
collective.pdftransform-0.3/.gitignore
*.pyc
*.mo
*.egg-info

collective.pdftransform-0.3/PKG-INFO
Metadata-Version: 1.0
Name: collective.pdftransform
Version: 0.3
Summary: A set of portal transform to change pdf into images
Home-page: http://github.com/vincent-psarga/collective.pdftransform
Author: Zest software
Author-email: info@zestsoftware.nl
License: GPL
Description: Introduction
 ============

 The main goal of this product is to allow PDF into ImageFields in
 Plone. It uses code written by David Brenneman for
 collective.pdfpeek.

 Install
 =======

 Just add the following lines in your buildout:
 collective.pdfpeek
 collective.pdftransform

 You must install pdftransform with the quick installer (no need to
 install pdkpeek, but it must be in the buildout as we use its methods)

 Using pdftransform in your site
 ===============================

 collective.pdftransform adds a 'pdf_to_image' transform in Plone
 portal_transform.
 As transforms can not be used with FileField (or at least I did not
 find how ...) it also provides a method in utils called update_form.
 You can use it in the 'post_validate' method of your Archetype
 objects.

 Here is an example (from Products.plonehrm, the Employee Archetype
 object):

 ...
 from collective.pdftransform.utils import update_form
 ...
 class Employee(BaseFolder):
 ...

 security.declarePrivate('post_validate')
 def post_validate(self, REQUEST, errors):
 update_form(self, REQUEST)

 ...

 With this, all files submitted in the edit form, if they are PDF, are
 transformed into jpg files.
 You can specify an extra argument in update_form which is the list of
 fields, for example, if we had written this:

 security.declarePrivate('post_validate')
 def post_validate(self, REQUEST, errors):
 update_form(self, REQUEST,
 ['portrait_file', 'idScan_file'])

 only the files submitted in the portrait and idScan fields would have
 been transformed.

 You can also use the validator called 'isValidImageOrPDF' in your
 Image fields.

 Changelog
 =========

 0.3 (2012-10-30)

 - Patched pdfpeek to use the default 1.2 release. [vincent]

 - Allow setting PDF resolution in update_form. [vincent]

 0.2 (2010-06-21)

 - Bugfix in utils/is_transformable_pdf. [vincent]

 0.1 (2010-05-19)

 - added translations for french and dutch. [vincent]

 - updated the validator to return an error if the PDF file can not be
 transformed. [vincent]

 - added is_transformable_pdf in utils, tells if the PDF file uploaded
 can be transformed with pdf_to_image. [vincent]

 - added validator called 'isValidImageOrPDF' that checks that the
 submitted if is a PDF or an image (except BMP images as it can cause
 problems). [vincent]

 - added update_form in utils, that can be used in
 the post_validate method of your Archetype objects. [vincent]

 - Added transform to the portal_transform. [vincent]
Platform: UNKNOWN
Classifier: Framework :: Plone
Classifier: Programming Language :: Python

collective.pdftransform-0.3/setup.cfg
[egg_info]
tag_build =
tag_date = 0
tag_svn_revision = 0

collective.pdftransform-0.3/setup.py
from setuptools import setup, find_packages
import os

def get_file_contents_from_main_dir(filename):
 file_path = os.path.join('collective', 'pdftransform', filename)
 this_file = open(file_path)
 contents = this_file.read().strip()
 this_file.close()
 return contents

version = get_file_contents_from_main_dir('version.txt')
history = get_file_contents_from_main_dir('HISTORY.txt')
readme = get_file_contents_from_main_dir('README.txt')
long = "%s\n\n\n%s" % (readme, history)

setup(name='collective.pdftransform',
 version=version,
 description="A set of portal transform to change pdf into images",
 long_description=long,
 # Get more strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers
 classifiers=[
 "Framework :: Plone",
 "Programming Language :: Python",
],
 keywords='',
 author='Zest software',
 author_email='info@zestsoftware.nl',
 url='http://github.com/vincent-psarga/collective.pdftransform',
 license='GPL',
 packages=find_packages(exclude=['ez_setup']),
 namespace_packages=['collective'],
 include_package_data=True,
 zip_safe=False,
 install_requires=[
 'setuptools',
 # -*- Extra requirements: -*-
 'collective.pdfpeek == 1.2'
],
 entry_points="""
 # -*- Entry points: -*-

