Actual source code: nepbasic.c
slepc-3.18.0 2022-10-01
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: Basic NEP routines
12: */
14: #include <slepc/private/nepimpl.h>
16: /* Logging support */
17: PetscClassId NEP_CLASSID = 0;
18: PetscLogEvent NEP_SetUp = 0,NEP_Solve = 0,NEP_Refine = 0,NEP_FunctionEval = 0,NEP_JacobianEval = 0,NEP_Resolvent = 0,NEP_CISS_SVD = 0;
20: /* List of registered NEP routines */
21: PetscFunctionList NEPList = NULL;
22: PetscBool NEPRegisterAllCalled = PETSC_FALSE;
24: /* List of registered NEP monitors */
25: PetscFunctionList NEPMonitorList = NULL;
26: PetscFunctionList NEPMonitorCreateList = NULL;
27: PetscFunctionList NEPMonitorDestroyList = NULL;
28: PetscBool NEPMonitorRegisterAllCalled = PETSC_FALSE;
30: /*@
31: NEPCreate - Creates the default NEP context.
33: Collective
35: Input Parameter:
36: . comm - MPI communicator
38: Output Parameter:
39: . outnep - location to put the NEP context
41: Level: beginner
43: .seealso: NEPSetUp(), NEPSolve(), NEPDestroy(), NEP
44: @*/
45: PetscErrorCode NEPCreate(MPI_Comm comm,NEP *outnep)
46: {
47: NEP nep;
50: *outnep = NULL;
51: NEPInitializePackage();
52: SlepcHeaderCreate(nep,NEP_CLASSID,"NEP","Nonlinear Eigenvalue Problem","NEP",comm,NEPDestroy,NEPView);
54: nep->max_it = PETSC_DEFAULT;
55: nep->nev = 1;
56: nep->ncv = PETSC_DEFAULT;
57: nep->mpd = PETSC_DEFAULT;
58: nep->nini = 0;
59: nep->target = 0.0;
60: nep->tol = PETSC_DEFAULT;
61: nep->conv = NEP_CONV_REL;
62: nep->stop = NEP_STOP_BASIC;
63: nep->which = (NEPWhich)0;
64: nep->problem_type = (NEPProblemType)0;
65: nep->refine = NEP_REFINE_NONE;
66: nep->npart = 1;
67: nep->rtol = PETSC_DEFAULT;
68: nep->rits = PETSC_DEFAULT;
69: nep->scheme = (NEPRefineScheme)0;
70: nep->trackall = PETSC_FALSE;
71: nep->twosided = PETSC_FALSE;
73: nep->computefunction = NULL;
74: nep->computejacobian = NULL;
75: nep->functionctx = NULL;
76: nep->jacobianctx = NULL;
77: nep->converged = NEPConvergedRelative;
78: nep->convergeduser = NULL;
79: nep->convergeddestroy= NULL;
80: nep->stopping = NEPStoppingBasic;
81: nep->stoppinguser = NULL;
82: nep->stoppingdestroy = NULL;
83: nep->convergedctx = NULL;
84: nep->stoppingctx = NULL;
85: nep->numbermonitors = 0;
87: nep->ds = NULL;
88: nep->V = NULL;
89: nep->W = NULL;
90: nep->rg = NULL;
91: nep->function = NULL;
92: nep->function_pre = NULL;
93: nep->jacobian = NULL;
94: nep->A = NULL;
95: nep->f = NULL;
96: nep->nt = 0;
97: nep->mstr = UNKNOWN_NONZERO_PATTERN;
98: nep->P = NULL;
99: nep->mstrp = UNKNOWN_NONZERO_PATTERN;
100: nep->IS = NULL;
101: nep->eigr = NULL;
102: nep->eigi = NULL;
103: nep->errest = NULL;
104: nep->perm = NULL;
105: nep->nwork = 0;
106: nep->work = NULL;
107: nep->data = NULL;
109: nep->state = NEP_STATE_INITIAL;
110: nep->nconv = 0;
111: nep->its = 0;
112: nep->n = 0;
113: nep->nloc = 0;
114: nep->nrma = NULL;
115: nep->fui = (NEPUserInterface)0;
116: nep->useds = PETSC_FALSE;
117: nep->resolvent = NULL;
118: nep->reason = NEP_CONVERGED_ITERATING;
120: PetscNew(&nep->sc);
121: *outnep = nep;
122: return 0;
123: }
125: /*@C
126: NEPSetType - Selects the particular solver to be used in the NEP object.
