connector via a Leaf Stem.
This is generally an Anchored Stem, unless the Leaf Stem does not attach at a right angle to its Branch.

Attributes

ID

Same asAnchored Branch Stem.ID or Floating Leaf Stem.ID

Connector

Same as Tree Connector.ID and also same asAnchored Branch Stem.Connector or Floating Leaf Stem.-
Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 30

Tree Connector
A Tree Connector connects a Node in a trunk role to one or more Nodes each in a leaf role in a hierarchi-
cal structure. It can be used to draw a generalization relationship on a class diagram, for example.

Attributes

ID

Same asConnector.ID

Identifiers

1. ID

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 31

Trunk Stem
Every tree connector pattern connects a single Node playing the role of a trunk with one or more other
Nodes playing a leaf role. The Trunk Stem is an Anchored Tree Stem attached to the trunk Node.

Attributes

ID

Same asAnchored Tree Stem.ID

Connector

Same as Tree Connector.ID and Anchored Tree Stem.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 32

Relationship Descriptions

R151 / 1:1

Tree Connector is rooted in one Trunk Stem

Trunk Stem is root of one Tree Connector

We can visualize a hierarchical or tree connector pattern as originating in a trunk that extends out to one
or more Branches which sprout one or more Leaf Stems. Here we establish that the Tree Connector must
originate in a single Trunk Stem.

In the case of a class diagram generalization relationship, for example, the Trunk Stem would extend from
the relationship’s superclass.

Formalization

Referential attribute in the Trunk Stem class

R152 / 1:M

Tree Connector radiates out to one or many Leaf Stem

Leaf Stem sprouts from one Tree Connector

While there is only one Trunk Stem in a Tree Connector, there may be one or more Leaf Stems to form a
hierarchical pattern. By policy, the pattern does not support a leaf-less tree.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 33

In the example of a class diagram generalization relationship, each subclass would extend a Leaf Stem to
attach to a Branch in the Tree Connector.

Formalization

Referential attribute in the Leaf Stem class

R153 / 1:M

Rut Branch follows one Branch Path

Branch Path guides one Rut Branch

The user can specify a Branch Path which establishes a Lane and a Rut where a Rut Branch is drawn.
Only one Rut Branch may occupy the same Rut to avoid coincident or overlapping connector lines.

Formalization

Referential attribute in the Rut Branch class

R154 / 1:M

Anchored Tree Stem hangs from one Branch

Branch hangs one or many Anchored Tree Stem

Every Branch has to connect at least one Anchored Tree Stem. In the minimal case (shown) this could be a
Trunk Stem that grafts a Grafted Branch leading to a Floating Leaf Stem on the opposite side.

 
Every Anchored Tree Stem must attach to a Branch at some point. This is either at a right angle to the
Branch in which case the stem is hanging or it is in line with the Branch in which case the Branch is graft-
ed from the Anchored Tree Stem.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 34

Formalization

Referential attribute in the Anchored Tree Stem class

R155 / Generalization

Path is a Branch or Binary Path

At present there are two kinds of line segments that can be guided down a Row or Column by a Rut. In
each case, a part of a bending Connector is proceeding in a straight line as guided by a Path specified by
the User.

Since the rules for bending are specific to each Connector geometry, it is necessary to distinguish each
type of Path.

Formalization

Referential attributes in the subclasses

R156 / 1:1c

Floating Leaf Stem is positioned by one Grafted Branch

Grafted Branch positions zero or one Floating Leaf Stem

Once a Grated Branch is established by an Anchored Tree Stem, it proceeds in a straight line and ends in
one of three cases. It can end at a final Anchored Tree Stem hanging at a right angle to the Grafted Branch.
If there is an adjacent Branch, it proceeds to where it meets that Branch at a right angle. In this case the
Tree Connector is bending around a corner. In the third case, the Grafted Branch line meets the Vine end
of a Floating Leaf Stem. As is the case with all Floating Stems, the user does not specify an anchor point
on the Stem’s Node face. The point on the Node face is determined by projecting a line from the Grafted
Branch to the face.

Formalization

Referential attribute in the Floating Leaf Stem class

R157 / 1:1c

Anchored Tree Stem establishes axis of zero or one Grafted Branch

Grafted Branch is a collinear extension of one Anchored Tree Stem

The line segment of a Branch can be defined by starting at the Vine end of an Anchored Tree Stem and ex-
tending on the same axis toward one or more other attached Tree Stems. If the Branch is defined in this
manner it is a Grafted Branch.

By definition, a Grafted Branch extends out from some Anchored Tree Stem.

Most Anchored Tree Stems will not define a Grafted Branch and instead simply hang at a right angle from
some Branch which may or may not be a Grafted Branch.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 35

Formalization

Referential attribute in the Grafted Branch class

R158 / Generalization

Tree Stem is an Anchored Tree Stemor Floating Leaf Stem

Every Stem within a Tree Connector is either anchored or floating. The utility of this abstraction is not im-
mediately clear. It is nonetheless true.

Formalization

The union of the subclass identifiers in the superclass as well as the referential attributes in each subclass.

R161 / Ordinal

Branch bends corner at

In a Tree Connector with multiple Branches, each Branch is sequenced to establish adjacency. It must be
possible, given a single Branch to move in either direction and find the adjacent Branch which must be
oriented at a right angle. Starting from a Branch that originates at some Anchored Tree Stem, attached
collinear or at a right angle, the Branch either terminates the Tree Connector at some other Tree Stem (an-
chored or floating) or it terminates at a corner which bends to form an adjacent Branch. This sequence
continues until the final Branch terminates.

This ordering is important because it defines where the corner is located between two adjacent Branches.

Formalization

ID is an ordinal sequenced within a Connector

R162 / Generalization

Branch is a Grafted, Interpolated or Rut Branch

There are three ways to determine the placement of a Branch. In the case of a Rut Branch the user speci-
fied a Path which establishes a Lane and a Rut. An Interpolated Branch is placed at the halfway point in
between opposing Node faces. This is determined by taking all of the faces hanging in the Rut Branch,
finding the two closest opposing faces and then identifying the halfway point between them. Finally, a
Grafted Branch is collinear with a user specified Anchor Tree Stem.

Formalization

Referential attributes in the subclasses

R163 / Generalization

Anchored Tree Stem is a Trunk Stem or Anchored Leaf Stem

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 36

Every Anchored Stem in a Tree Connector attaches a Node in the trunk role (via its Trunk Stem) or in the
leaf role (via its Anchored Leaf Stem).