 [z3c.autoinclude.plugin]
 target = plone
 """,
 setup_requires=["PasteScript"],
 paster_plugins = ["ZopeSkel"],
)

collective.pdftransform-0.3/collective/__init__.py
See http://peak.telecommunity.com/DevCenter/setuptools#namespace-packages
try:
 __import__('pkg_resources').declare_namespace(__name__)
except ImportError:
 from pkgutil import extend_path
 __path__ = extend_path(__path__, __name__)

collective.pdftransform-0.3/collective/pdftransform/__init__.py
from Products.PortalTransforms.libtransforms.utils import MissingBinary
from zope.i18nmessageid import MessageFactory
PDFTransformMessageFactory = MessageFactory(u'collective.pdftransform')

from Products.validation import validation
from validator import ImageOrPDFValidator
validation.register(ImageOrPDFValidator('isValidImageOrPDF'))

from collective.pdftransform import patch
patch.patch_pdfpeek()

modules = [
 'pdf_image',
]

g = globals()
transforms = []
for m in modules:
 try:
 ns = __import__(m, g, g, None)
 transforms.append(ns.register())
 except ImportError, e:
 print "Problem importing module %s : %s" % (m, e)
 except MissingBinary, e:
 print e
 except:
 import traceback
 traceback.print_exc()

def initialize(engine):
 pass

collective.pdftransform-0.3/collective/pdftransform/configure.zcml
<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 i18n_domain="collective.pdftransform">

 <five:registerPackage package="." initialize=".initialize" />
 <i18n:registerTranslations directory="locales" />
</configure>

collective.pdftransform-0.3/collective/pdftransform/HISTORY.txt
Changelog
=========

0.3 (2012-10-30)

- Patched pdfpeek to use the default 1.2 release. [vincent]

- Allow setting PDF resolution in update_form. [vincent]

0.2 (2010-06-21)

- Bugfix in utils/is_transformable_pdf. [vincent]

0.1 (2010-05-19)

- added translations for french and dutch. [vincent]

- updated the validator to return an error if the PDF file can not be
 transformed. [vincent]

- added is_transformable_pdf in utils, tells if the PDF file uploaded
 can be transformed with pdf_to_image. [vincent]

- added validator called 'isValidImageOrPDF' that checks that the
 submitted if is a PDF or an image (except BMP images as it can cause
 problems). [vincent]

- added update_form in utils, that can be used in
 the post_validate method of your Archetype objects. [vincent]

- Added transform to the portal_transform. [vincent]

collective.pdftransform-0.3/collective/pdftransform/patch.py
from collective.pdfpeek.transforms import subprocess, convertPDFToImage, logger

DEFAULT_OPTIONS = {'quality': '99',
 'graphicsAlphaBits': '4',
 'textAlphaBits': '4',
 'resolution': '59x56',
 'extra': ["-dDOINTERPOLATE",
 "-dSAFER",
 "-dBATCH",
 "-dNOPAUSE"]}

def ghostscript_transform(self, pdf, page_num, options=None):
 """
 ghostscript_transform takes an AT based object with an IPDF interface
 and a page number argument and converts that page number of the pdf
 file to a png image file.
 """
 if options is None:
 options = DEFAULT_OPTIONS

 first_page = "-dFirstPage=%s" % (page_num)
 last_page = "-dLastPage=%s" % (page_num)

 gs_cmd = ["gs",
 "-q",
 "-sDEVICE=jpeg",
 "-dJPEGQ=%s" % options['quality'],
 "-dGraphicsAlphaBits=%s" % options['graphicsAlphaBits'],
 "-dTextAlphaBits=%s" % options['graphicsAlphaBits']
] + \
 options['extra'] + \
 ["-r%s" % options['resolution'],
 first_page,
 last_page,
 "-sOutputFile=%stdout",
 "-",
]

 jpeg = None
 """run the ghostscript command on the pdf file,
 capture the output png file of the specified page number"""
 gs_process = subprocess.Popen(gs_cmd,stdout=subprocess.PIPE,stdin=subprocess.PIPE,)
 gs_process.stdin.write(pdf)
 jpeg = gs_process.communicate()[0]
 gs_process.stdin.close()
 return_code = gs_process.returncode
 if return_code == 0:
 logger.info("Ghostscript processed one page of a pdf file.")
 else:
 logger.warn("Ghostscript process did not exit cleanly! Error Code: %d" % (return_code))
 jpeg = None
 return jpeg