128: Logically Collective on nep
130: Input Parameters:
131: + nep - the nonlinear eigensolver context
132: - type - a known method
134: Options Database Key:
135: . -nep_type <method> - Sets the method; use -help for a list
136: of available methods
138: Notes:
139: See "slepc/include/slepcnep.h" for available methods.
141: Normally, it is best to use the NEPSetFromOptions() command and
142: then set the NEP type from the options database rather than by using
143: this routine. Using the options database provides the user with
144: maximum flexibility in evaluating the different available methods.
145: The NEPSetType() routine is provided for those situations where it
146: is necessary to set the iterative solver independently of the command
147: line or options database.
149: Level: intermediate
151: .seealso: NEPType
152: @*/
153: PetscErrorCode NEPSetType(NEP nep,NEPType type)
154: {
155: PetscErrorCode (*r)(NEP);
156: PetscBool match;
161: PetscObjectTypeCompare((PetscObject)nep,type,&match);
162: if (match) return 0;
164: PetscFunctionListFind(NEPList,type,&r);
167: PetscTryTypeMethod(nep,destroy);
168: PetscMemzero(nep->ops,sizeof(struct _NEPOps));
170: nep->state = NEP_STATE_INITIAL;
171: PetscObjectChangeTypeName((PetscObject)nep,type);
172: (*r)(nep);
173: return 0;
174: }
176: /*@C
177: NEPGetType - Gets the NEP type as a string from the NEP object.
179: Not Collective
181: Input Parameter:
182: . nep - the eigensolver context
184: Output Parameter:
185: . type - name of NEP method
187: Level: intermediate
189: .seealso: NEPSetType()
190: @*/
191: PetscErrorCode NEPGetType(NEP nep,NEPType *type)
192: {
195: *type = ((PetscObject)nep)->type_name;
196: return 0;
197: }
199: /*@C
200: NEPRegister - Adds a method to the nonlinear eigenproblem solver package.
202: Not Collective
204: Input Parameters:
205: + name - name of a new user-defined solver
206: - function - routine to create the solver context
208: Notes:
209: NEPRegister() may be called multiple times to add several user-defined solvers.
211: Sample usage:
212: .vb
213: NEPRegister("my_solver",MySolverCreate);
214: .ve
216: Then, your solver can be chosen with the procedural interface via
217: $ NEPSetType(nep,"my_solver")
218: or at runtime via the option
219: $ -nep_type my_solver
221: Level: advanced
223: .seealso: NEPRegisterAll()
224: @*/
225: PetscErrorCode NEPRegister(const char *name,PetscErrorCode (*function)(NEP))
226: {
227: NEPInitializePackage();
228: PetscFunctionListAdd(&NEPList,name,function);
229: return 0;
230: }
232: /*@C
233: NEPMonitorRegister - Adds NEP monitor routine.
235: Not Collective
237: Input Parameters:
238: + name - name of a new monitor routine
239: . vtype - a PetscViewerType for the output
240: . format - a PetscViewerFormat for the output
241: . monitor - monitor routine
242: . create - creation routine, or NULL
243: - destroy - destruction routine, or NULL
245: Notes:
246: NEPMonitorRegister() may be called multiple times to add several user-defined monitors.
248: Sample usage:
249: .vb
250: NEPMonitorRegister("my_monitor",PETSCVIEWERASCII,PETSC_VIEWER_ASCII_INFO_DETAIL,MyMonitor,NULL,NULL);
251: .ve
253: Then, your monitor can be chosen with the procedural interface via
254: $ NEPMonitorSetFromOptions(nep,"-nep_monitor_my_monitor","my_monitor",NULL)
255: or at runtime via the option
256: $ -nep_monitor_my_monitor
258: Level: advanced
260: .seealso: NEPMonitorRegisterAll()
261: @*/
262: PetscErrorCode NEPMonitorRegister(const char name[],PetscViewerType vtype,PetscViewerFormat format,PetscErrorCode (*monitor)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,PetscViewerAndFormat*),PetscErrorCode (*create)(PetscViewer,PetscViewerFormat,void*,PetscViewerAndFormat**),PetscErrorCode (*destroy)(PetscViewerAndFormat**))
263: {
264: char key[PETSC_MAX_PATH_LEN];
266: NEPInitializePackage();
267: SlepcMonitorMakeKey_Internal(name,vtype,format,key);
268: PetscFunctionListAdd(&NEPMonitorList,key,monitor);
269: if (create) PetscFunctionListAdd(&NEPMonitorCreateList,key,create);
270: if (destroy) PetscFunctionListAdd(&NEPMonitorDestroyList,key,destroy);
271: return 0;
272: }
274: /*
275: NEPReset_Problem - Destroys the problem matrices.
