Actual source code: evsl.c
slepc-3.18.0 2022-10-01
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: This file implements a wrapper to eigensolvers in EVSL.
12: */
14: #include <slepc/private/epsimpl.h>
15: #include <evsl.h>
17: #define PetscCallEVSL(func, ...) do { \
18: PetscStackPushExternal(PetscStringize(func)); \
19: PetscErrorCode evsl_ierr_ = func(__VA_ARGS__); \
20: PetscStackPop; \
22: } while (0)
24: typedef struct {
25: PetscBool initialized;
26: Mat A; /* problem matrix */
27: Vec x,y; /* auxiliary vectors */
28: PetscReal *sli; /* slice bounds */
29: PetscInt nev; /* approximate number of wanted eigenvalues in each slice */
30: PetscLayout map; /* used to distribute slices among MPI processes */
31: PetscBool estimrange; /* the filter range was not set by the user */
32: /* user parameters */
33: PetscInt nslices; /* number of slices */
34: PetscReal lmin,lmax; /* numerical range (min and max eigenvalue) */
35: EPSEVSLDOSMethod dos; /* DOS method, either KPM or Lanczos */
36: PetscInt nvec; /* number of sample vectors used for DOS */
37: PetscInt deg; /* polynomial degree used for DOS (KPM only) */
38: PetscInt steps; /* number of Lanczos steps used for DOS (Lanczos only) */
39: PetscInt npoints; /* number of sample points used for DOS (Lanczos only) */
40: PetscInt max_deg; /* maximum degree allowed for the polynomial */
41: PetscReal thresh; /* threshold for accepting polynomial */
42: EPSEVSLDamping damping; /* type of damping (for polynomial and for DOS-KPM) */
43: } EPS_EVSL;
45: static void AMatvec_EVSL(double *xa,double *ya,void *data)
46: {
47: EPS_EVSL *ctx = (EPS_EVSL*)data;
48: Vec x = ctx->x,y = ctx->y;
49: Mat A = ctx->A;
51: PetscObjectComm((PetscObject)A),VecPlaceArray(x,(PetscScalar*)xa);
52: PetscObjectComm((PetscObject)A),VecPlaceArray(y,(PetscScalar*)ya);
53: PetscObjectComm((PetscObject)A),MatMult(A,x,y);
54: PetscObjectComm((PetscObject)A),VecResetArray(x);
55: PetscObjectComm((PetscObject)A),VecResetArray(y);
56: return;
57: }
59: PetscErrorCode EPSSetUp_EVSL(EPS eps)
60: {
61: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
62: PetscMPIInt size,rank;
63: PetscBool isshift;
64: PetscScalar *vinit;
65: PetscReal *mu,ecount,xintv[4],*xdos,*ydos;
66: Vec v0;
67: Mat A;
68: PetscRandom rnd;
70: EPSCheckStandard(eps);
71: EPSCheckHermitian(eps);
72: PetscObjectTypeCompare((PetscObject)eps->st,STSHIFT,&isshift);
75: if (ctx->initialized) EVSLFinish();
76: EVSLStart();
77: ctx->initialized=PETSC_TRUE;
79: /* get number of slices per process */
80: MPI_Comm_size(PetscObjectComm((PetscObject)eps),&size);
81: MPI_Comm_rank(PetscObjectComm((PetscObject)eps),&rank);
82: if (!ctx->nslices) ctx->nslices = size;
83: PetscLayoutDestroy(&ctx->map);
84: PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)eps),PETSC_DECIDE,ctx->nslices,1,&ctx->map);
86: /* get matrix and prepare auxiliary vectors */
87: MatDestroy(&ctx->A);
88: STGetMatrix(eps->st,0,&A);
89: if (size==1) {
90: PetscObjectReference((PetscObject)A);
91: ctx->A = A;
92: } else MatCreateRedundantMatrix(A,0,PETSC_COMM_SELF,MAT_INITIAL_MATRIX,&ctx->A);
93: SetAMatvec(eps->n,&AMatvec_EVSL,(void*)ctx);
94: if (!ctx->x) MatCreateVecsEmpty(ctx->A,&ctx->x,&ctx->y);
