MonotonicDimension¶
Generalized Class¶
DimensionDescription¶
A monotonic dimension is a quantitative dimension where the coordinates along the dimension are explicitly defined and, unlike a LinearDimension, may not be derivable from the ordered array of indexes along the dimension. Let \(\mathbf{A}_k\) be an ordered set of strictly ascending or descending physical quantities and \(o_k\), the origin offset along the \(k^{th}\) dimension, then the coordinates, \(\mathbf{X}_k\), and the absolute coordinates, \(\mathbf{X}_k^\mathrm{abs}\), along a monotonic dimension follow
where \(\mathbf{1}\) is an array of ones.
Attributes¶
Name |
Type |
Description |
---|---|---|
coordinates |
[ScalarQuantity, ScalarQuantity, … ] |
An array of strictly ascending or descending ScalarQuantity. |
origin_offset |
The origin offset, \(o_k\), of the dimension. |
|
quantity_name |
String |
The quantity name associated with the physical quantities describing the dimension. |
period |
The period of the dimension. |
|
reciprocal |
ReciprocalDimension |
The ReciprocalDimension object. |
Example¶
The following MonotonicDimension object,
{
"type": "monotonic",
"coordinates": ["1 µs", "10 µs", "100 µs", "1 ms", "10 ms", "100 ms", "1 s", "10 s"]
}
will generate a dimension where coordinates \(\mathbf{X}_k\) are
[1 µs, 10 µs, 100 µs, 1 ms, 10 ms, 100 ms, 1 s, 10 s]