276: */
277: PetscErrorCode NEPReset_Problem(NEP nep)
278: {
279: PetscInt i;
282: MatDestroy(&nep->function);
283: MatDestroy(&nep->function_pre);
284: MatDestroy(&nep->jacobian);
285: if (nep->fui==NEP_USER_INTERFACE_SPLIT) {
286: MatDestroyMatrices(nep->nt,&nep->A);
287: for (i=0;i<nep->nt;i++) FNDestroy(&nep->f[i]);
288: PetscFree(nep->f);
289: PetscFree(nep->nrma);
290: if (nep->P) MatDestroyMatrices(nep->nt,&nep->P);
291: nep->nt = 0;
292: }
293: return 0;
294: }
295: /*@
296: NEPReset - Resets the NEP context to the initial state (prior to setup)
297: and destroys any allocated Vecs and Mats.
299: Collective on nep
301: Input Parameter:
302: . nep - eigensolver context obtained from NEPCreate()
304: Level: advanced
306: .seealso: NEPDestroy()
307: @*/
308: PetscErrorCode NEPReset(NEP nep)
309: {
311: if (!nep) return 0;
312: PetscTryTypeMethod(nep,reset);
313: if (nep->refineksp) KSPReset(nep->refineksp);
314: NEPReset_Problem(nep);
315: BVDestroy(&nep->V);
316: BVDestroy(&nep->W);
317: VecDestroyVecs(nep->nwork,&nep->work);
318: MatDestroy(&nep->resolvent);
319: nep->nwork = 0;
320: nep->state = NEP_STATE_INITIAL;
321: return 0;
322: }
324: /*@C
325: NEPDestroy - Destroys the NEP context.
327: Collective on nep
329: Input Parameter:
330: . nep - eigensolver context obtained from NEPCreate()
332: Level: beginner
334: .seealso: NEPCreate(), NEPSetUp(), NEPSolve()
335: @*/
336: PetscErrorCode NEPDestroy(NEP *nep)
337: {
338: if (!*nep) return 0;
340: if (--((PetscObject)(*nep))->refct > 0) { *nep = NULL; return 0; }
341: NEPReset(*nep);
342: PetscTryTypeMethod(*nep,destroy);
343: if ((*nep)->eigr) PetscFree4((*nep)->eigr,(*nep)->eigi,(*nep)->errest,(*nep)->perm);
344: RGDestroy(&(*nep)->rg);
345: DSDestroy(&(*nep)->ds);
346: KSPDestroy(&(*nep)->refineksp);
347: PetscSubcommDestroy(&(*nep)->refinesubc);
348: PetscFree((*nep)->sc);
349: /* just in case the initial vectors have not been used */
350: SlepcBasisDestroy_Private(&(*nep)->nini,&(*nep)->IS);
351: if ((*nep)->convergeddestroy) (*(*nep)->convergeddestroy)((*nep)->convergedctx);
352: NEPMonitorCancel(*nep);
353: PetscHeaderDestroy(nep);
354: return 0;
355: }
357: /*@
358: NEPSetBV - Associates a basis vectors object to the nonlinear eigensolver.
360: Collective on nep
362: Input Parameters:
363: + nep - eigensolver context obtained from NEPCreate()
364: - bv - the basis vectors object
366: Note:
367: Use NEPGetBV() to retrieve the basis vectors context (for example,
368: to free it at the end of the computations).