95: EPSCheckUnsupported(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_STOPPING);
96: EPSCheckIgnored(eps,EPS_FEATURE_EXTRACTION | EPS_FEATURE_CONVERGENCE);
98: if (!eps->which) eps->which=EPS_ALL;
101: /* estimate numerical range */
102: if (ctx->estimrange || ctx->lmin == PETSC_MIN_REAL || ctx->lmax == PETSC_MAX_REAL) {
103: MatCreateVecs(ctx->A,&v0,NULL);
104: if (!eps->V) EPSGetBV(eps,&eps->V);
105: BVGetRandomContext(eps->V,&rnd);
106: VecSetRandom(v0,rnd);
107: VecGetArray(v0,&vinit);
108: PetscCallEVSL(LanTrbounds,50,200,eps->tol,vinit,1,&ctx->lmin,&ctx->lmax,NULL);
109: VecRestoreArray(v0,&vinit);
110: VecDestroy(&v0);
111: ctx->estimrange = PETSC_TRUE; /* estimate if called again with another matrix */
112: }
114: xintv[0] = eps->inta;
115: xintv[1] = eps->intb;
116: xintv[2] = ctx->lmin;
117: xintv[3] = ctx->lmax;
119: /* estimate number of eigenvalues in the interval */
120: switch (ctx->dos) {
121: case EPS_EVSL_DOS_KPM:
122: PetscMalloc1(ctx->deg+1,&mu);
123: if (!rank) PetscCallEVSL(kpmdos,ctx->deg,(int)ctx->damping,ctx->nvec,xintv,mu,&ecount);
124: MPI_Bcast(mu,ctx->deg+1,MPIU_REAL,0,PetscObjectComm((PetscObject)eps));
125: break;
126: case EPS_EVSL_DOS_LANCZOS:
127: PetscMalloc2(ctx->npoints,&xdos,ctx->npoints,&ydos);
128: if (!rank) PetscCallEVSL(LanDos,ctx->nvec,PetscMin(ctx->steps,eps->n/2),ctx->npoints,xdos,ydos,&ecount,xintv);
129: MPI_Bcast(xdos,ctx->npoints,MPIU_REAL,0,PetscObjectComm((PetscObject)eps));
130: MPI_Bcast(ydos,ctx->npoints,MPIU_REAL,0,PetscObjectComm((PetscObject)eps));
131: break;
132: default:
133: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid DOS method");
134: }
135: MPI_Bcast(&ecount,1,MPIU_REAL,0,PetscObjectComm((PetscObject)eps));
137: PetscInfo(eps,"Estimated eigenvalue count in the interval: %g\n",ecount);
138: eps->ncv = (PetscInt)PetscCeilReal(1.5*ecount);
140: /* slice the spectrum */
141: PetscFree(ctx->sli);
142: PetscMalloc1(ctx->nslices+1,&ctx->sli);
143: if (ctx->dos == EPS_EVSL_DOS_KPM) {
144: PetscCallEVSL(spslicer,ctx->sli,mu,ctx->deg,xintv,ctx->nslices,10*(PetscInt)ecount);
145: PetscFree(mu);
146: } else if (ctx->dos == EPS_EVSL_DOS_LANCZOS) {
147: spslicer2(xdos,ydos,ctx->nslices,ctx->npoints,ctx->sli);
148: PetscFree2(xdos,ydos);
149: }
151: /* approximate number of eigenvalues wanted in each slice */
152: ctx->nev = (PetscInt)(1.0 + ecount/(PetscReal)ctx->nslices) + 2;
154: if (eps->mpd!=PETSC_DEFAULT) PetscInfo(eps,"Warning: parameter mpd ignored\n");
155: if (eps->max_it==PETSC_DEFAULT) eps->max_it = 1;
156: EPSAllocateSolution(eps,0);
157: return 0;
158: }
160: PetscErrorCode EPSSolve_EVSL(EPS eps)
161: {
162: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
163: PetscInt i,j,k=0,sl,mlan,nevout,*ind,nevmax,rstart,rend,*nevloc,*disp,N;
164: PetscReal *res,xintv[4],*errest;
165: PetscScalar *lam,*X,*Y,*vinit,*eigr;
166: PetscMPIInt size,rank;
167: PetscRandom rnd;
168: Vec v,w,v0,x;
169: VecScatter vs;
170: IS is;
171: polparams pol;
173: MPI_Comm_size(PetscObjectComm((PetscObject)eps),&size);
174: MPI_Comm_rank(PetscObjectComm((PetscObject)eps),&rank);
175: PetscLayoutGetRange(ctx->map,&rstart,&rend);
176: nevmax = (rend-rstart)*ctx->nev;
177: MatCreateVecs(ctx->A,&v0,NULL);
178: BVGetRandomContext(eps->V,&rnd);