Formalization

Referential attributes in the subclasses

R164 / Generalization

Leaf Stem is a Floating Leaf Stem or Anchored Leaf Stem

If a Leaf Stem is anchored to its Node it is either hanging at a right angle to its Branch or defining a graft-
ing point from which its Grafted Branch is extended. It is also possible that a Leaf Stem is not anchored,
but instead floats to be collinear with its Branch.

Formalization

Referential attributes in the subclasses

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 37

Node Subsystem

This subsystem considers the Canvas and Diagram as a whole, the grid system for Node placement, the
Notation applied to the Diagram and the various types of Nodes that may be placed on the Diagram.
Connectors are modeled in a different subsystem.

Relationship numbering range: R1-R49

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 38

Class Descriptions

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 39

Layout Specification
Defines a set of values that determine how a Diagram and Grid is positioned on a Canvas and how
Nodes are positioned relative to the Diagram and Grid.

Attributes

Name

In this version there is assumed to be only a single specification instance, so the name is here merely ex-
presses unique model identity.

Type: Name

Default margin

The distance from each canvas edge that may not be occupied by the Diagram.

Type: Padding

Default diagram origin

The lower left corner of the Diagram in Canvas coordinates.

Type: Position

Default cell padding

The distance from each Cell edge inward that may not be occupied by any Node. This prevents two
Nodes in adjacent Cells from being too close together.

Type: Padding

Default cell alignment

The horizontal and vertical alignment of a Node in its Cell or Cells

Type: Padding

Identifiers

Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 40

Diagram Type
A standard diagram such as ‘class diagram’, ‘state machine diagram’ or ‘collaboration diagram’. Each of
these types draws certain kinds of Nodes and Connectors supported by one or more standard Notations.

Attributes

Name

A commonly recognized name such as ‘class diagram’, ‘state machine diagram’, etc.

Type: Name

Identifiers

 Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 41

Notation
A standard (supported by a large or small community) set of symbols used for drawing a Diagram Type.

Attributes

Name

A name such as ‘xUML’, ‘UML’, ‘Starr’, ‘Shlaer-Mellor’, etc.

Type: Name

Identifiers

 Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 42

Diagram Notation
A Notation supported by the Flatland draw engine to render Diagrams of a given Diagram Type. See R32
for more details.

Attributes

Diagram type

Same as Diagram Type.Name

Notation

Same as Notation.Name

Identifiers

 Diagram type + Notation

Consequence of a many-many association

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 43

Node Type
Specifies characteristics common to all Nodes of a given type. A class node, for example, has three com-
partments, sharp corners a certain border style, etc. For now, to support a different visual style for a class
node, let’s say, you would need to define a new node/diagram type combination (UML class on a UML
class diagram type vs. Shlaer-Mellor class on a Shlaer-Mellor class diagram type), for example). Since,
most diagrams we are considering have notational variation in the Connector Types and not the Node
Types, we’re baking in the visual characteristics of a Node Type for now and making it flexible for Con-
nector Types.

Attributes

Name

A name like “class”, “state”, “imported class”, “domain”, etc.

Type: Name

Diagram type

Type: Same as Diagram Type.Name

Rounded

Whether or not all four node corners are rounded

Type: Boolean

Compartments

The number of UML style text compartments visible.

Type: Count1 :: integer > 0

Border

Type: Border style

Default size

Initial assumption about a Node size.

Type: Rect Size

Max Size

Node may not be drawn larger than this size.

Type: Rect Size

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 44

Corner margin

The minimum distance permitted between a Stem Root end and the nearest Node corner. The intention it
to prevent lines attaching on or very close to a Node’s corner which looks glitchy.

Type: Distance

Identifiers

 Name + Diagram type

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 45

Node
On Diagrams, model entity semantics such as states, classes, subsystems and so forth can be symbolically
represented as polygonal or rounded shapes. These shapes can then be connected together with lines rep-
resenting model relationship semantics. A Node represents the placement of a shape symbol at a specific
location (Cell) on a Diagram.

Every Node, regardless of its specific shape as determined by its Node Type, is considered to be roughly
or completely rectangular. This means that every Node has four faces, top, bottom, left and right where
one or more Connectors may attach.

Attributes

ID

Each Node is numbered uniquely on its Diagram.

Type: Nominal

Node type

Type: Same as Node Type.Name

Diagram type

Type: Same as Node Type.Diagram type

Size (derived)

The height and width of the Node. This height is derived from the combined heights of its visible Com-
partments. The width is determined as a result of computing the required width of all of the visible Com-
partments.

Type: Rect Size

Location

The lower left corner of the Node relative to the Diagram.

Type: Diagram Coordinates

Identifiers

 ID

We only handle one Diagram at a time, so the Node.ID is always unique.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 46

Relationship Descriptions

R30 / 1:1c

Diagram is rendered using one Diagram Notation

Diagram Notation renders zero or one Diagram

When a Diagram is created, there may be a choice of multiple Notations that it can be displayed in. A
class diagram, for example, could be displayed as Starr, xUML or Shlaer-Mellor notation. Each potential
Diagram would mean the same thing, but the drawn notation would be different in each case.

A Diagram can use only a Notation that is defined for its Diagram Type. Since a Diagram Type must be
supported by at least one Notation, there will always be at least one possible choice.

Only one Diagram is rendered at a time. This means that while, in theory, the same Diagram Notation
could render multiple Diagrams and certainly does over time, during the runtime of the draw engine, a
given Diagram Notation either is or isn’t the one that determines the look of a Diagram, thus the 1c multi-
plicity in this association.

Formalization

Diagram.Notation -> Diagram.Notation.Notation and Diagram.Type -> Diagram Notation.Notation and
Diagram Type.Name

The shared Diagram.Type value enforces the constraint that a Diagram’s notation must be supported by
its specified Diagram Type on R11.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 47

R32 / M:Mc-1

Diagram Type is supported by one or many Notation

Notation supports zero, one or many Diagram Type

The term ‘supports’ should not be confused with ‘compatible’.

Compatibility means that a Notation has been defined, in the real world, to be used with a certain kind of
diagram. Support means that the Flatland draw engine currently has the ability to draw a particular Dia-
gram Type in a specified Notation.