370: Level: advanced
372: .seealso: NEPGetBV()
373: @*/
374: PetscErrorCode NEPSetBV(NEP nep,BV bv)
375: {
379: PetscObjectReference((PetscObject)bv);
380: BVDestroy(&nep->V);
381: nep->V = bv;
382: return 0;
383: }
385: /*@
386: NEPGetBV - Obtain the basis vectors object associated to the nonlinear
387: eigensolver object.
389: Not Collective
391: Input Parameters:
392: . nep - eigensolver context obtained from NEPCreate()
394: Output Parameter:
395: . bv - basis vectors context
397: Level: advanced
399: .seealso: NEPSetBV()
400: @*/
401: PetscErrorCode NEPGetBV(NEP nep,BV *bv)
402: {
405: if (!nep->V) {
406: BVCreate(PetscObjectComm((PetscObject)nep),&nep->V);
407: PetscObjectIncrementTabLevel((PetscObject)nep->V,(PetscObject)nep,0);
408: PetscObjectSetOptions((PetscObject)nep->V,((PetscObject)nep)->options);
409: }
410: *bv = nep->V;
411: return 0;
412: }
414: /*@
415: NEPSetRG - Associates a region object to the nonlinear eigensolver.
417: Collective on nep
419: Input Parameters:
420: + nep - eigensolver context obtained from NEPCreate()
421: - rg - the region object
423: Note:
424: Use NEPGetRG() to retrieve the region context (for example,
425: to free it at the end of the computations).
427: Level: advanced
429: .seealso: NEPGetRG()
430: @*/
431: PetscErrorCode NEPSetRG(NEP nep,RG rg)
432: {
434: if (rg) {
437: }
438: PetscObjectReference((PetscObject)rg);
439: RGDestroy(&nep->rg);
440: nep->rg = rg;
441: return 0;
442: }
444: /*@
445: NEPGetRG - Obtain the region object associated to the
446: nonlinear eigensolver object.
448: Not Collective
450: Input Parameters:
451: . nep - eigensolver context obtained from NEPCreate()
453: Output Parameter:
454: . rg - region context
456: Level: advanced
458: .seealso: NEPSetRG()
459: @*/
460: PetscErrorCode NEPGetRG(NEP nep,RG *rg)
461: {
464: if (!nep->rg) {
465: RGCreate(PetscObjectComm((PetscObject)nep),&nep->rg);
466: PetscObjectIncrementTabLevel((PetscObject)nep->rg,(PetscObject)nep,0);
467: PetscObjectSetOptions((PetscObject)nep->rg,((PetscObject)nep)->options);
468: }
469: *rg = nep->rg;
470: return 0;
471: }
473: /*@
474: NEPSetDS - Associates a direct solver object to the nonlinear eigensolver.
476: Collective on nep
478: Input Parameters:
479: + nep - eigensolver context obtained from NEPCreate()
480: - ds - the direct solver object
482: Note:
483: Use NEPGetDS() to retrieve the direct solver context (for example,
484: to free it at the end of the computations).
486: Level: advanced
488: .seealso: NEPGetDS()
489: @*/
490: PetscErrorCode NEPSetDS(NEP nep,DS ds)
491: {
495: PetscObjectReference((PetscObject)ds);
496: DSDestroy(&nep->ds);
497: nep->ds = ds;
498: return 0;
499: }
501: /*@
502: NEPGetDS - Obtain the direct solver object associated to the
503: nonlinear eigensolver object.
505: Not Collective
507: Input Parameters:
508: . nep - eigensolver context obtained from NEPCreate()
510: Output Parameter:
511: . ds - direct solver context
513: Level: advanced
515: .seealso: NEPSetDS()
516: @*/
517: PetscErrorCode NEPGetDS(NEP nep,DS *ds)
518: {
521: if (!nep->ds) {
522: DSCreate(PetscObjectComm((PetscObject)nep),&nep->ds);
523: PetscObjectIncrementTabLevel((PetscObject)nep->ds,(PetscObject)nep,0);
524: PetscObjectSetOptions((PetscObject)nep->ds,((PetscObject)nep)->options);
525: }
526: *ds = nep->ds;
527: return 0;
528: }
530: /*@
531: NEPRefineGetKSP - Obtain the ksp object used by the eigensolver
532: object in the refinement phase.