179: VecSetRandom(v0,rnd);
180: VecGetArray(v0,&vinit);
181: PetscMalloc5(size,&nevloc,size+1,&disp,nevmax,&eigr,nevmax,&errest,nevmax*eps->n,&X);
182: mlan = PetscMin(PetscMax(5*ctx->nev,300),eps->n);
183: for (sl=rstart; sl<rend; sl++) {
184: xintv[0] = ctx->sli[sl];
185: xintv[1] = ctx->sli[sl+1];
186: xintv[2] = ctx->lmin;
187: xintv[3] = ctx->lmax;
188: PetscInfo(ctx->A,"Subinterval %" PetscInt_FMT ": [%.4e, %.4e]\n",sl+1,xintv[0],xintv[1]);
189: set_pol_def(&pol);
190: pol.max_deg = ctx->max_deg;
191: pol.damping = (int)ctx->damping;
192: pol.thresh_int = ctx->thresh;
193: find_pol(xintv,&pol);
194: PetscInfo(ctx->A,"Polynomial [type = %" PetscInt_FMT "], deg %" PetscInt_FMT ", bar %e gam %e\n",pol.type,pol.deg,pol.bar,pol.gam);
195: PetscCallEVSL(ChebLanNr,xintv,mlan,eps->tol,vinit,&pol,&nevout,&lam,&Y,&res,NULL);
197: free_pol(&pol);
198: PetscInfo(ctx->A,"Computed %" PetscInt_FMT " eigenvalues\n",nevout);
199: PetscMalloc1(nevout,&ind);
200: sort_double(nevout,lam,ind);
201: for (i=0;i<nevout;i++) {
202: eigr[i+k] = lam[i];
203: errest[i+k] = res[ind[i]];
204: PetscArraycpy(X+(i+k)*eps->n,Y+ind[i]*eps->n,eps->n);
205: }
206: k += nevout;
207: if (lam) evsl_Free(lam);
208: if (Y) evsl_Free_device(Y);
209: if (res) evsl_Free(res);
210: PetscFree(ind);
211: }
212: VecRestoreArray(v0,&vinit);
213: VecDestroy(&v0);
215: /* gather eigenvalues computed by each MPI process */
216: MPI_Allgather(&k,1,MPIU_INT,nevloc,1,MPIU_INT,PetscObjectComm((PetscObject)eps));
217: eps->nev = nevloc[0];
218: disp[0] = 0;
219: for (i=1;i<size;i++) {
220: eps->nev += nevloc[i];
221: disp[i] = disp[i-1]+nevloc[i-1];
222: }
223: disp[size] = disp[size-1]+nevloc[size-1];
225: MPI_Allgatherv(eigr,k,MPIU_SCALAR,eps->eigr,nevloc,disp,MPIU_SCALAR,PetscObjectComm((PetscObject)eps));
226: MPI_Allgatherv(errest,k,MPIU_REAL,eps->errest,nevloc,disp,MPIU_REAL,PetscObjectComm((PetscObject)eps));
227: eps->nconv = eps->nev;
228: eps->its = 1;
229: eps->reason = EPS_CONVERGED_TOL;
231: /* scatter computed eigenvectors and store them in eps->V */
232: BVCreateVec(eps->V,&w);
233: for (i=0;i<size;i++) {
234: N = (rank==i)? eps->n: 0;
235: VecCreateSeq(PETSC_COMM_SELF,N,&x);
236: VecSetFromOptions(x);
237: ISCreateStride(PETSC_COMM_SELF,N,0,1,&is);
238: VecScatterCreate(x,is,w,is,&vs);
239: ISDestroy(&is);
240: for (j=disp[i];j<disp[i+1];j++) {
241: BVGetColumn(eps->V,j,&v);
242: if (rank==i) VecPlaceArray(x,X+(j-disp[i])*eps->n);
243: VecScatterBegin(vs,x,v,INSERT_VALUES,SCATTER_FORWARD);
244: VecScatterEnd(vs,x,v,INSERT_VALUES,SCATTER_FORWARD);
245: if (rank==i) VecResetArray(x);
246: BVRestoreColumn(eps->V,j,&v);
247: }
248: VecScatterDestroy(&vs);
249: VecDestroy(&x);
250: }
251: VecDestroy(&w);
252: PetscFree5(nevloc,disp,eigr,errest,X);
253: return 0;
254: }
256: static PetscErrorCode EPSEVSLSetSlices_EVSL(EPS eps,PetscInt nslices)
257: {
258: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
260: if (nslices == PETSC_DECIDE || nslices == PETSC_DEFAULT) nslices = 0;
262: if (ctx->nslices != nslices) {
263: ctx->nslices = nslices;
264: eps->state = EPS_STATE_INITIAL;
265: }
266: return 0;
267: }
269: /*@
270: EPSEVSLSetSlices - Set the number of slices in which the interval must be
271: subdivided.