Here we assume that compatibility is understood when this relationship is populated and that a given
Notation is associated only with those Diagram Types where it makes sense to use it.

For example, the xUML notation is relevant to a wide variety of diagram types, but for now it may only
be supported for class diagrams and state machine diagrams. On the other hand, the Starr notation ap-
plies only to class diagrams.

So this relationship represents which Notations have been selected to support certain Diagram Types sup-
ported by the Flatland drawing tool.

So that they can be drawn, it is essential to ensure that at least one compatible Notation is supported for
each Diagram Type defined in the Flatland draw engine.

Formalization

Diagram Notation association class

R11 / 1:1c

Diagram Type specifies zero or one Diagram

Diagram is specified by exactly one Diagram Type

A Diagram Type embodies a diagramming standard and so constrains a Diagram to be drawn a certain
way, with certain types of Nodes and Connectors. The associated Notation further constrains the drawn
look of these elements.

A Connector Type, say a binary association which has meaning in a class diagram won’t be available in a
state machine diagram, for example.

Therefore, a Diagram is always specified by a single Diagram Type. A given Diagram Type may, or may
not be the Diagram Type employed to constrain the currently managed Diagram.

Formalization

Diagram.Type

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 48

Connector Subsystem

This subsystem describes the overall geometry for all connector types as well as the placement of symbols
and labels on connector stems.

Relationship numbering range: R50-R99

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 49

Class Descriptions

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 50

Anchored Stem
Not to be confused with the beer made in San Francisco, California. This is a Stem whose root end is de-
termined by a user specified Face Placement position on the Node Face.

Attributes

ID

Same asStem.ID

Connector

Same asStem.Connector

Node

Same as Stem.Node

Face

Same as Stem.Face

Anchor position

Relative distance from the center of the Node face.

Type: Face Placement -5..+5 where zero represents the center with + to the right or top and - to the left
or bottom, both away from the center

Identifiers

1. ID + Connector

2. Node + Face + Anchor position

To prevent any drawing overlap, two Stems may not anchor at the same Node face placement location.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 51

Annotation
The application of a Label to a Decorated Stem is an Annotation. Whereas a Decoration is drawn on a
Stem on one end or the other (root or vine), a Label is offset from the Stem so that it doesn’t overlap the
Stem line and relative to the Node face where the Stem is attached.

Attributes

Stem type

Same as Decorated Stem.Stem type

Semantic

Same as Decorated Stem.Semantic

Diagram type

Same as Decorated Stem.Diagram type

Notation

Same as Decorated Stem.Notation

Label

Same as Label.Name

Default stem side

By default the Rendered Label will appear on this side of the Stem axis in its vicinity. The user can over-
ride this default by specifying a Label flip. If the stem is drawn vertically near the Label, it will appear to
the right or left and if the stem is drawn horizontally the label will be above or below the stem. If a + val-
ue is specified, it means to the right or above since the x or y axis increases in that direction.

Type: [+ | -]

Vertical stem offset

If the Stem is drawn horizontally, this is the vertical space between the Label content rectangle and the
Stem.

Type: Distance

Horizontal stem offset

If the Stem is drawn vertically, this is the horizontal space between the Label content rectangle and the
Stem.

Type: Distance

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 52

Node face offset

The minimum (and default) distance between the Label content rectangle face parallel and closest to the
Node face at the root end of the Stem.

Type: Distance

Identifiers

 Stem type + Semantic + Diagram type + Notation

Consequence of a one-many association with id formed from reference to the many side.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 53

Connector
A Connector is a set of Stems connected by one or more lines to form a contiguous branch bringing one or
more Nodes into a drawn model level relationship. On a class diagram, for example, a Connector is
drawn for each binary association, generalization and association class relationship.

The Connector Type and its Stem Types determine how the Connector should be drawn.

Attributes

ID

Each Connector is numbered uniquely on its Diagram.

Type: Nominal

Diagram

Same as Diagram.ID

Connector type

Same as Connector type.Name

Diagram type

Same as Connector type.Diagram type

Identifiers

ID

Since only one Diagram is drawn at a time, there is only ever one instance of Diagram and so the Connec-
tor.ID suffices as a unique identifier.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 54

Connector Layout Specification
Defines a set of values that determine how a Connector is drawn.

Attributes

Name

In this version there is assumed to be only a single specification instance, so the name is here merely ex-
presses unique model identity.

Type: Name

Default stem positions

The number of equally spaced positions relative to a center position (included in the count) on a Node
face where a Stem can be attached. A value of one corresponds to a single connection point in the center
of a Node face. A value of three is a central connection point with one on either side, and so on. In prac-
tice, five is usually the right number, especially for a class or state diagram. But this could vary by dia-
gram and node type in the future.

Type: Odd Quantity :: Odd Integer > 0

Undecorated stem clearance

For a Stem that has no graphic decoration, such as an xUML class

binary association connection or a xUML subclass connection, this is the minimum distance from the
node face to either a bend or the opposing Stem end. It prevents a bend too close to a Node face or a con-
nection too close to another Node.

Type: Distance

Default unary branch length

The length of a unary geometry Stem from its Node face to

the beginning of any graphic decoration on the Vine (free) end of the Stem.

Type: Distance

Identifiers

1. Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 55

Connector Style
Connectors are ordinarily drawn as un-patterned lines. If the lines in a Connector will be drawn with
some other pattern, such as dashed, a Connector Style is defined. For example, the xUML dependency
connectors in a domain diagram (package dependency) are dashed.

Attributes

Connector type

Same as Connector Type.Name

Diagram type

Same as both Diagram Notation.Diagram type and Connector Type.Diagram type This enforces the con-
straint that a line style can be defined only for a Notation defined on the Connector Type.

Notation

Same as Diagram Notation.Notation

Stroke

The stroke style to use when drawing the Connector lines.

Type: Stroke Style

Identifiers

1. Connector type + Diagram type + Notation

From association multiplicity

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 56

Connector Type
One or more Nodes may be interrelated by some model level relationship such as a state transition, gen-
eralization, association, dependency and so forth. Each such relationship is drawn with one or more con-
necting lines and terminating symbols. A Connector Type defines the symbols, line connection geometry
and appearance of Connectors corresponding to some model level relationship.

Attributes

Name

The name of the model level relationship such as “Transition” or “Generalization”.