534: Not Collective
536: Input Parameters:
537: . nep - eigensolver context obtained from NEPCreate()
539: Output Parameter:
540: . ksp - ksp context
542: Level: advanced
544: .seealso: NEPSetRefine()
545: @*/
546: PetscErrorCode NEPRefineGetKSP(NEP nep,KSP *ksp)
547: {
548: MPI_Comm comm;
552: if (!nep->refineksp) {
553: if (nep->npart>1) {
554: /* Split in subcomunicators */
555: PetscSubcommCreate(PetscObjectComm((PetscObject)nep),&nep->refinesubc);
556: PetscSubcommSetNumber(nep->refinesubc,nep->npart);
557: PetscSubcommSetType(nep->refinesubc,PETSC_SUBCOMM_CONTIGUOUS);
558: PetscSubcommGetChild(nep->refinesubc,&comm);
559: } else PetscObjectGetComm((PetscObject)nep,&comm);
560: KSPCreate(comm,&nep->refineksp);
561: PetscObjectIncrementTabLevel((PetscObject)nep->refineksp,(PetscObject)nep,0);
562: PetscObjectSetOptions((PetscObject)nep->refineksp,((PetscObject)nep)->options);
563: KSPSetOptionsPrefix(*ksp,((PetscObject)nep)->prefix);
564: KSPAppendOptionsPrefix(*ksp,"nep_refine_");
565: KSPSetTolerances(nep->refineksp,SlepcDefaultTol(nep->rtol),PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);
566: }
567: *ksp = nep->refineksp;
568: return 0;
569: }
571: /*@
572: NEPSetTarget - Sets the value of the target.
574: Logically Collective on nep
576: Input Parameters:
577: + nep - eigensolver context
578: - target - the value of the target
580: Options Database Key:
581: . -nep_target <scalar> - the value of the target
583: Notes:
584: The target is a scalar value used to determine the portion of the spectrum
585: of interest. It is used in combination with NEPSetWhichEigenpairs().
587: In the case of complex scalars, a complex value can be provided in the
588: command line with [+/-][realnumber][+/-]realnumberi with no spaces, e.g.
589: -nep_target 1.0+2.0i
591: Level: intermediate
593: .seealso: NEPGetTarget(), NEPSetWhichEigenpairs()
594: @*/
595: PetscErrorCode NEPSetTarget(NEP nep,PetscScalar target)
596: {
599: nep->target = target;
600: return 0;
601: }
603: /*@
604: NEPGetTarget - Gets the value of the target.
606: Not Collective
608: Input Parameter:
609: . nep - eigensolver context
611: Output Parameter:
612: . target - the value of the target
614: Note:
615: If the target was not set by the user, then zero is returned.
617: Level: intermediate
619: .seealso: NEPSetTarget()
620: @*/
621: PetscErrorCode NEPGetTarget(NEP nep,PetscScalar* target)
622: {
625: *target = nep->target;
626: return 0;
627: }
629: /*@C
630: NEPSetFunction - Sets the function to compute the nonlinear Function T(lambda)
631: as well as the location to store the matrix.
633: Logically Collective on nep
635: Input Parameters:
636: + nep - the NEP context
637: . A - Function matrix
638: . B - preconditioner matrix (usually same as A)
639: . fun - Function evaluation routine (if NULL then NEP retains any
640: previously set value)
641: - ctx - [optional] user-defined context for private data for the Function
642: evaluation routine (may be NULL) (if NULL then NEP retains any
643: previously set value)
645: Calling Sequence of fun:
646: $ fun(NEP nep,PetscScalar lambda,Mat T,Mat P,void *ctx)
648: + nep - the NEP context
649: . lambda - the scalar argument where T(.) must be evaluated
650: . T - matrix that will contain T(lambda)
651: . P - (optional) different matrix to build the preconditioner
652: - ctx - (optional) user-defined context, as set by NEPSetFunction()
654: Level: beginner
656: .seealso: NEPGetFunction(), NEPSetJacobian()
657: @*/
658: PetscErrorCode NEPSetFunction(NEP nep,Mat A,Mat B,PetscErrorCode (*fun)(NEP,PetscScalar,Mat,Mat,void*),void *ctx)
659: {
666: if (nep->state) NEPReset(nep);
667: else if (nep->fui && nep->fui!=NEP_USER_INTERFACE_CALLBACK) NEPReset_Problem(nep);
669: if (fun) nep->computefunction = fun;
670: if (ctx) nep->functionctx = ctx;
671: if (A) {
672: PetscObjectReference((PetscObject)A);
673: MatDestroy(&nep->function);
674: nep->function = A;
675: }
676: if (B) {
677: PetscObjectReference((PetscObject)B);
678: MatDestroy(&nep->function_pre);
679: nep->function_pre = B;
680: }
681: nep->fui = NEP_USER_INTERFACE_CALLBACK;
682: nep->state = NEP_STATE_INITIAL;
683: return 0;
684: }
686: /*@C
687: NEPGetFunction - Returns the Function matrix and optionally the user
688: provided context for evaluating the Function.