273: Logically Collective on eps
275: Input Parameters:
276: + eps - the eigensolver context
277: - nslices - the number of slices
279: Options Database Key:
280: . -eps_evsl_slices <n> - set the number of slices to n
282: Notes:
283: By default, one slice per MPI process is used. Depending on the number of
284: eigenvalues, using more slices may be beneficial, but very narrow subintervals
285: imply higher polynomial degree.
287: Level: intermediate
289: .seealso: EPSEVSLGetSlices()
290: @*/
291: PetscErrorCode EPSEVSLSetSlices(EPS eps,PetscInt nslices)
292: {
295: PetscTryMethod(eps,"EPSEVSLSetSlices_C",(EPS,PetscInt),(eps,nslices));
296: return 0;
297: }
299: static PetscErrorCode EPSEVSLGetSlices_EVSL(EPS eps,PetscInt *nslices)
300: {
301: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
303: *nslices = ctx->nslices;
304: return 0;
305: }
307: /*@
308: EPSEVSLGetSlices - Gets the number of slices in which the interval must be
309: subdivided.
311: Not Collective
313: Input Parameter:
314: . eps - the eigensolver context
316: Output Parameter:
317: . nslices - the number of slices
319: Level: intermediate
321: .seealso: EPSEVSLSetSlices()
322: @*/
323: PetscErrorCode EPSEVSLGetSlices(EPS eps,PetscInt *nslices)
324: {
327: PetscUseMethod(eps,"EPSEVSLGetSlices_C",(EPS,PetscInt*),(eps,nslices));
328: return 0;
329: }
331: static PetscErrorCode EPSEVSLSetRange_EVSL(EPS eps,PetscReal lmin,PetscReal lmax)
332: {
333: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
336: if (ctx->lmin != lmin || ctx->lmax != lmax) {
337: ctx->lmin = lmin;
338: ctx->lmax = lmax;
339: eps->state = EPS_STATE_INITIAL;
340: }
341: return 0;
342: }
344: /*@
345: EPSEVSLSetRange - Defines the numerical range (or field of values) of the problem,
346: that is, the interval containing all eigenvalues.
348: Logically Collective on eps
350: Input Parameters:
351: + eps - the eigensolver context
352: . lmin - left end of the interval
353: - lmax - right end of the interval
355: Options Database Key:
356: . -eps_evsl_range <a,b> - set [a,b] as the numerical range
358: Notes:
359: The filter will be most effective if the numerical range is tight, that is, lmin
360: and lmax are good approximations to the leftmost and rightmost eigenvalues,
361: respectively. If not set by the user, an approximation is computed internally.
363: The wanted computational interval specified via EPSSetInterval() must be
364: contained in the numerical range.
366: Level: intermediate
368: .seealso: EPSEVSLGetRange(), EPSSetInterval()
369: @*/
370: PetscErrorCode EPSEVSLSetRange(EPS eps,PetscReal lmin,PetscReal lmax)
371: {
375: PetscTryMethod(eps,"EPSEVSLSetRange_C",(EPS,PetscReal,PetscReal),(eps,lmin,lmax));
376: return 0;
377: }
379: static PetscErrorCode EPSEVSLGetRange_EVSL(EPS eps,PetscReal *lmin,PetscReal *lmax)
380: {
381: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
383: if (lmin) *lmin = ctx->lmin;
384: if (lmax) *lmax = ctx->lmax;
385: return 0;
386: }
388: /*@
389: EPSEVSLGetRange - Gets the interval containing all eigenvalues.