def patch_pdfpeek():
 convertPDFToImage._old_gs_transform = convertPDFToImage.ghostscript_transform
 convertPDFToImage.ghostscript_transform = ghostscript_transform

def unpatch_pdfpeek():
 convertPDFToImage.ghostscript_transform = convertPDFToImage._old_gs_transform

collective.pdftransform-0.3/collective/pdftransform/pdf_image.py
from zope.interface import implements
from Products.PortalTransforms.interfaces import itransform

from collective.pdfpeek.transforms import convertPDFToImage
from collective.pdftransform.patch import DEFAULT_OPTIONS

class PdfToImage:
 """Transforms PDF to jpg images."""

 __implements__ = itransform

 __name__ = "pdf_to_image"
 output = "image/jpeg"

 def __init__(self,
 name=None,
 inputs=None,
 tab_width=None,
 resolution=None,
 quality=None):

 if inputs is None:
 inputs = ('application/pdf',)

 if tab_width is None:
 tab_width = 4

 if resolution is None:
 resolution = DEFAULT_OPTIONS['resolution']

 if quality is None:
 quality = DEFAULT_OPTIONS['quality']

 self.config = {'inputs' : inputs,
 'tab_width' : 4,
 'resolution': resolution,
 'quality': quality}

 self.config_metadata = {
 'inputs' : ('list', 'Inputs',
 'Input(s) MIME type. Change with care.'),
 'tab_width' : ('string', 'Tab width',
 'Number of spaces for a tab in the input'),
 'resolution' : ('string', 'Resolution',
 'Default resolution'),
 'quality': ('string', 'Quality',
 'PDF quality')
 }
 if name:
 self.__name__ = name

 def get_options(self):
 """ Uses the default options from pdfpeek.
 Checks in portal_properties if any is overriden.
 """
 options = dict([(k, v) for k, v in DEFAULT_OPTIONS.items()])
 for key in options:
 p_val = self.config.get(key, None)
 if p_val is not None:
 options[key] = p_val

 return options

 def name(self):
 return self.__name__

 def __getattr__(self, attr):
 if attr in self.config:
 return self.config[attr]
 raise AttributeError(attr)

 def convert(self, orig, data, **kwargs):
 converter = convertPDFToImage()
 options = self.get_options()

 if kwargs.get('pdf_resolution', None) is not None:
 options['resolution'] = kwargs['pdf_resolution']

 img = converter.ghostscript_transform(orig, 1, options)
 data.setData(img)
 return data

def register():
 return PdfToImage()

collective.pdftransform-0.3/collective/pdftransform/README.txt
Introduction
============

The main goal of this product is to allow PDF into ImageFields in
Plone. It uses code written by David Brenneman for
collective.pdfpeek.

Install
=======

Just add the following lines in your buildout:
 collective.pdfpeek
 collective.pdftransform

You must install pdftransform with the quick installer (no need to
install pdkpeek, but it must be in the buildout as we use its methods)

Using pdftransform in your site
===============================

collective.pdftransform adds a 'pdf_to_image' transform in Plone
portal_transform.
As transforms can not be used with FileField (or at least I did not
find how ...) it also provides a method in utils called update_form.
You can use it in the 'post_validate' method of your Archetype
objects.

Here is an example (from Products.plonehrm, the Employee Archetype
object):

 ...
 from collective.pdftransform.utils import update_form
 ...
 class Employee(BaseFolder):
 ...

 security.declarePrivate('post_validate')
 def post_validate(self, REQUEST, errors):
 update_form(self, REQUEST)

 ...

With this, all files submitted in the edit form, if they are PDF, are
transformed into jpg files.
You can specify an extra argument in update_form which is the list of
fields, for example, if we had written this:

 security.declarePrivate('post_validate')
 def post_validate(self, REQUEST, errors):
 update_form(self, REQUEST,
 ['portrait_file', 'idScan_file'])

only the files submitted in the portrait and idScan fields would have
been transformed.

You can also use the validator called 'isValidImageOrPDF' in your
Image fields.

collective.pdftransform-0.3/collective/pdftransform/rebuild_i18n.sh
#!/bin/sh
PRODUCTNAME=collective.pdftransform
I18NDOMAIN=$PRODUCTNAME

Synchronise the .pot with the templates.
i18ndude rebuild-pot --pot locales/${PRODUCTNAME}.pot --create ${I18NDOMAIN} .