690: Not Collective, but Mat object will be parallel if NEP object is
692: Input Parameter:
693: . nep - the nonlinear eigensolver context
695: Output Parameters:
696: + A - location to stash Function matrix (or NULL)
697: . B - location to stash preconditioner matrix (or NULL)
698: . fun - location to put Function function (or NULL)
699: - ctx - location to stash Function context (or NULL)
701: Level: advanced
703: .seealso: NEPSetFunction()
704: @*/
705: PetscErrorCode NEPGetFunction(NEP nep,Mat *A,Mat *B,PetscErrorCode (**fun)(NEP,PetscScalar,Mat,Mat,void*),void **ctx)
706: {
708: NEPCheckCallback(nep,1);
709: if (A) *A = nep->function;
710: if (B) *B = nep->function_pre;
711: if (fun) *fun = nep->computefunction;
712: if (ctx) *ctx = nep->functionctx;
713: return 0;
714: }
716: /*@C
717: NEPSetJacobian - Sets the function to compute the Jacobian T'(lambda) as well
718: as the location to store the matrix.
720: Logically Collective on nep
722: Input Parameters:
723: + nep - the NEP context
724: . A - Jacobian matrix
725: . jac - Jacobian evaluation routine (if NULL then NEP retains any
726: previously set value)
727: - ctx - [optional] user-defined context for private data for the Jacobian
728: evaluation routine (may be NULL) (if NULL then NEP retains any
729: previously set value)
731: Calling Sequence of jac:
732: $ jac(NEP nep,PetscScalar lambda,Mat J,void *ctx)
734: + nep - the NEP context
735: . lambda - the scalar argument where T'(.) must be evaluated
736: . J - matrix that will contain T'(lambda)
737: - ctx - (optional) user-defined context, as set by NEPSetJacobian()
739: Level: beginner
741: .seealso: NEPSetFunction(), NEPGetJacobian()
742: @*/
743: PetscErrorCode NEPSetJacobian(NEP nep,Mat A,PetscErrorCode (*jac)(NEP,PetscScalar,Mat,void*),void *ctx)
744: {
749: if (nep->state) NEPReset(nep);
750: else if (nep->fui && nep->fui!=NEP_USER_INTERFACE_CALLBACK) NEPReset_Problem(nep);
752: if (jac) nep->computejacobian = jac;
753: if (ctx) nep->jacobianctx = ctx;
754: if (A) {
755: PetscObjectReference((PetscObject)A);
756: MatDestroy(&nep->jacobian);
757: nep->jacobian = A;
758: }
759: nep->fui = NEP_USER_INTERFACE_CALLBACK;
760: nep->state = NEP_STATE_INITIAL;
761: return 0;
762: }
764: /*@C
765: NEPGetJacobian - Returns the Jacobian matrix and optionally the user
766: provided routine and context for evaluating the Jacobian.
768: Not Collective, but Mat object will be parallel if NEP object is
770: Input Parameter:
771: . nep - the nonlinear eigensolver context
773: Output Parameters:
774: + A - location to stash Jacobian matrix (or NULL)
775: . jac - location to put Jacobian function (or NULL)
776: - ctx - location to stash Jacobian context (or NULL)
778: Level: advanced
780: .seealso: NEPSetJacobian()
781: @*/
782: PetscErrorCode NEPGetJacobian(NEP nep,Mat *A,PetscErrorCode (**jac)(NEP,PetscScalar,Mat,void*),void **ctx)
783: {
785: NEPCheckCallback(nep,1);
786: if (A) *A = nep->jacobian;
787: if (jac) *jac = nep->computejacobian;
788: if (ctx) *ctx = nep->jacobianctx;
789: return 0;
790: }
792: /*@
793: NEPSetSplitOperator - Sets the operator of the nonlinear eigenvalue problem
794: in split form.