391: Not Collective
393: Input Parameter:
394: . eps - the eigensolver context
396: Output Parameters:
397: + lmin - left end of the interval
398: - lmax - right end of the interval
400: Level: intermediate
402: .seealso: EPSEVSLSetRange()
403: @*/
404: PetscErrorCode EPSEVSLGetRange(EPS eps,PetscReal *lmin,PetscReal *lmax)
405: {
407: PetscUseMethod(eps,"EPSEVSLGetRange_C",(EPS,PetscReal*,PetscReal*),(eps,lmin,lmax));
408: return 0;
409: }
411: static PetscErrorCode EPSEVSLSetDOSParameters_EVSL(EPS eps,EPSEVSLDOSMethod dos,PetscInt nvec,PetscInt deg,PetscInt steps,PetscInt npoints)
412: {
413: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
415: ctx->dos = dos;
416: if (nvec == PETSC_DECIDE || nvec == PETSC_DEFAULT) ctx->nvec = 80;
417: else {
419: ctx->nvec = nvec;
420: }
421: switch (dos) {
422: case EPS_EVSL_DOS_KPM:
423: if (deg == PETSC_DECIDE || deg == PETSC_DEFAULT) ctx->deg = 300;
424: else {
426: ctx->deg = deg;
427: }
428: break;
429: case EPS_EVSL_DOS_LANCZOS:
430: if (steps == PETSC_DECIDE || steps == PETSC_DEFAULT) ctx->steps = 40;
431: else {
433: ctx->steps = steps;
434: }
435: if (npoints == PETSC_DECIDE || npoints == PETSC_DEFAULT) ctx->npoints = 200;
436: else {
438: ctx->npoints = npoints;
439: }
440: break;
441: }
442: eps->state = EPS_STATE_INITIAL;
443: return 0;
444: }
446: /*@
447: EPSEVSLSetDOSParameters - Defines the parameters used for computing the
448: density of states (DOS) in the EVSL solver.
450: Logically Collective on eps
452: Input Parameters:
453: + eps - the eigensolver context
454: . dos - DOS method, either KPM or Lanczos
455: . nvec - number of sample vectors
456: . deg - polynomial degree (KPM only)
457: . steps - number of Lanczos steps (Lanczos only)
458: - npoints - number of sample points (Lanczos only)
460: Options Database Keys:
461: + -eps_evsl_dos_method <dos> - set the DOS method, either kpm or lanczos
462: . -eps_evsl_dos_nvec <n> - set the number of sample vectors
463: . -eps_evsl_dos_degree <n> - set the polynomial degree
464: . -eps_evsl_dos_steps <n> - set the number of Lanczos steps
465: - -eps_evsl_dos_npoints <n> - set the number of sample points
467: Notes:
468: The density of states (or spectral density) can be approximated with two
469: methods, kernel polynomial method (KPM) or Lanczos. Some parameters for
470: these methods can be set by the user with this function, with some of
471: them being relevant for one of the methods only.
473: Level: intermediate
475: .seealso: EPSEVSLGetDOSParameters()
476: @*/
477: PetscErrorCode EPSEVSLSetDOSParameters(EPS eps,EPSEVSLDOSMethod dos,PetscInt nvec,PetscInt deg,PetscInt steps,PetscInt npoints)
478: {
485: PetscTryMethod(eps,"EPSEVSLSetDOSParameters_C",(EPS,EPSEVSLDOSMethod,PetscInt,PetscInt,PetscInt,PetscInt),(eps,dos,nvec,deg,steps,npoints));
486: return 0;
487: }
489: static PetscErrorCode EPSEVSLGetDOSParameters_EVSL(EPS eps,EPSEVSLDOSMethod *dos,PetscInt *nvec,PetscInt *deg,PetscInt *steps,PetscInt *npoints)
490: {
491: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
493: if (dos) *dos = ctx->dos;
494: if (nvec) *nvec = ctx->nvec;
495: if (deg) *deg = ctx->deg;
496: if (steps) *steps = ctx->steps;
497: if (npoints) *npoints = ctx->npoints;
498: return 0;
499: }
501: /*@
502: EPSEVSLGetDOSParameters - Gets the parameters used for computing the
503: density of states (DOS) in the EVSL solver.
