Transmission Electron Microscopy (TEM) dataset

The following TEM dataset is a section of an early larval brain of Drosophila melanogaster used in the analysis of neuronal microcircuitry. The dataset was obtained from the TrakEM2 tutorial and subsequently converted to the CSD model file-format.

Let’s import the CSD model data-file and look at its data structure.

>>> import csdmpy as cp
>>> import matplotlib.pyplot as plt

>>> filename = 'Test Files/TEM/TEM.csdf'
>>> TEM = cp.load(filename)
>>> print(TEM.data_structure)
{
  "csdm": {
    "version": "1.0",
    "read_only": true,
    "timestamp": "2016-03-12T16:41:00Z",
    "description": "TEM image of the early larval brain of Drosophila melanogaster used in the analysis of neuronal microcircuitry.",
    "dimensions": [
      {
        "type": "linear",
        "count": 512,
        "increment": "4.0 nm",
        "quantity_name": "length",
        "reciprocal": {
          "quantity_name": "wavenumber"
        }
      },
      {
        "type": "linear",
        "count": 512,
        "increment": "4.0 nm",
        "quantity_name": "length",
        "reciprocal": {
          "quantity_name": "wavenumber"
        }
      }
    ],
    "dependent_variables": [
      {
        "type": "internal",
        "numeric_type": "uint8",
        "quantity_type": "scalar",
        "components": [
          [
            "126, 107, ..., 164, 171"
          ]
        ]
      }
    ]
  }
}

This dataset contains two uniformly spaced linear dimensions and one single-component dependent variable. The tuples of the dimension and the dependent variable instances from this example are

>>> x = TEM.dimensions
>>> y = TEM.dependent_variables

with the respective coordinates (viewed only for the first ten coordinates),

>>> print(x[0].coordinates[:10])
[ 0.  4.  8. 12. 16. 20. 24. 28. 32. 36.] nm

>>> print(x[1].coordinates[:10])
[ 0.  4.  8. 12. 16. 20. 24. 28. 32. 36.] nm

For convenience, let’s convert the coordinate from nm to µm using the to() method of the respective Dimension instance,

>>> x[0].to('µm')
>>> x[1].to('µm')

and plot the data.

>>> def plot_image():
...     plt.figure(figsize=(4,3))
...
...     # Set the extents of the image plot.
...     extent = [x[0].coordinates[0].value, x[0].coordinates[-1].value,
...               x[1].coordinates[0].value, x[1].coordinates[-1].value]
...
...     # Add the image plot.
...     im = plt.imshow(y[0].components[0], origin='lower', extent=extent, cmap='gray')
...
...     # Add a colorbar.
...     cbar = plt.gca().figure.colorbar(im)
...     cbar.ax.set_ylabel(y[0].axis_label[0])
...
...     # Set up the axes label and figure title.
...     plt.xlabel(x[0].axis_label)
...     plt.ylabel(x[1].axis_label)
...     plt.title(y[0].name)
...
...     # Set up the grid lines.
...     plt.grid(color='k', linestyle='--', linewidth=0.5)
...
...     plt.tight_layout(pad=0, w_pad=0, h_pad=0)
...     plt.show()
>>> plot_image()
../../_images/TEM.csdf.png