Synchronise the resulting .pot with the .po files
i18ndude sync --pot locales/${PRODUCTNAME}.pot locales/*/LC_MESSAGES/${PRODUCTNAME}.po

collective.pdftransform-0.3/collective/pdftransform/tests.py
import unittest

from zope.testing import doctestunit
from zope.component import testing
from Testing import ZopeTestCase as ztc

from Products.Five import zcml
from Products.Five import fiveconfigure
from Products.PloneTestCase import PloneTestCase as ptc
from Products.PloneTestCase.layer import PloneSite
ptc.setupPloneSite()

import collective.pdftransform

class TestCase(ptc.PloneTestCase):
 class layer(PloneSite):
 @classmethod
 def setUp(cls):
 fiveconfigure.debug_mode = True
 zcml.load_config('configure.zcml',
 collective.pdftransform)
 fiveconfigure.debug_mode = False

 @classmethod
 def tearDown(cls):
 pass

def test_suite():
 return unittest.TestSuite([

 # Unit tests
 #doctestunit.DocFileSuite(
 # 'README.txt', package='collective.pdftransform',
 # setUp=testing.setUp, tearDown=testing.tearDown),

 #doctestunit.DocTestSuite(
 # module='collective.pdftransform.mymodule',
 # setUp=testing.setUp, tearDown=testing.tearDown),

 # Integration tests that use PloneTestCase
 #ztc.ZopeDocFileSuite(
 # 'README.txt', package='collective.pdftransform',
 # test_class=TestCase),

 #ztc.FunctionalDocFileSuite(
 # 'browser.txt', package='collective.pdftransform',
 # test_class=TestCase),

])

if __name__ == '__main__':
 unittest.main(defaultTest='test_suite')

collective.pdftransform-0.3/collective/pdftransform/utils.py
from Products.CMFCore.utils import getToolByName
from ZPublisher.HTTPRequest import FileUpload
from zope.app.component.hooks import getSite

class FakeData:
 """ portal_transforms expects some data object, we fake it
 here.
 """
 def setData(self, d):
 self.data = d

 def getData(self):
 return self.data

def is_pdf(file):
 """ Tells if a file is a PDF or not.
 """
 return file.headers.get('content-type') == 'application/pdf'

def is_transformable_pdf(file):
 """ Tells if a file can be transformed using pdfpeek.
 """
 if not is_pdf(file):
 return False

 portal = getSite()
 transform = getToolByName(portal, 'portal_transforms')
 data = FakeData()

 file.seek(0)
 transformable = True
 try:
 transform.pdf_to_image.convert(file.read(), data)
 if not data.getData():
 transformable = False
 except:
 transformable = False

 file.seek(0)
 return transformable

def update_form(context, request, fields = [], pdf_resolution = None):
 """ Transforms every pdf files in request.form
 into images.
 fields can be used to limit to a certain list of
 fields.
 """
 transform = getToolByName(context, 'portal_transforms')
 if not fields:
 fields = request.form.keys()

 for field in fields:
 if not field in request.form:
 # Should not happen, except if the user specified a wrong
 # field name.
 # XXX - raise an exception or log something.
 continue

 if not isinstance(request.form[field], FileUpload):
 # That not a file upload.
 continue

 f = request.form[field]
 if not is_transformable_pdf(f):
 # Not a PDF we can transform, nothing to do.
 continue

 data = FakeData()
 f.seek(0)
 transform.pdf_to_image.convert(f.read(), data,
 pdf_resolution = pdf_resolution)

 f.seek(0)
 f.truncate()
 f.write(data.getData())
 f.filename = f.filename.replace('.pdf', '.jpg')
 f.headers['content-type'] = 'image/jpeg'
 f.seek(0)

 request.form[field] = f

 return request.form

collective.pdftransform-0.3/collective/pdftransform/validator.py
import PIL

from Products.validation.interfaces import ivalidator
from zope.i18n import translate
from collective.pdftransform import PDFTransformMessageFactory as _

from utils import is_pdf, is_transformable_pdf

class ImageOrPDFValidator:
 """ Checks that the file uploaded is a pdf or an image file.
 Also check that it is not a BMP file.
 """
 __implements__ = (ivalidator,)

 def __init__(self, name):
 self.name = name

 def __call__(self, value, *args, **kwargs):
 error = ''
 if value == 'DELETE_IMAGE':
 return True