505: Not Collective
507: Input Parameter:
508: . eps - the eigensolver context
510: Output Parameters:
511: + dos - DOS method, either KPM or Lanczos
512: . nvec - number of sample vectors
513: . deg - polynomial degree (KPM only)
514: . steps - number of Lanczos steps (Lanczos only)
515: - npoints - number of sample points (Lanczos only)
517: Level: intermediate
519: .seealso: EPSEVSLSetDOSParameters()
520: @*/
521: PetscErrorCode EPSEVSLGetDOSParameters(EPS eps,EPSEVSLDOSMethod *dos,PetscInt *nvec,PetscInt *deg,PetscInt *steps,PetscInt *npoints)
522: {
524: PetscUseMethod(eps,"EPSEVSLGetDOSParameters_C",(EPS,EPSEVSLDOSMethod*,PetscInt*,PetscInt*,PetscInt*,PetscInt*),(eps,dos,nvec,deg,steps,npoints));
525: return 0;
526: }
528: static PetscErrorCode EPSEVSLSetPolParameters_EVSL(EPS eps,PetscInt max_deg,PetscReal thresh)
529: {
530: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
532: if (max_deg == PETSC_DECIDE || max_deg == PETSC_DEFAULT) ctx->max_deg = 10000;
533: else {
535: ctx->max_deg = max_deg;
536: }
537: if (thresh == PETSC_DECIDE || thresh == PETSC_DEFAULT) ctx->thresh = 0.8;
538: else {
540: ctx->thresh = thresh;
541: }
542: eps->state = EPS_STATE_INITIAL;
543: return 0;
544: }
546: /*@
547: EPSEVSLSetPolParameters - Defines the parameters used for building the
548: building the polynomial in the EVSL solver.
550: Logically Collective on eps
552: Input Parameters:
553: + eps - the eigensolver context
554: . max_deg - maximum degree allowed for the polynomial
555: - thresh - threshold for accepting polynomial
557: Options Database Keys:
558: + -eps_evsl_pol_max_deg <d> - set maximum polynomial degree
559: - -eps_evsl_pol_thresh <t> - set the threshold
561: Level: intermediate
563: .seealso: EPSEVSLGetPolParameters()
564: @*/
565: PetscErrorCode EPSEVSLSetPolParameters(EPS eps,PetscInt max_deg,PetscReal thresh)
566: {
570: PetscTryMethod(eps,"EPSEVSLSetPolParameters_C",(EPS,PetscInt,PetscReal),(eps,max_deg,thresh));
571: return 0;
572: }
574: static PetscErrorCode EPSEVSLGetPolParameters_EVSL(EPS eps,PetscInt *max_deg,PetscReal *thresh)
575: {
576: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
578: if (max_deg) *max_deg = ctx->max_deg;
579: if (thresh) *thresh = ctx->thresh;
580: return 0;
581: }
583: /*@
584: EPSEVSLGetPolParameters - Gets the parameters used for building the
585: polynomial in the EVSL solver.
587: Not Collective
589: Input Parameter:
590: . eps - the eigensolver context
592: Output Parameters:
593: + max_deg - the maximum degree of the polynomial
594: - thresh - the threshold
596: Level: intermediate
598: .seealso: EPSEVSLSetPolParameters()
599: @*/
600: PetscErrorCode EPSEVSLGetPolParameters(EPS eps,PetscInt *max_deg,PetscReal *thresh)
601: {
603: PetscUseMethod(eps,"EPSEVSLGetPolParameters_C",(EPS,PetscInt*,PetscReal*),(eps,max_deg,thresh));
604: return 0;
605: }
607: static PetscErrorCode EPSEVSLSetDamping_EVSL(EPS eps,EPSEVSLDamping damping)
608: {
609: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
611: if (ctx->damping != damping) {
612: ctx->damping = damping;
613: eps->state = EPS_STATE_INITIAL;
614: }
615: return 0;
616: }
618: /*@
619: EPSEVSLSetDamping - Set the type of damping to be used in EVSL.
621: Logically Collective on eps
623: Input Parameters:
624: + eps - the eigensolver context
625: - damping - the type of damping
627: Options Database Key:
628: . -eps_evsl_damping <n> - set the type of damping
630: Notes:
631: Damping is applied when building the polynomial to be used when solving the
632: eigenproblem, and also during estimation of DOS with the KPM method.
634: Level: intermediate
636: .seealso: EPSEVSLGetDamping(), EPSEVSLSetDOSParameters()
637: @*/
638: PetscErrorCode EPSEVSLSetDamping(EPS eps,EPSEVSLDamping damping)
639: {
642: PetscTryMethod(eps,"EPSEVSLSetDamping_C",(EPS,EPSEVSLDamping),(eps,damping));
643: return 0;
644: }
646: static PetscErrorCode EPSEVSLGetDamping_EVSL(EPS eps,EPSEVSLDamping *damping)
647: {
648: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
650: *damping = ctx->damping;
651: return 0;
652: }
654: /*@
655: EPSEVSLGetDamping - Gets the type of damping.