Type: Name

Diagram type

Same as Diagram Type.Name

Geometry

This describes the way that a Connector is drawn, pulling together all of its Stems. Many geometries are
possible, but only a handful are supported which should cover a wide range of diagramming possibili-
ties.

Unary – Relationship is rooted in some Node on one end and not connected on the other end. An initial
transition on a state machine diagram is one example where the target state is connected and the other
end of the transition just has a dark circle drawn at the other end (not a Node). It consists of a single Stem.

Binary – Relationship is drawn from one Node face position to another on the same or a different Node.
This could be a state transition with a from and to state or a binary association from one class to another
or a reflexive relationship starting and ending on the same class or state. It consists of two Stems, one at-
tached to each Node face position connected together with a line. A Tertiary geometry where a third Stem
connects a Node face to the binary connection is also possible in this geometry. It is considered an option-
al extension that can be defined on any Binary Connector.

Tree – Here one Node is a root connecting to two or more other Nodes. A Stem emanates from the root
Node and another type of Stem emanates from each of the subsidiary Nodes and one or more lines are
drawn to connect all the Stems. A class diagram generalization relationship is a typical case.

Type: Connection Geometry:: [unary | binary | tree]

Identifiers

Name + Diagram type

The Name is unique for each Diagram Type by policy. It seems likely that a name like “Transition, for ex-
ample, could be useful and defined differently across Diagram Types.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 57

Decorated Stem
A Stem Signification that is decorated somehow when it appears on a Diagram is considered a Decorated
Stem. Not all Stem Significations are decorated. The stem attaching a class diagram subclass is not notat-
ed in many class diagram notations.

See R55 description for more details.

Attributes

Stem type

Stem Signification.Stem type

Semantic

Stem Signification.Semantic

Diagram type

Type: Same asStem Signification.Diagram type and Diagram Notation.Diagram type

Notation

Diagram Notation.Notation

Stroke

This is the style used to draw the Stem where it isn’t occluded by any Symbols. In most cases it is proba-
bly just the default connector style. But in at least the case of an xUML- associative mult Decorated
Stem, a dashed line is typically drawn.

Type: Stroke Style

Identifiers

 Stem type + Semantic + Diagram type + Notation

Consequence of a many-many association with a shared Diagram Type.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 58

Floating Stem
The user specifies the Node face, but not the attachment position of a Floating Stem. The point on the
Node face where a Floating Stem attaches is determined by the position of an opposing Anchored Stem so
that a straight line between them is ensured.

Attributes

ID

Same asStem.ID

Connector

Same asStem.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 59

Free Stem
This type of Stem is used to create a Unary Connector. In fact, a Free Stem comprises the entire Unary
Connector.

Attributes

ID

Same asStem.ID

Connector

Same asStem.Connector

Identifiers

1. ID + Connector

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 60

Rendered Label
The application of a Label to a Decorated Stem is an Annotation. Whereas a Decoration is drawn on a
Stem on one end or the other (root or vine), a Label is offset from the Stem so that it doesn’t overlap the
Stem line and relative to the Node face where the Stem is attached.

Attributes

Stem

Same as Stem.ID

Connector

Same as Stem.Connector

Location

The location of the lower left corner in Diagram coordinates

Type: Position

Stem type

Same as both Annotation.Stem type and Stem.Stem type

Semantic

Same as both Annotation.Semantic and Stem.Semantic

Diagram type

Same as both Annotation.Diagram type and Stem.Diagram type

Notation

Same as both Annotation.Notation and Stem Type.Notation

Identifiers

1. Stem + Connector // Reference to many side

2. Location// Otherwise there could be an illegal overlap on the Diagram

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 61

Rendered Symbol
This is the Symbol as drawn on one end of a Stem on the Diagram.

Attributes

Stem

Same as Stem.ID

Connector

Same as Stem.Connector

Stem type

Same as both Stem End Decoration.Stem type and Stem.Stem type

Semantic

Same as both Stem End Decoration.Semantic and Stem.Semantic

Diagram type

Same as both Stem End Decoration.Diagram type and Stem.Diagram type

Notation

Same as both Stem End Decoration.Notation and Stem Type.Notation

End

Same as Stem End Decoration.End

Growth

The distance from the Stem End (vine or root) to the edge of the Symbol on the Stem.

Type: Distance

Identifiers

1. Stem type + Semantic + Diagram type + Notation + Stem + Connector + End// From multi-
plicity

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 62

Stem
This is a line drawn from a face on a Node outward. The terminator on the Node face is the root and the
terminator on the other side of the line is the vine. Both terminators are generally referred to as the Stem
ends.

A Stem may be decorated on either, both or neither end. A decoration consists of a graphic symbol such as
an arrow or a circle or a fixed text Label such as the UML 0..1 multiplicity text. A graphic symbol may
be combined with a text Decoration such as the Shlaer-Mellor open arrow head and c conditionality La-
bel combination.

Attributes

ID

Distinguishes one Stem from another within the same Connector.

Type: Nominal

Connector

Same asConnector.ID

Stem type

Same as Stem Type.Name

Diagram type

Same as Stem Type.Diagram type and Stem Notation.Diagram type

Notation

Same as Stem Notation.Notation constrained to mach /R53/Connector/R70/Diagram.Notation

Node

Same as Node.ID

Face

The side of the Node where the Stem is anchored.

Type: Node Face :: [Top | Bottom | Right | Left]

Root end

The point on the attached Node face where the Stem root is anchored.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 63

 
Type: Position

Vine end

The point where the Stem vine ends away from the attached Node. See figure in Root end description.

Type: Position

Identifiers

1. ID + Connector

Each Stem is uniquely numbered local to its Connector. The ID attribute is added since this is a -M associ-
ation class which means that multiple instances of Stem may correspond to the same Connector–Stem
Type pair.

2. ID + Connector + Node + Face

Superkey is provided so that Anchored Stem subclass can enforce a constraint on Stem placement to
avoid coincident Stems (see Anchored Stem).

3. Node + Face + Root end

Now two Stems may share the same Root end position on a Node Face. Same coincident Stem constraint
as supported by identifier #2 above, but enforced at the point when the coordinates are resolved.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 64

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 65

Stem End Decoration
Either the root or vine end of a Decorated Stem that features a Symbol when drawn.

See R58 description for more details.