 if is_pdf(value):
 if is_transformable_pdf(value):
 return True

 error = _(u'error_pdf_no_transformable',
 default = u'The PDF file provided can not be used, ' + \
 'please ensure that this is a valid PDF file and ' + \
 'that it is not password protected.')
 return translate(error, context=kwargs['REQUEST'])

 value.seek(0)
 try:
 image = PIL.Image.open(value)
 if image.format == 'BMP':
 error = _(u'error_img_validation_bmp',
 default=u'Bitmap images can not be used. ' + \
 'Please use one of the following type: ' + \
 'jpg, gif, png or pdf')

 except:
 error = _(u'error_img_validation_no_image',
 default=u'The file you submitted in not an image' + \
 ' file. Please use one of the following type: ' + \
 'jpg, gif, png or pdf')

 if error:
 return translate(error, context=kwargs['REQUEST'])
 return True

collective.pdftransform-0.3/collective/pdftransform/version.txt
0.3

collective.pdftransform-0.3/collective/pdftransform/Extensions/__init__.py

collective.pdftransform-0.3/collective/pdftransform/Extensions/Install.py
from Products.CMFCore.utils import getToolByName

from StringIO import StringIO
from types import InstanceType

def registerTransform(self, out, name, module):
 transforms = getToolByName(self, 'portal_transforms')
 transforms.manage_addTransform(name, module)
 print >> out, "Registered transform", name

def unregisterTransform(self, out, name):
 transforms = getToolByName(self, 'portal_transforms')
 try:
 transforms.unregisterTransform(name)
 print >> out, "Removed transform", name
 except AttributeError:
 print >> out, "Could not remove transform", name, "(not found)"

def install(self):

 out = StringIO()

 print >> out, "Installing pdf to image transform"

 # Register transforms
 registerTransform(self, out, 'pdf_to_image',
 'collective.pdftransform.pdf_image')

 return out.getvalue()

def uninstall(self):

 out = StringIO()

 # Remove transforms
 unregisterTransform(self, out, 'pdf_to_image')

 return out.getvalue()

collective.pdftransform-0.3/collective/pdftransform/locales/collective.pdftransform.pot
--- PLEASE EDIT THE LINES BELOW CORRECTLY ---
SOME DESCRIPTIVE TITLE.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2010-05-19 09:00+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI +ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=1; plural=0\n"
"Language-Code: en\n"
"Language-Name: English\n"
"Preferred-Encodings: utf-8 latin1\n"
"Domain: collective.pdftransform\n"

#. Default: "Bitmap images can not be used. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:37
msgid "error_img_validation_bmp"
msgstr ""

#. Default: "The file you submitted in not an image file. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:43
msgid "error_img_validation_no_image"
msgstr ""

#. Default: "The PDF file provided can not be used, please ensure that this is a valid PDF file and that it is not password protected."
#: ./validator.py:27
msgid "error_pdf_no_transformable"
msgstr ""

collective.pdftransform-0.3/collective/pdftransform/locales/en/LC_MESSAGES/collective.pdftransform.po
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2010-05-19 09:00+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI +ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=1; plural=0\n"
"Language-Code: en\n"
"Language-Name: English\n"
"Preferred-Encodings: utf-8 latin1\n"
"Domain: DOMAIN\n"

#. Default: "Bitmap images can not be used. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:37
msgid "error_img_validation_bmp"
msgstr ""

#. Default: "The file you submitted in not an image file. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:43
msgid "error_img_validation_no_image"
msgstr ""

#. Default: "The PDF file provided can not be used, please ensure that this is a valid PDF file and that it is not password protected."
#: ./validator.py:27
msgid "error_pdf_no_transformable"
msgstr ""

collective.pdftransform-0.3/collective/pdftransform/locales/fr/LC_MESSAGES/collective.pdftransform.po
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2010-05-19 09:00+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI +ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=1; plural=0\n"
"Language-Code: en\n"
"Language-Name: English\n"
"Preferred-Encodings: utf-8 latin1\n"
"Domain: DOMAIN\n"

#. Default: "Bitmap images can not be used. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:37
msgid "error_img_validation_bmp"
msgstr "Les images de type bitmap ne peuvent être utilisées. Veuillez utiliser l'un des formats suivants : jpg, gif, png ou pdf."

