Nuclear Magnetic Resonance (NMR) dataset¶
The following example is a \(^{29}\mathrm{Si}\) NMR time domain saturation recovery measurement of a highly siliceous zeolite ZSM-12. Usually, the spin recovery measurements are acquired over a rectilinear grid where measurements along one of the dimensions are non-uniform or span several orders of magnitude. In this example, we show the use of monotonic dimensions for describing such datasets.
Let’s load the file.
>>> import csdmpy as cp
>>> filename = 'Test Files/NMR/satrec/satRec.csdf'
>>> NMR_2D_data = cp.load(filename)
The tuples of the dimension and dependent variable instances from the
NMR_2D_data
instance are
>>> x = NMR_2D_data.dimensions
>>> y = NMR_2D_data.dependent_variables
respectively. There are two dimension instances in this example with respective dimension data structures as
>>> print(x[0].data_structure)
{
"type": "linear",
"description": "A full echo echo acquisition along the t2 dimension using a Hahn echo.",
"count": 1024,
"increment": "80.0 µs",
"coordinates_offset": "-41.04 ms",
"quantity_name": "time",
"label": "t2",
"reciprocal": {
"coordinates_offset": "-8766.0626 Hz",
"origin_offset": "79578822.26200001 Hz",
"quantity_name": "frequency",
"label": "29Si frequency shift"
}
}
and
>>> print(x[1].data_structure)
{
"type": "monotonic",
"coordinates": [
"1 s",
"5 s",
"10 s",
"20 s",
"40 s",
"80 s"
],
"quantity_name": "time",
"label": "t1",
"reciprocal": {
"quantity_name": "frequency"
}
}
respectively. The first dimension is uniformly spaced, as indicated by the linear subtype, while the second dimension is non-linear and monotonic sampled. The coordinates along the respective dimensions are
>>> x0 = x[0].coordinates
>>> print(x0)
[-41040. -40960. -40880. ... 40640. 40720. 40800.] us
>>> x1 = x[1].coordinates
>>> print(x1)
[ 1. 5. 10. 20. 40. 80.] s
Notice, the unit of x0
is in microseconds. It might be convenient to
convert the unit to milliseconds. To do so, use the
to()
method of the respective
Dimension instance as follows
>>> x[0].to('ms')
>>> x0 = x[0].coordinates
>>> print(x0)
[-41.04 -40.96 -40.88 ... 40.64 40.72 40.8 ] ms
As before, the components of the dependent variable are accessed using the
components
attribute.
>>> y00 = y[0].components[0]
>>> print(y00)
[[ 182.26953 +136.4989j -530.45996 +145.59097j
-648.56055 +296.6433j ... -1034.6655 +123.473114j
137.29883 +144.3381j -151.75049 -18.316727j]
[ -80.799805 +138.63733j -330.4419 -131.69786j
-356.23877 +463.6406j ... 854.9712 +373.60577j
432.64648 +525.6024j -35.51758 -141.60239j ]
[ -215.80469 +163.03308j -330.6836 -308.8578j
-1313.7393 -1557.9144j ... -979.9209 +271.06757j
-667.6211 +61.262817j 150.32227 -41.081024j]
[ 6.2421875 -163.0319j -654.5654 +372.27518j
-1209.3877 -217.7103j ... 202.91211 +910.0657j
-163.88281 +343.41882j 27.354492 +21.467224j]
[ -86.03516 -129.40945j -461.1875 -74.49284j
68.13672 -641.11975j ... 803.3242 -423.6355j
-267.3672 -226.39514j 77.77344 +80.2041j ]
[ -436.0664 -131.52814j 216.32812 +441.56696j
-577.0254 -658.17645j ... -1780.457 +454.20862j
-1765.7441 -375.72888j 407.0703 +162.24716j ]]
Visualizing the dataset
Tip
Plotting an intensity data with cross-sections
More often than not, the code required to plot the data become exhaustive. Here is one such example.
>>> import matplotlib.pyplot as plt
>>> from matplotlib.image import NonUniformImage
>>> import numpy as np
>>> def plot_nmr_2d():
... """
... Set the extents of the image.
... To set the independent variable coordinates at the center of each image
... pixel, subtract and add half the sampling interval from the first
... and the last coordinate, respectively, of the linearly sampled
... dimension, i.e., x0.
... """
... si=x[0].increment
... extent = ((x0[0]-0.5*si).to('ms').value,
... (x0[-1]+0.5*si).to('ms').value,
... x1[0].value,
... x1[-1].value)
...
... """
... Create a 2x2 subplot grid. The subplot at the lower-left corner is for
... the image intensity plot. The subplots at the top-left and bottom-right
... are for the data slice at the horizontal and vertical cross-section,
... respectively. The subplot at the top-right corner is empty.
... """
... fig, axi = plt.subplots(2,2, figsize=(4,3),
... gridspec_kw = {'width_ratios':[4,1],
... 'height_ratios':[1,4]})
...
... """
... The image subplot quadrant.
... Add an image over a rectilinear grid. Here, only the real part of the
... data values is used.
... """
... ax = axi[1,0]
... im = NonUniformImage(ax, interpolation='nearest',
... extent=extent, cmap='bone_r')
... im.set_data(x0, x1, y00.real/y00.real.max())
...
... """Add the colorbar and the component label."""
... cbar = fig.colorbar(im)
... cbar.ax.set_ylabel(y[0].axis_label[0])
...
... """Set up the grid lines."""
... ax.images.append(im)
... for i in range(x1.size):
... ax.plot(x0, np.ones(x0.size)*x1[i], 'k--', linewidth=0.5)
... ax.grid(axis='x', color='k', linestyle='--', linewidth=0.5, which='both')
...
... """Setup the axes, add the axes labels, and the figure title."""
... ax.set_xlim([extent[0], extent[1]])
... ax.set_ylim([extent[2], extent[3]])
... ax.set_xlabel(x[0].axis_label)
... ax.set_ylabel(x[1].axis_label)
... ax.set_title(y[0].name)
...
... """Add the horizontal data slice to the top-left subplot."""
... ax0 = axi[0,0]
... top = y00[-1].real
... ax0.plot(x0, top, 'k', linewidth=0.5)
... ax0.set_xlim([extent[0], extent[1]])
... ax0.set_ylim([top.min(), top.max()])
... ax0.axis('off')
...
... """Add the vertical data slice to the bottom-right subplot."""
... ax1 = axi[1,1]
... right = y00[:,513].real
... ax1.plot(right, x1, 'k', linewidth=0.5)
... ax1.set_ylim([extent[2], extent[3]])
... ax1.set_xlim([right.min(), right.max()])
... ax1.axis('off')
...
... """Turn off the axis system for the top-right subplot."""
... axi[0,1].axis('off')
...
... plt.tight_layout(pad=0., w_pad=0., h_pad=0.)
... plt.subplots_adjust(wspace=0.025, hspace=0.05)
... plt.show()
>>> plot_nmr_2d()