Attributes

Stem type

Same as Decorated Stem.Stem type

Semantic

Same as Decorated Stem.Semantic

Diagram type

Same as Decorated Stem.Diagram type

Notation

Same as Decorated Stem.Notation

Symbol

Same as Symbol.Name

End

A Stem has two ends, root and vine. Either, both or neither end may be decorated.

Type: [root | vine]

Identifiers

 Stem type + Semantic + Diagram type + Notation + Symbol+ End

Consequence of a many-many association with the addition of an extra attribute End placement to distin-
guish the -M associative multiplicity.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 66

Stem Semantic
A Stem Semantic is some notation independent meaning that can be attributed to either end (root/vine)
of a Stem. When combined with a Diagram Notation, it may or may not be represented by some visual
representation such as an arrow or text.

A Stem always has meaning where it attaches to its Node since the connected Node is playing some sort
of role (target state, class multiplicity, subclass, etc).

 
In a given Diagram Notation, a Stem Semantic may or may not require any Symbols or Labels. The from
state semantic, for example, is just an undecorated line in xUML. Subclasses in xUML, Starr and Shlaer-
Mellor class diagrams are similarly undecorated.

 
In some cases, the Stem end away from the Node face (vine end) will also have significance. Usually this
is only the case when the Stem is not connected to any other Stem as it is in a Unary Connector.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 67

 
On a state machine diagram, for example, the line that touches a state Node (root end) is terminated with
an arrow to indicate a target state. The opposing end of the Stem (vine end) is undecorated unless the
state Node is an initial state. In this case there is a decoration on each end of the Stem.

In the case of a deletion transition on a state machine diagram, the root end of the Stem attached to the
Node is undecorated while its opposite vine end features a dot filled circle.

Attributes

Name

A name that reflects the meaning (semantic) of the Stem termination such as “target state” (goes to this
state) or “Mc mult” (many conditional multiplicity) or “final psuedo-state”. Care is taken to describe
meaning and not notation.

Type: Name

Identifiers

Name

Unique by policy

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 68

Stem Signification
This is a meaning that is relevant to a particular Stem Type. See the description of R62 for more details.

Attributes

Stem type

Type: Same as Stem Type.Name

Semantic

Type: Same as Stem Semantic.Name

Diagram type

Type: Same as both Stem Semantic.Diagram type and Stem Type.Diagram type. It establishes the con-
straint that a Stem Type may signify only a Stem Semantic that is defined on the same Diagram Type.

Identifiers

1. Stem type + Semantic + Diagram type

 Determined by the association multiplicity

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 69

Stem Type
Defines the characteristics of the portion of a Connector attached to a Node called a ‘Stem’.

In a binary association connector of a class model, for example, there are two class mult Stem Types
and one associative mult Stem Type defined. A transition Connector Type in a state machine dia-
gram defines two Stem Types, to state and from state.

Characteristics of primary interest are the semantics and notation and any other visual aspects of a Stem.

Attributes

Name

Describes the type of Node to which a Stem will be attached such as to state or association class.

Type: Name

Diagram type

Type: Same as Diagram Type.Name

Connector type

Type: Same as Connector Type.Name

Identifiers

1. Name + Diagram type

Stem Type Names are unique to each Diagram Type by policy

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 70

Unary Connector
This type of Connector is rooted on some Node face with a vine end that does not attach to anything. It is
therefore placed at some fixed distance away from the root end. The initial and final psuedo-transitions
on a UML state machine diagram are both examples of Unary Connectors.

Attributes

ID

Same as Connector.ID

Identifiers

ID

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 71

Relationship Descriptions

R50 / 1:Mc

Connector Type can be drawn in exactly one Diagram Type

Diagram Type can draw zero, one or many Connector Type

These are the types of Connectors that can be drawn on a given Diagram Type. On an xUML state ma-
chine diagram you can draw initial, final and normal transitions, for example, whereas on an xUML class
diagram you can draw generalizations, binary associations and association class relationships. More to
the point, you cannot draw a state transition on a class diagram. So this relationship constrains what can
be drawn on a given Diagram Type. (Though nothing prevents you from defining a new Diagram Type
where this would be possible!)

Most Diagram Types will have at least one kind of Connector Type, otherwise the associated diagrams
will just be a layout of unconnected Nodes. That said, there is no reason to require connections on any
given Diagram Type.

A Connector Type is defined exclusively to a Diagram Type. Thus, transition on a state machine diagram
may be defined differently than transition on some other kind of diagram.

Formalization

Reference in the Connector Type class

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 72

R51 / 1:Mc

Connector Type specifies zero, one or many Connector

Connector is specified by exactly one Connector Type

This is a standard specification relationship where the Connector Type defines various characteristics of a
Connector. Whereas a Connector Type defines properties of all Connectors, a Connector is a manifestation
of a Connector Type actually drawn on a Diagram.

When a Connector is created, it will need to grow a Stem for each connected Node and then draw a line
that ties the Stems all together.

Formalization

Reference in the Connector class

R52 / 1:Mc

Node is source of zero, one or many Stem

Stem is rooted in exactly one Node

The root end of Stem is always attached to a single Node. In fact, a Stem never attaches more than one
Node, though a Connector certainly can via multiple Stems. There is no such thing as a free floating Stem
unattached to any Node.

A Node, on the other hand, may or may not be part of a connection. A free floating unconnected Node
will not be attached to any Stem.

Formalization

Referential attribute in Stem class

R53 / M:Mc-M

Connector sprouts as one or many Stem Type

Stem Type sprouts in zero, one or many Connector

A Connector is drawn by creating all necessary Stems and then connecting them together with one or
more lines. The Connector Type.Geometry attribute determines how these Stems and connecting lines
will be drawn.

The same Stem Type may be used multiple times in a Connector. For example, an xUML class diagram bi-
nary association will need two class multiplicity Stems, one for each side of the Connector. A class dia-
gram generalization will need one subclass stem for each subclass Node. Each connection to a Node will
result in a new Stem.

If no Connectors have been drawn that use a particular Stem Type, that Stem Type will just be a definition
that hasn’t been used yet. In this case the Stem Type won’t refer to any Connectors.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 73

Formalization

Stem association class

R54 / 1c:Mc-1

Decorated Stem is annotated by zero or one Label

Label annotates zero, one or many Decorated Stem

A Decorated Stem may or may not have an associated text Label. In the Starr class diagram notation a
generalization arrow has no associated text. In xUML, however, the arrow is accompanied by the UML
tag { disjoint, complete }. There seems to be no reason to support multiple fixed text Labels as
none of the supported notations require them.