796: Collective on nep
798: Input Parameters:
799: + nep - the nonlinear eigensolver context
800: . nt - number of terms in the split form
801: . A - array of matrices
802: . f - array of functions
803: - str - structure flag for matrices
805: Notes:
806: The nonlinear operator is written as T(lambda) = sum_i A_i*f_i(lambda),
807: for i=1,...,n. The derivative T'(lambda) can be obtained using the
808: derivatives of f_i.
810: The structure flag provides information about A_i's nonzero pattern
811: (see MatStructure enum). If all matrices have the same pattern, then
812: use SAME_NONZERO_PATTERN. If the patterns are different but contained
813: in the pattern of the first one, then use SUBSET_NONZERO_PATTERN. If
814: patterns are known to be different, use DIFFERENT_NONZERO_PATTERN.
815: If set to UNKNOWN_NONZERO_PATTERN, the patterns will be compared to
816: determine if they are equal.
818: This function must be called before NEPSetUp(). If it is called again
819: after NEPSetUp() then the NEP object is reset.
821: Level: beginner
823: .seealso: NEPGetSplitOperatorTerm(), NEPGetSplitOperatorInfo(), NEPSetSplitPreconditioner()
824: @*/
825: PetscErrorCode NEPSetSplitOperator(NEP nep,PetscInt nt,Mat A[],FN f[],MatStructure str)
826: {
827: PetscInt i,n=0,m,m0=0,mloc,nloc,mloc0=0;
836: for (i=0;i<nt;i++) {
841: MatGetSize(A[i],&m,&n);
842: MatGetLocalSize(A[i],&mloc,&nloc);
845: if (!i) { m0 = m; mloc0 = mloc; }
848: PetscObjectReference((PetscObject)A[i]);
849: PetscObjectReference((PetscObject)f[i]);
850: }
852: if (nep->state && (n!=nep->n || nloc!=nep->nloc)) NEPReset(nep);
853: else NEPReset_Problem(nep);
855: /* allocate space and copy matrices and functions */
856: PetscMalloc1(nt,&nep->A);
857: for (i=0;i<nt;i++) nep->A[i] = A[i];
858: PetscMalloc1(nt,&nep->f);
859: for (i=0;i<nt;i++) nep->f[i] = f[i];
860: PetscCalloc1(nt,&nep->nrma);
861: nep->nt = nt;
862: nep->mstr = str;
863: nep->fui = NEP_USER_INTERFACE_SPLIT;
864: nep->state = NEP_STATE_INITIAL;
865: return 0;
866: }
868: /*@
869: NEPGetSplitOperatorTerm - Gets the matrices and functions associated with
870: the nonlinear operator in split form.
872: Not collective, though parallel Mats and FNs are returned if the NEP is parallel
874: Input Parameters:
875: + nep - the nonlinear eigensolver context
876: - k - the index of the requested term (starting in 0)
878: Output Parameters:
879: + A - the matrix of the requested term
880: - f - the function of the requested term
882: Level: intermediate
884: .seealso: NEPSetSplitOperator(), NEPGetSplitOperatorInfo()
885: @*/
886: PetscErrorCode NEPGetSplitOperatorTerm(NEP nep,PetscInt k,Mat *A,FN *f)
887: {
890: NEPCheckSplit(nep,1);
892: if (A) *A = nep->A[k];
893: if (f) *f = nep->f[k];
894: return 0;
895: }
897: /*@
898: NEPGetSplitOperatorInfo - Returns the number of terms of the split form of
899: the nonlinear operator, as well as the structure flag for matrices.
