
An extension to DBAPI 2.0
for easier SQL queries

Martin Blais

EWT LLC / Madison Tyler

http://furius.ca/antiorm/



Introduction

connection = dbapi.connect(...)
cursor = connection.cursor()

cursor.execute("""

SELECT * FROM Users WHERE username = ’raymond’

""")



Escaping Values

name = ’raymond’
cursor.execute("""

SELECT * FROM Users WHERE username = %s

""", (name,))

A common mistake is to forget to call with a tuple or a dict:

cursor.execute("""

SELECT * FROM Users WHERE username = %s

""", name) <--- this fails



Escaping Values

name = ’raymond’
cursor.execute("""

SELECT * FROM Users WHERE username = %s

""", (name,))

A common mistake is to forget to call with a tuple or a dict:

cursor.execute("""

SELECT * FROM Users WHERE username = %s

""", name) <--- this fails



String Interpolation Pitfalls

Another mistake is to use string interpolation:

cursor.execute("""

SELECT * FROM Users WHERE username = %s

""" % name)

ERROR!

The resulting query is missing the quotes around the values:

SELECT * FROM Users WHERE username = raymond



String Interpolation Pitfalls

And you cannot fix this by hand:

cursor.execute("""

SELECT * FROM Users WHERE username = ’%s’

""" % name)

ERROR!

The resulting query is missing the quotes around the values:

SELECT * FROM Users WHERE username = ’ray’s cat’



String Interpolation Pitfalls

Using repr() will not help either:

cursor.execute("""

SELECT * FROM Users WHERE username = %s

""" % repr(name))

ERROR!

Escaping syntax is database-specific:

SELECT * FROM Users WHERE username = ’ray’’s cat’



DBAPI Must Escape Values

You absolutely must let DBAPI deal with the escaping of values.

The escaping syntax for
• string constants *
• timestamps
• dates
• blobs
• (other SQL data types?)

depends on the database backend.



Non-escaped Substitutions

What if you need to format non-escaped variables?

SELECT email, phone FROM Users
WHERE username = ’raymond’

cursor.execute("""

SELECT %s, %s FROM Users WHERE username = %s

""", (col1, col2, name)) <--- will not work



Non-escaped Substitutions

What if you need to format non-escaped variables?

SELECT email, phone FROM Users
WHERE username = ’raymond’

cursor.execute("""

SELECT %s, %s FROM Users WHERE username = %%s

""" % (col1, col2), (name,)) <-- two steps!

• Because of the string interpolation step, you have to use
%%s for the escaped values

• Specifying the parameters in the right order becomes tricky



Lists and format-specifiers

Sometimes you want to render variable-length lists:

cursor.execute("""

INSERT INTO Users (%s, %s)
VALUES (%%s, %%s)

""" % ("email", "phone"), values)

cursor.execute("""

INSERT INTO Users (%s, %s, %s)
VALUES (%%s, %%s, %%s)

""" % ("email", "phone", "address"), values)



Lists and format-specifiers

Sometimes you want to render variable-length lists:

cursor.execute("""

INSERT INTO Users (%s, %s)
VALUES (%%s, %%s)

""" % ("email", "phone"), values)

cursor.execute("""

INSERT INTO Users (%s, %s, %s)
VALUES (%%s, %%s, %%s)

""" % ("email", "phone", "address"), values)



Lists and format-specifiers

cursor.execute("""

INSERT INTO Users (%s)
VALUES (%s)

""" % (’,’.join(columns),
’,’.join(["%%s"] * 2)),

values)



And in the real world it gets uglier. . .

When you write real-world queries (instead of Mickey-mouse
example queries), it gets even messier:

cursor.execute("""
SELECT %s FROM %s
WHERE %s > %%s
AND %s < %%s

LIMIT %s %s
""" % (’,’.join(columns), "Users",

"age", "age", 10, "DESC"),
(18, 60))

DBAPI’s Cursor.execute() method interface is inconvenient
to use!



My Proposed Solution: dbapiext

• Provide a very simple extension that gets rid of the pitfalls
of execute()

• Make it much easier to write queries
• A single pure Python module, no changes to your DBAPI
• Support a number of DBAPI implementations
• No external dependencies

DBAPI
(MySQLdb, psycopg2, ...)

dbapiext

Your code



New format specifier (%X)

We provide a replacement for execute(), and we introduce a
new format specifier for escaped arguments: %X (capital X)

cursor.execute_f(
"INSERT INTO Users (username) VALUES (%X)",
name)

You can now mix vanilla and escaped values in the arguments,
and you are not forced to use a tuple anymore:

cursor.execute_f(
"INSERT INTO Users (%s) VALUES (%X)",
"username", name)



Lists are Recognized and Understood

Lists are automatically joined with commas:

columns = ["username", "email", "age"]
cursor.execute_f("""

INSERT INTO Users (%s)
VALUES (...)

""", columns, ...)

INSERT INTO Users (username, email, age)
VALUES (...)



Lists are Recognized and Understood

This also works for escaped arguments:

values = ["Warren", "w@b.com", 76]
cursor.execute_f("""

INSERT INTO Users (%s)
VALUES (%X)

""", columns, values)

INSERT INTO Users (username, email, age)
VALUES (’Warren’, ’w@b.com’, 76)

• Values are escaped individually and then comma-joined



Dictionaries are Recognized and Understood
Dictionaries are rendered as required for UPDATE statements:

• Comma-separated <name> = <value> pairs
• Values are escaped automatically

UPDATE Lang
SET country = ’brazil’, language = ’portuguese’
WHERE id = 3

userid = 3
values = {"country": "brazil",

"language": "portuguese"}
cursor.execute_f("""

UPDATE Lang SET %X WHERE id = %X

""", values, userid)

(Suggestion by D. Mertz)



Keywords Arguments are Supported

cursor.execute_f("""

SELECT %(table)s FROM %s
WHERE id = %(id)X

""", column_names, table=tablename, id=42)

• Provide a useful way to recycle arguments
(i.e. a table or column name that occurs multiple times)

• Positional and keyword arguments can be used
simultaneously



Performance and Remarks

• The extension massages your query in a form that can be
digested by DBAPI’s Cursor.execute()

• We cache as much of the preprocessing as possible
(similar to re, struct)

• You can cache your queries at load time with qcompile().

• I lied in my examples, you have to use it like this (if
monkey-patching Cursor fails):

execute_f(cursor, """
...



Performance and Remarks

• The extension massages your query in a form that can be
digested by DBAPI’s Cursor.execute()

• We cache as much of the preprocessing as possible
(similar to re, struct)

• You can cache your queries at load time with qcompile().

• I lied in my examples, you have to use it like this (if
monkey-patching Cursor fails):

execute_f(cursor, """
...



Final Thoughts

Ideally, we would want to automatically parse the SQL queries
and determine which arguments should be quoted

• A lot more work
• Would have to be done at load time for performance

reasons



Questions

dbapiext is part of a
package named antiorm

antiorm homepage:
http://furius.ca/antiorm/

Questions?