A given Label may be used with more than one Decorated Stem. The Shlaer-Mellor c label is associated
with any class multiplicity where zero is a possibility, for example.

A Label may be defined that is not used with any notation, though this is unlikely. It can be done in antici-
pation of supporting a future notation, however.

Formalization

Referential attributes in the Annotation class

R55 / Mc:Mc-1

Diagram Notation decorates zero, one or many Stem Signification

Stem Signification is decorated with zero, one or many Diagram Notation

Each Diagram Notation may specify a different decoration for a Stem Signification. The Starr class dia-
gram notation, for example assigns a double hollow arrow at the root end of a class mult - Mc mult
Stem Signification. xUML, on the other hand specifies only a text label of 0..*for that same Stem Signifi-
cation.

In fact, a Stem Signification may not be decorated at all in a given Diagram Notation. The from state
– source state Stem Signification on a state machine diagram, for example, is not decorated in xUML
while the to state - target state is.

A given Diagram Notation only specifies decoration for those Stem Significations relevant to the associat-
ed Diagram Type. Thus the, Starr - class Diagram Notation does not specify decoration on any Stem
Significations on a state machine diagram.

Formalization

Stem Decoration association class

R56 / 1:Mc

Stem indicates one Stem Signification

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 74

Stem Signification is indicated on zero, one or many Stem

When a Stem is drawn it binds to one of the Stem Significations that its Stem Type may signify. A Stem
whose type is class mult (class multiplicity) must indicate one of the available multiplicity significa-
tions, namely: 1, M, 1c or Mc. The selection will be user specified. For many Stem Types there will be only
one Stem Signification to choose from so the indication is automatic.

Formalization

Referential attributes in the Stem class

R57 / 1:Mc

Diagram Type is context for zero, one or many Stem Semantic

Stem Semantic has meaning on exactly one Diagram

Consider a Stem Semantic such as class mult (class multiplicity) or maybe another target state.
Each Stem Semantic defines the meaning associated with the point where a Connector attaches to some
Node. The class mult Stem Semantic only makes sense on a class diagram while the target state
Stem Semantic is intended for state machine diagrams.

In fact, each Stem Semantic is specific to the context defined by a type of Diagram. In other words, each
Diagram Type establishes a set of relevant Stem Semantics that make sense only on that Diagram Type.

True, you may create a Diagram Type with semantics similar or almost identical to another Diagram
Type. Say you define a petri net Diagram Type which also specifies target state. We still want to
keep the semantics custom specified for each Diagram Type so that we don’t elide subtle distinctions
among them. No problem since the name of a Stem Semantic is local to its own Diagram Type. Thus a
petri net-target state is distinct from a state machine-target state. The semantics may
be equivalent or slightly different, but they are two distinct semantics as far as Flatland is concerned.

If a Diagram Type does not specify any Stem Semantics, this means that the Diagram Type does not sup-
port Connectors of any type. Perfectly legal, but of questionable value. Flatland will draw them at any
rate!

Formalization

Reference in Stem Semantic class

R58 / Mc:Mc-M

Decorated Stem is terminated by zero, one or many Symbol

Symbol terminates zero, one or many Decorated Stem End

Each end of a Decorated Stem may or may not be adorned by a single Symbol. Keep in mind that a Sym-
bol can be compound and built up from many graphical elements. So each terminal can be as ornate as
necessary. This effectively means that at most two Symbols can be associated with a given Decorated
Stem. See note in formalization section below to see how the two-ness constraint is addressed.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 75

It is also possible for the same Symbol to be used at both ends of a Decorated Stem. Consequently this re-
lationship is many-associative. (A given pairing of Decorated Stem and Symbol can result in two associa-
tion class instances, differentiated by the End component of the class identifier).

If neither end of a Decorated Stem features a Symbol, there may be a Label associated with the Stem. If
there is no Label either, perhaps the Stem is notated by changing its line stroke pattern. For example, in
xUML an associative 1 multiplicity on a class diagram is shown by drawing the stem as a dashed pattern
with no other label or symbol.

A Decorated Stem that does not have a special line pattern, Symbol or Label is not decorated and should
not be declared as such. No harm can come from falsely declaring a Decorated Stem with no Decoration,
it will just be rendered as a linear Stem, but it is bad practice.

A given Symbol can be used in as many Decorated Stems as you like. A solid arrow for example might
be used both in a state transition and in a domain diagram dependency. If a Symbol is not used at all,
there is no harm as it may become useful in a Diagram Notation defined later.

Formalization

Referential attributes in the Stem End Decoration association class along with enforcement of the two-
ness constraint. This is accomplished by integrating the End attribute into the Decoration identifier. See
the class description for more details.

R59 / 1:M

Connector Type connects nodes with one or many Stem Type

Stem Type defines node connections for one or many Connector Type

We define the structure of a Connector by describing it as a set of Stems of various types that are lashed
together with connecting lines. Each Stem Type establishes the meaning of the interface between a Con-
nector line and the Node where it attaches. For each type of Connector, certain types of Stems are rele-
vant.

For example, a generalization Connector Type defined on a class diagram requires only two types of
Stems, a superclass and a subclass Stem Type to designate the meaning of each connection point. Further-
more, the subclass Stem Type has relevance only to a class diagram generalization Connector Type.

A Connector Type without any Stem Types makes no sense because it couldn’t connect to any Nodes.
And a Stem Type only has utility as part of some Connector Type.

Formalization

Stem Type Usage association class with shared Diagram type

R60 / Mc:Mc-1

Connector Type lines are styled in zero, one or many Diagram Notation

 Diagram Notation styles lines of zero, one or many Connector Type

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 76

A Connector Style is defined only for those Connector Types that are not simple solid black lines. So most
Connector Types do not need any special style in a given Diagram Notation.

A given Diagram Notation may or may not set styles for Connector Types.

Formalization

References in the Connector Style association class

R61 / Mc:Mc-1

Stem End Decoration is rendered near zero, one or many Stem

Stem renders zero, one or many Stem End Decoration

When a Stem is drawn, any corresponding Symbols are positioned on one or both Stem end axes and ren-
dered as specified by the Stem End Decoration. (There are at most two Symbols placed on a given Stem,
one at each end).