901: Not collective
903: Input Parameter:
904: . nep - the nonlinear eigensolver context
906: Output Parameters:
907: + n - the number of terms passed in NEPSetSplitOperator()
908: - str - the matrix structure flag passed in NEPSetSplitOperator()
910: Level: intermediate
912: .seealso: NEPSetSplitOperator(), NEPGetSplitOperatorTerm()
913: @*/
914: PetscErrorCode NEPGetSplitOperatorInfo(NEP nep,PetscInt *n,MatStructure *str)
915: {
917: NEPCheckSplit(nep,1);
918: if (n) *n = nep->nt;
919: if (str) *str = nep->mstr;
920: return 0;
921: }
923: /*@
924: NEPSetSplitPreconditioner - Sets an operator in split form from which
925: to build the preconditioner to be used when solving the nonlinear
926: eigenvalue problem in split form.
928: Collective on nep
930: Input Parameters:
931: + nep - the nonlinear eigensolver context
932: . ntp - number of terms in the split preconditioner
933: . P - array of matrices
934: - strp - structure flag for matrices
936: Notes:
937: The matrix for the preconditioner is expressed as P(lambda) =
938: sum_i P_i*f_i(lambda), for i=1,...,n, where the f_i functions
939: are the same as in NEPSetSplitOperator(). It is not necessary to call
940: this function. If it is not invoked, then the preconditioner is
941: built from T(lambda), i.e., both matrices and functions passed in
942: NEPSetSplitOperator().
944: The structure flag provides information about P_i's nonzero pattern
945: in the same way as in NEPSetSplitOperator().
947: If the functions defining the preconditioner operator were different
948: from the ones given in NEPSetSplitOperator(), then the split form
949: cannot be used. Use the callback interface instead.
951: Use ntp=0 to reset a previously set split preconditioner.
953: Level: advanced
955: .seealso: NEPGetSplitPreconditionerTerm(), NEPGetSplitPreconditionerInfo(), NEPSetSplitOperator()
956: @*/
957: PetscErrorCode NEPSetSplitPreconditioner(NEP nep,PetscInt ntp,Mat P[],MatStructure strp)
958: {
959: PetscInt i,n=0,m,m0=0,mloc,nloc,mloc0=0;
969: for (i=0;i<ntp;i++) {
972: MatGetSize(P[i],&m,&n);
973: MatGetLocalSize(P[i],&mloc,&nloc);
976: if (!i) { m0 = m; mloc0 = mloc; }
979: PetscObjectReference((PetscObject)P[i]);
980: }
983: if (nep->P) MatDestroyMatrices(nep->nt,&nep->P);
985: /* allocate space and copy matrices */
986: if (ntp) {
987: PetscMalloc1(ntp,&nep->P);
988: for (i=0;i<ntp;i++) nep->P[i] = P[i];
989: }
990: nep->mstrp = strp;
991: nep->state = NEP_STATE_INITIAL;
992: return 0;
993: }
995: /*@
996: NEPGetSplitPreconditionerTerm - Gets the matrices associated with
997: the split preconditioner.
999: Not collective, though parallel Mats are returned if the NEP is parallel
1001: Input Parameters:
1002: + nep - the nonlinear eigensolver context
1003: - k - the index of the requested term (starting in 0)
1005: Output Parameter:
1006: . P - the matrix of the requested term
1008: Level: advanced
1010: .seealso: NEPSetSplitPreconditioner(), NEPGetSplitPreconditionerInfo()
1011: @*/
1012: PetscErrorCode NEPGetSplitPreconditionerTerm(NEP nep,PetscInt k,Mat *P)
1013: {
1017: NEPCheckSplit(nep,1);
1020: *P = nep->P[k];
1021: return 0;
1022: }
1024: /*@
1025: NEPGetSplitPreconditionerInfo - Returns the number of terms of the split
1026: preconditioner, as well as the structure flag for matrices.
1028: Not collective
1030: Input Parameter:
1031: . nep - the nonlinear eigensolver context
1033: Output Parameters:
1034: + n - the number of terms passed in NEPSetSplitPreconditioner()
1035: - strp - the matrix structure flag passed in NEPSetSplitPreconditioner()
1037: Level: advanced
1039: .seealso: NEPSetSplitPreconditioner(), NEPGetSplitPreconditionerTerm()
1040: @*/
1041: PetscErrorCode NEPGetSplitPreconditionerInfo(NEP nep,PetscInt *n,MatStructure *strp)
1042: {
1044: NEPCheckSplit(nep,1);
1045: if (n) *n = nep->P? nep->nt: 0;
1046: if (strp) *strp = nep->mstrp;
1047: return 0;
1048: }