#. Default: "The file you submitted in not an image file. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:43
msgid "error_img_validation_no_image"
msgstr "Le fichier que vous avez choisi n'est pas une image. Veuillez utiliser l'un des formats suivants : jpg, gif, png ou pdf."

#. Default: "The PDF file provided can not be used, please ensure that this is a valid PDF file and that it is not password protected."
#: ./validator.py:27
msgid "error_pdf_no_transformable"
msgstr "Le fichier PDF que vous avez choisi ne peut pas être utilisé, veuillez vérifier qu'il s'agit d'un fichier PDF valide ou qu'il n'est pas protegé par un mot de passe."

collective.pdftransform-0.3/collective/pdftransform/locales/nl/LC_MESSAGES/collective.pdftransform.po
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2010-05-19 09:00+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI +ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=1; plural=0\n"
"Language-Code: en\n"
"Language-Name: English\n"
"Preferred-Encodings: utf-8 latin1\n"
"Domain: DOMAIN\n"

#. Default: "Bitmap images can not be used. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:37
msgid "error_img_validation_bmp"
msgstr "Bitmap afbeeldingen kunnen niet worden gebruikt. Gebruik een van de volgende typen: jpg, gif, png or pdf a.u.b."

#. Default: "The file you submitted in not an image file. Please use one of the following type: jpg, gif, png or pdf"
#: ./validator.py:43
msgid "error_img_validation_no_image"
msgstr "Het bestand dat u verstuurd is geen afbeelding. Gebruik een van de volgende typen: jpg, gif, png or pdf a.u.b."

#. Default: "The PDF file provided can not be used, please ensure that this is a valid PDF file and that it is not password protected."
#: ./validator.py:27
msgid "error_pdf_no_transformable"
msgstr "Het ontvangen PDF bestand is niet te gebruiken, zorg er voor dat het PDF bestand geldig is en dat het wachtwoord niet beveiligd is."

collective.pdftransform-0.3/collective.pdftransform.egg-info/dependency_links.txt

collective.pdftransform-0.3/collective.pdftransform.egg-info/entry_points.txt

 # -*- Entry points: -*-

 [z3c.autoinclude.plugin]
 target = plone

collective.pdftransform-0.3/collective.pdftransform.egg-info/namespace_packages.txt
collective

collective.pdftransform-0.3/collective.pdftransform.egg-info/not-zip-safe

collective.pdftransform-0.3/collective.pdftransform.egg-info/paster_plugins.txt
ZopeSkel

collective.pdftransform-0.3/collective.pdftransform.egg-info/PKG-INFO
Metadata-Version: 1.0
Name: collective.pdftransform
Version: 0.3
Summary: A set of portal transform to change pdf into images
Home-page: http://github.com/vincent-psarga/collective.pdftransform
Author: Zest software
Author-email: info@zestsoftware.nl
License: GPL
Description: Introduction
 ============

 The main goal of this product is to allow PDF into ImageFields in
 Plone. It uses code written by David Brenneman for
 collective.pdfpeek.

 Install
 =======

 Just add the following lines in your buildout:
 collective.pdfpeek
 collective.pdftransform

 You must install pdftransform with the quick installer (no need to
 install pdkpeek, but it must be in the buildout as we use its methods)

 Using pdftransform in your site
 ===============================

 collective.pdftransform adds a 'pdf_to_image' transform in Plone
 portal_transform.
 As transforms can not be used with FileField (or at least I did not
 find how ...) it also provides a method in utils called update_form.
 You can use it in the 'post_validate' method of your Archetype
 objects.

 Here is an example (from Products.plonehrm, the Employee Archetype
 object):

 ...
 from collective.pdftransform.utils import update_form
 ...
 class Employee(BaseFolder):
 ...

 security.declarePrivate('post_validate')
 def post_validate(self, REQUEST, errors):
 update_form(self, REQUEST)

 ...

 With this, all files submitted in the edit form, if they are PDF, are
 transformed into jpg files.
 You can specify an extra argument in update_form which is the list of
 fields, for example, if we had written this:

 security.declarePrivate('post_validate')
 def post_validate(self, REQUEST, errors):
 update_form(self, REQUEST,
 ['portrait_file', 'idScan_file'])

 only the files submitted in the portrait and idScan fields would have
 been transformed.

 You can also use the validator called 'isValidImageOrPDF' in your
 Image fields.