Formalization

Referential attributes in the Rendered Symbol class

R62 / M:M-1

Stem Type may signify one or many Stem Semantic

 Stem Semantic may be signified by one or many Stem Type

A Stem Semantic refines the general meaning specified by a Stem Type. A class mult Stem Type, for
example, indicates the dual concepts of multiplicity and conditionality. A variety of Stem Semantics are
available that each establish a precise pairing of multiplicity and conditionality 1 mult (unconditional
1), Mc mult (conditional many), and so forth. When a Stem is created, it must bind to one of the Stem Se-
mantics available to the Stem’s Stem Type.

A given Stem Semantic may be relevant to more than one Stem Type. The unconditional multiplicity 1
mult and M mult Stem Semantics, for example, also apply to the associative mult Stem Type that
defines the Stem on a class diagram’s association class.

A Stem Semantic is not useful if it has no relevance to any Stem Type, so it must be relevant to at least
one.

Many Stem Types have meanings that cannot be further modified and therefore may signify only one
available Stem Semantic. A to state Stem Type can only mean target state, for example. But every
Stem Type does not have a specific meaning unless it can signify at least one Stem Semantic.

Formalization

References in Stem Semantic Option association class

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 77

R63 / 1:Mc

Diagram shows zero, one or many Connector

 Connector appears on one Diagram

A Connector is rendered on the one and only Diagram. And it is certainly possible to create a Diagram
with Nodes and no Connectors.

Formalization

Reference in Connector class

R65 / Generalization

Anchored Stem is an Anchored Binary Stem, Tertiary Stem, Anchored Tree Stem or Free Stem

Each of these subclasses of Anchored Stem are Stems that attached at a user specified anchor position on a
Node face.

Each Connector subclass determines the quantity and combination of various types of Stems. A Tree Con-
nector, for example, consists of one Trunk Stem and one or more Leaf Stems. A Unary Connector consists
of a single Free Stem.

See each relevant connector subsystem to see how each subclass of Anchored Stems are applied.

Formalization

ID + Connector referenced from each subclass

R66 / Generalization

Floating Stem is a Floating Binary Stem or Floating Leaf Stem

Floating Stems have utility in both the Binary and Tree Connector subsystems. Though they play different
roles in each, a Floating Stem always derives its axis from a coincident Anchored Stem guide.

Formalization

References in the subclasses

R67 / Generalization

Stem is a Floating Stem or Anchored Stem

An Anchored Stem is positioned by the user with an Anchor position. This position is later resolved to
diagram coordinates. Anchored Stems are used in all Connector Types.

A Floating Stem is lined up with an opposing Anchored Stem so that a straight line is formed. The pairing
of Anchored and Floating Stems is useful in both Binary and Tree Connectors.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 78

With a Straight Binary Connector, there is no need for two user specified anchor positions. Since the Con-
nector is a straight line, only one anchor position is necessary. In fact, there should only be one to ensure
that we end up with a non-diagonal line when the coordinates are resolved.

The non-anchored Stem in a Straight Binary Connector is understood to float so that it is level with the
opposing Anchored Stem. The position of a Floating Binary Stem is computed for a horizontal line by
sharing the x coordinate of the opposing Anchored Stem. This is the y coordinate if the line is vertical.

The same situation can occur in a Tree Connector where one Leaf Stem is anchored while another is lined
up with it straight across.

Formalization

ID + Connector in either subclass or ID + Connector + Stem type + Node + Face + Anchor position in
the Anchored Stem subclass. Two different ID’s are referenced since the Anchored Stem is enforcing a
constraint preventing two Anchored Stems from being placed in the same location on the same Node
face.

R68 / 1c:Mc-1

Annotation is rendered near zero, one or many Stem

Stem renders zero or one Annotatio

When a Stem is drawn, any corresponding Label is positioned on the Diagram and rendered as specified
by the Annotation.

Formalization

Referential attributes in the Rendered Label class

R69 / Generalization

Connector is a Hierarchy, Unary or Binary Connector

Different rules and constraints may apply to each geometry so they are subclassed. Primarily an unbent
Binary Connector has a special relationship to a Floating Stem.

The type is determined by the Connector Type.Geometry attribute where both binary and tertiary
geometries are folded into the Binary Connector and distinguished by the Binary Connector.Tertiary
stem boolean attribute.

Formalization

The identifier in each of the subclasses referring to the superclass identifier

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 79

Decorator Subsystem

This subsystem describes the various adornments that can be placed on or in the vicinity of a connector
stem. These include text labels and graphic symbol geometry.

Relationship numbering range: R100-R149

(Conflict with Binary Connector! Renumber as R200-R249 in next version)

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 80

Class Descriptions

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 81

Arrow Symbol
Describes a triangular geometry that can be used to define an arrow head.

Attributes

Name

Same as Shape Element.Name

Base

The width of the triangle base

Type: Distance

Height

The height of the triangle

Type: Distance

Stroke

The width and pattern of the border around the triangle

Type: Stroke Style

Fill

Defines the overall look of the Arrowhead as either a hollow arrow (border as a closed triangle), solid ar-
row (solid fill triangle) or open (v-shape with no base line drawn)

Type: Hollow_Solid_Open :: [hollow | solid | open]

Identifiers

 Name

Unique across all Shape ELements

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 82

Circle Symbol
Describes a circular geometry. These appear on the initial and final transitions on state diagrams, for ex-
ample.

Attributes

Name

Same as Simple Symbol.Name

Radius

The radius of the circle

Type: Distance

Solid

Whether or not the circle is filled

Type: Boolean

Identifiers

1. Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 83

Compound Symbol
As the name suggests, a Compound Symbol is built up from multiple Simple Symbols stacked together in
some arrangement.

Attributes

Name

Same as Symbol.Name

Stroke

The border line width, pattern and color

Type: Stroke style

Identifiers

1. Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 84

Cross Symbol
Describes a line drawn at an angle to the Stem. These appear on Shlaer-Mellor superclass stems, for exam-
ple.

Attributes

Name

Same as Simple Symbol.Name

Width

The length of the crossing line segment

Type: Distance

Angle

Angle relative to the Stem axis. 90 degrees yields a cross normal to the Stem.

Type: Degrees

Identifiers

1. Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 85

Decoration
Any notational element, graphical or textual that adorns the vicinity of a Stem is a Decoration.