657: Not Collective
659: Input Parameter:
660: . eps - the eigensolver context
662: Output Parameter:
663: . damping - the type of damping
665: Level: intermediate
667: .seealso: EPSEVSLSetDamping()
668: @*/
669: PetscErrorCode EPSEVSLGetDamping(EPS eps,EPSEVSLDamping *damping)
670: {
673: PetscUseMethod(eps,"EPSEVSLGetDamping_C",(EPS,EPSEVSLDamping*),(eps,damping));
674: return 0;
675: }
677: PetscErrorCode EPSView_EVSL(EPS eps,PetscViewer viewer)
678: {
679: PetscBool isascii;
680: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
682: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
683: if (isascii) {
684: PetscViewerASCIIPrintf(viewer," numerical range = [%g,%g]\n",(double)ctx->lmin,(double)ctx->lmax);
685: PetscViewerASCIIPrintf(viewer," number of slices = %" PetscInt_FMT "\n",ctx->nslices);
686: PetscViewerASCIIPrintf(viewer," type of damping = %s\n",EPSEVSLDampings[ctx->damping]);
687: PetscViewerASCIIPrintf(viewer," computing DOS with %s: nvec=%" PetscInt_FMT ", ",EPSEVSLDOSMethods[ctx->dos],ctx->nvec);
688: PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
689: switch (ctx->dos) {
690: case EPS_EVSL_DOS_KPM:
691: PetscViewerASCIIPrintf(viewer,"degree=%" PetscInt_FMT "\n",ctx->deg);
692: break;
693: case EPS_EVSL_DOS_LANCZOS:
694: PetscViewerASCIIPrintf(viewer,"steps=%" PetscInt_FMT ", npoints=%" PetscInt_FMT "\n",ctx->steps,ctx->npoints);
695: break;
696: }
697: PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
698: PetscViewerASCIIPrintf(viewer," polynomial parameters: max degree = %" PetscInt_FMT ", threshold = %g\n",ctx->max_deg,(double)ctx->thresh);
699: }
700: return 0;
701: }
703: PetscErrorCode EPSSetFromOptions_EVSL(EPS eps,PetscOptionItems *PetscOptionsObject)
704: {
705: PetscReal array[2]={0,0},th;
706: PetscInt k,i1,i2,i3,i4;
707: PetscBool flg,flg1;
708: EPSEVSLDOSMethod dos;
709: EPSEVSLDamping damping;
710: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
712: PetscOptionsHeadBegin(PetscOptionsObject,"EPS EVSL Options");
714: k = 2;
715: PetscOptionsRealArray("-eps_evsl_range","Interval containing all eigenvalues (two real values separated with a comma without spaces)","EPSEVSLSetRange",array,&k,&flg);
716: if (flg) {
718: EPSEVSLSetRange(eps,array[0],array[1]);
719: }
721: PetscOptionsInt("-eps_evsl_slices","Number of slices","EPSEVSLSetSlices",ctx->nslices,&i1,&flg);
722: if (flg) EPSEVSLSetSlices(eps,i1);
724: PetscOptionsEnum("-eps_evsl_damping","Type of damping","EPSEVSLSetDamping",EPSEVSLDampings,(PetscEnum)ctx->damping,(PetscEnum*)&damping,&flg);
725: if (flg) EPSEVSLSetDamping(eps,damping);
727: EPSEVSLGetDOSParameters(eps,&dos,&i1,&i2,&i3,&i4);
728: PetscOptionsEnum("-eps_evsl_dos_method","Method to compute the DOS","EPSEVSLSetDOSParameters",EPSEVSLDOSMethods,(PetscEnum)ctx->dos,(PetscEnum*)&dos,&flg);
729: PetscOptionsInt("-eps_evsl_dos_nvec","Number of sample vectors for DOS","EPSEVSLSetDOSParameters",i1,&i1,&flg1);
730: if (flg1) flg = PETSC_TRUE;
731: PetscOptionsInt("-eps_evsl_dos_degree","Polynomial degree used for DOS","EPSEVSLSetDOSParameters",i2,&i2,&flg1);
732: if (flg1) flg = PETSC_TRUE;
733: PetscOptionsInt("-eps_evsl_dos_steps","Number of Lanczos steps in DOS","EPSEVSLSetDOSParameters",i3,&i3,&flg1);
734: if (flg1) flg = PETSC_TRUE;
735: PetscOptionsInt("-eps_evsl_dos_npoints","Number of sample points used for DOS","EPSEVSLSetDOSParameters",i4,&i4,&flg1);
736: if (flg || flg1) EPSEVSLSetDOSParameters(eps,dos,i1,i2,i3,i4);
738: EPSEVSLGetPolParameters(eps,&i1,&th);