 Changelog
 =========

 0.3 (2012-10-30)

 - Patched pdfpeek to use the default 1.2 release. [vincent]

 - Allow setting PDF resolution in update_form. [vincent]

 0.2 (2010-06-21)

 - Bugfix in utils/is_transformable_pdf. [vincent]

 0.1 (2010-05-19)

 - added translations for french and dutch. [vincent]

 - updated the validator to return an error if the PDF file can not be
 transformed. [vincent]

 - added is_transformable_pdf in utils, tells if the PDF file uploaded
 can be transformed with pdf_to_image. [vincent]

 - added validator called 'isValidImageOrPDF' that checks that the
 submitted if is a PDF or an image (except BMP images as it can cause
 problems). [vincent]

 - added update_form in utils, that can be used in
 the post_validate method of your Archetype objects. [vincent]

 - Added transform to the portal_transform. [vincent]
Platform: UNKNOWN
Classifier: Framework :: Plone
Classifier: Programming Language :: Python

collective.pdftransform-0.3/collective.pdftransform.egg-info/requires.txt
setuptools
collective.pdfpeek == 1.2

collective.pdftransform-0.3/collective.pdftransform.egg-info/SOURCES.txt
.gitignore
setup.py
collective/__init__.py
collective.pdftransform.egg-info/PKG-INFO
collective.pdftransform.egg-info/SOURCES.txt
collective.pdftransform.egg-info/dependency_links.txt
collective.pdftransform.egg-info/entry_points.txt
collective.pdftransform.egg-info/namespace_packages.txt
collective.pdftransform.egg-info/not-zip-safe
collective.pdftransform.egg-info/paster_plugins.txt
collective.pdftransform.egg-info/requires.txt
collective.pdftransform.egg-info/top_level.txt
collective/pdftransform/HISTORY.txt
collective/pdftransform/README.txt
collective/pdftransform/__init__.py
collective/pdftransform/configure.zcml
collective/pdftransform/patch.py
collective/pdftransform/pdf_image.py
collective/pdftransform/rebuild_i18n.sh
collective/pdftransform/tests.py
collective/pdftransform/utils.py
collective/pdftransform/validator.py
collective/pdftransform/version.txt
collective/pdftransform/Extensions/Install.py
collective/pdftransform/Extensions/__init__.py
collective/pdftransform/locales/collective.pdftransform.pot
collective/pdftransform/locales/en/LC_MESSAGES/collective.pdftransform.po
collective/pdftransform/locales/fr/LC_MESSAGES/collective.pdftransform.po
collective/pdftransform/locales/nl/LC_MESSAGES/collective.pdftransform.po
docs/INSTALL.txt
docs/LICENSE.GPL
docs/LICENSE.txt

collective.pdftransform-0.3/collective.pdftransform.egg-info/top_level.txt
collective

collective.pdftransform-0.3/docs/INSTALL.txt
collective.pdftransform Installation

To install collective.pdftransform into the global Python environment (or a workingenv),
using a traditional Zope 2 instance, you can do this:

* When you're reading this you have probably already run
 ``easy_install collective.pdftransform``. Find out how to install setuptools
 (and EasyInstall) here:
 http://peak.telecommunity.com/DevCenter/EasyInstall

* Create a file called ``collective.pdftransform-configure.zcml`` in the
 ``/path/to/instance/etc/package-includes`` directory. The file
 should only contain this::

 <include package="collective.pdftransform" />

Alternatively, if you are using zc.buildout and the plone.recipe.zope2instance
recipe to manage your project, you can do this:

* Add ``collective.pdftransform`` to the list of eggs to install, e.g.:

 [buildout]
 ...
 eggs =
 ...
 collective.pdftransform

* Tell the plone.recipe.zope2instance recipe to install a ZCML slug:

 [instance]
 recipe = plone.recipe.zope2instance
 ...
 zcml =
 collective.pdftransform

* Re-run buildout, e.g. with:

 $./bin/buildout

You can skip the ZCML slug if you are going to explicitly include the package
from another package's configure.zcml file.

collective.pdftransform-0.3/docs/LICENSE.GPL
		 GNU GENERAL PUBLIC LICENSE
		 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

		 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		 END OF TERMS AND CONDITIONS

	 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

collective.pdftransform-0.3/docs/LICENSE.txt
 collective.pdftransform is copyright Zest software

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 MA 02111-1307 USA.