Attributes

Name

In the case of Annotation the name is the same text that is drawn for the notation. So the name could be:
0..1 or { disjoint, complete }

For a Symbol, the name is purely descriptive such as double solid arrow or small solid circle.

It is important not to use a model semantic name such as initial psuedo state since the symbol might be
used with other notations with other meanings. So it is safest to stick to a description of appearance.

Type: Name

Size

When drawn, this is the total rectangular area consumed. This may be useful for detecting and avoiding
overlapping drawn elements.

Type: Rect Size

Identifiers

1. Name

Decorations are named uniquely by policy.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 86

Label
A fixed text annotation drawn next to a Stem. On a class diagram, these could be standard UML labels
such as 1..* or a tag like{ disjoint, complete }. These are not to be confused with variable text
such as the name of an event on a state diagram or a relationship such as R33 on a class diagram.

Attributes

Name

Same as Decoration.Name. Since Labels are text, it is convenient to simply make the label content the
name of the Label. For example, 0..1 serves as both the name and rendered content of a UML class dia-
gram multiplicity label.

Identifiers

1. Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 87

Simple Symbol
A Simple Symbol is a graphical element that may form all or part of an entire Symbol. It is “simple” in the
sense that it is an atomic geometric element.

Attributes

Name

Same as Symbol.Name

Stroke

The border line width, pattern and color

Type: Stroke style

Terminal offset

Distance from either end (root/vine) of a Stem. An arrow symbol can be drawn so that it touches the Stem
end (0 distance) from a Node face in the case of a root Stem end. Or a cross used in a Shlaer-Mellor super-
class might be drawn at some distance from the vine end.

This value is distinct from the Stack Placement.Offset which defines an offset between Simple Symbols
that are stacked.

Identifiers

1. Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 88

Symbol
A geometric shape such as an arrow drawn at either end of a Stem is a Symbol.

Attributes

Name

Same as Decoration.Name. The name can refer to the visual appearance of the Symbol (wide hollow ar-
row) or to its general usage (gen arrow). Care should be taken to avoid model semantic names such as ‘1
multiplicity’ since the same symbol might be useful for a variety of meanings in different contexts or Dia-
gram Types. A solid arrow, for example, could be used to indicate a method invocation, a state transition
or a unit of multiplicity.

Identifiers

1. Name

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 89

Symbol Stack Placement
This class represents both the inclusion and arrangement of a Simple Symbol in a Compound Symbol.

In the case of a double headed arrow, for example, one Arrow Symbol is drawn at the head of a Stem end
and the other behind it. Ordering progresses either along the stem (adjacency), or upward toward the
viewer on the z axis (layering).

In the case of an xUML final psuedo state, a solid arrow is drawn at the tip of the Stem end with a large
circle after the tip. Then a small solid circle is drawn on top of a large unfilled circle.

Attributes

Position

The order proceeding from the Stem end outward and upward by layer.

Type: Ordinal

Compound symbol

Same as Compound symbol.Name

Simple symbol

Same as Simple Symbol.Name

Arrange

Whether the next Simple Symbol in the Position sequence will be layered or placed adjacent to this Sim-
ple Symbol. If this is the final Simple Symbol in the position sequence, it is simply marked as the last one.

Type: [adjacent | layer | last]

Offset

This is the distance in the opposite direction of the Stem end relative to the next Simple Symbol, if any, in
the position order. For example, one Arrow might be spaced at a certain distance from the adjacent Ar-
row. Or a circle might be off center when layered on top of another circle. A double hatched cross would
have a certain amount of space between the two cross line segments along the Stem axis.

Type: Distance

Identifiers

1. Position + Compound symbol

Each position within a Compound Symbol is unique. We define positions 1 and 2 within the ‘double solid
arrow’ Compound Symbol, for example, where each simple ‘solid arrow’ is rendered.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 90

Relationship Descriptions

R100 / Generalization

Simple Symbol is an Arrow, Circle or Cross Symbol

All of the Stem symbols in supported notations can be created by an arrangement of these Simple Symbol
subclasses. Any notation that requires a stem end shape that cannot be created with these elements, will
need to extend this generalization (or some subclass) to include the desired element geometry.

Formalization

Name referential attribute in each subclass

R101 / M:Mc-M

Compound Symbol stacks one or many Simple Symbol

Simple Symbol is stacked in zero, one or many Compound Symbol

A Simple Symbol is drawn relative to another (or the same) Simple Symbol to form all or part of a Com-
pound Symbol. For example, in a double arrowhead configuration, one arrow is drawn adjacent to the
other on a Decorated Stem End. Or, in the case of an xUML final pseudo state, a small solid circle is
drawn on top of a larger hollow circle.

The same Simple Symbol can be useful in multiple Compound Symbols. A solid arrow, for example, is
useful in both a single and double arrow configuration.

Copyright (c) 2020 by Leon Starr at Model Integration, LLC/ www.modelint.com / 91

The same Simple Symbol may be used more than once in a Compound Symbol where each usage corre-
sponds to a unique Stack Placement. For example, a solid arrow appears in both the first and second
Stack Placement Positions of a double solid arrowhead.

Without any Simple Symbol elements, there would be nothing to draw, so a Compound Symbol requires
at least one with at least two Stack Placement positions.

Formalization

Stack Placement association class

R102 / Ordinal

Stack Placement draw order

In a Compound Symbol, each constituent Simple Symbol is drawn in a specific relative location. This or-
der corresponds to a progression along the stem axis or a z-axis toward the viewer.

See the Stack Placement.Arrange attribute description for an explanation of which axis applies for a giv-
en stacking direction.

Formalization

Position is ordered sequentially using an Ordinal value within each Compound Shape

R103 / Generalization

Symbol is a Compound Symbol or Simple Symbol

A Symbol is either made up of an arrangement of one or more Simple Symbols in various positions or it is
just a single Simple Symbol in one position.

Formalization

Name referential attribute in each subclass

R104 / Generalization

Decoration is a Label or Symbol

In all cases, a Symbol is just a name associated with an icon that can be drawn on the end of a Stem.

There are only two ways to designate the meaning of a Stem end. In some notations, such as Starr class
diagramming, hollow and solid arrows indicate multiplicity and conditionality of class model associa-
tions. In xUML notation, text labels are used instead. With Shlaer-Mellor notation, arrows are used to in-
dicate multiplicity while a text c symbol (conditional) indicates when zero is an option.

Formalization

Name referential attribute in each subclass