739: PetscOptionsInt("-eps_evsl_pol_max_deg","Maximum degree allowed for the polynomial","EPSEVSLSetPolParameters",i1,&i1,&flg);
740: PetscOptionsReal("-eps_evsl_pol_threshold","Threshold for accepting polynomial","EPSEVSLSetPolParameters",th,&th,&flg1);
741: if (flg || flg1) EPSEVSLSetPolParameters(eps,i1,th);
743: PetscOptionsHeadEnd();
744: return 0;
745: }
747: PetscErrorCode EPSDestroy_EVSL(EPS eps)
748: {
749: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
751: if (ctx->initialized) EVSLFinish();
752: PetscLayoutDestroy(&ctx->map);
753: PetscFree(ctx->sli);
754: PetscFree(eps->data);
755: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetRange_C",NULL);
756: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetRange_C",NULL);
757: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetSlices_C",NULL);
758: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetSlices_C",NULL);
759: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDOSParameters_C",NULL);
760: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDOSParameters_C",NULL);
761: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetPolParameters_C",NULL);
762: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetPolParameters_C",NULL);
763: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDamping_C",NULL);
764: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDamping_C",NULL);
765: return 0;
766: }
768: PetscErrorCode EPSReset_EVSL(EPS eps)
769: {
770: EPS_EVSL *ctx = (EPS_EVSL*)eps->data;
772: MatDestroy(&ctx->A);
773: VecDestroy(&ctx->x);
774: VecDestroy(&ctx->y);
775: return 0;
776: }
778: SLEPC_EXTERN PetscErrorCode EPSCreate_EVSL(EPS eps)
779: {
780: EPS_EVSL *ctx;
782: PetscNew(&ctx);
783: eps->data = (void*)ctx;
785: ctx->nslices = 0;
786: ctx->lmin = PETSC_MIN_REAL;
787: ctx->lmax = PETSC_MAX_REAL;
788: ctx->dos = EPS_EVSL_DOS_KPM;
789: ctx->nvec = 80;
790: ctx->deg = 300;
791: ctx->steps = 40;
792: ctx->npoints = 200;
793: ctx->max_deg = 10000;
794: ctx->thresh = 0.8;
795: ctx->damping = EPS_EVSL_DAMPING_SIGMA;
797: eps->categ = EPS_CATEGORY_OTHER;
799: eps->ops->solve = EPSSolve_EVSL;
800: eps->ops->setup = EPSSetUp_EVSL;
801: eps->ops->setupsort = EPSSetUpSort_Basic;
802: eps->ops->setfromoptions = EPSSetFromOptions_EVSL;
803: eps->ops->destroy = EPSDestroy_EVSL;
804: eps->ops->reset = EPSReset_EVSL;
805: eps->ops->view = EPSView_EVSL;
806: eps->ops->backtransform = EPSBackTransform_Default;
807: eps->ops->setdefaultst = EPSSetDefaultST_NoFactor;
809: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetRange_C",EPSEVSLSetRange_EVSL);
810: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetRange_C",EPSEVSLGetRange_EVSL);
811: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetSlices_C",EPSEVSLSetSlices_EVSL);
812: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetSlices_C",EPSEVSLGetSlices_EVSL);
813: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDOSParameters_C",EPSEVSLSetDOSParameters_EVSL);
814: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDOSParameters_C",EPSEVSLGetDOSParameters_EVSL);
815: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetPolParameters_C",EPSEVSLSetPolParameters_EVSL);
816: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetPolParameters_C",EPSEVSLGetPolParameters_EVSL);
817: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLSetDamping_C",EPSEVSLSetDamping_EVSL);
818: PetscObjectComposeFunction((PetscObject)eps,"EPSEVSLGetDamping_C",EPSEVSLGetDamping_EVSL);
819: return 0;
820: }